Jiefeng Ma


2024

pdf
UniTabNet: Bridging Vision and Language Models for Enhanced Table Structure Recognition
Zhenrong Zhang | Shuhang Liu | Pengfei Hu | Jiefeng Ma | Jun Du | Jianshu Zhang | Yu Hu
Findings of the Association for Computational Linguistics: EMNLP 2024

In the digital era, table structure recognition technology is a critical tool for processing and analyzing large volumes of tabular data. Previous methods primarily focus on visual aspects of table structure recovery but often fail to effectively comprehend the textual semantics within tables, particularly for descriptive textual cells. In this paper, we introduce UniTabNet, a novel framework for table structure parsing based on the image-to-text model. UniTabNet employs a “divide-and-conquer” strategy, utilizing an image-to-text model to decouple table cells and integrating both physical and logical decoders to reconstruct the complete table structure. We further enhance our framework with the Vision Guider, which directs the model’s focus towards pertinent areas, thereby boosting prediction accuracy. Additionally, we introduce the Language Guider to refine the model’s capability to understand textual semantics in table images. Evaluated on prominent table structure datasets such as PubTabNet, PubTables1M, WTW, and iFLYTAB, UniTabNet achieves a new state-of-the-art performance, demonstrating the efficacy of our approach. The code will also be made publicly available.

2022

pdf
GMN: Generative Multi-modal Network for Practical Document Information Extraction
Haoyu Cao | Jiefeng Ma | Antai Guo | Yiqing Hu | Hao Liu | Deqiang Jiang | Yinsong Liu | Bo Ren
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Document Information Extraction (DIE) has attracted increasing attention due to its various advanced applications in the real world. Although recent literature has already achieved competitive results, these approaches usually fail when dealing with complex documents with noisy OCR results or mutative layouts. This paper proposes Generative Multi-modal Network (GMN) for real-world scenarios to address these problems, which is a robust multi-modal generation method without predefined label categories. With the carefully designed spatial encoder and modal-aware mask module, GMN can deal with complex documents that are hard to serialized into sequential order. Moreover, GMN tolerates errors in OCR results and requires no character-level annotation, which is vital because fine-grained annotation of numerous documents is laborious and even requires annotators with specialized domain knowledge. Extensive experiments show that GMN achieves new state-of-the-art performance on several public DIE datasets and surpasses other methods by a large margin, especially in realistic scenes.