2024
pdf
abs
CARE: A Clue-guided Assistant for CSRs to Read User Manuals
Weihong Du
|
Jia Liu
|
Zujie Wen
|
Dingnan Jin
|
Hongru Liang
|
Wenqiang Lei
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
It is time-saving to build a reading assistant for customer service representations (CSRs) when reading user manuals, especially information-rich ones. Current solutions don’t fit the online custom service scenarios well due to the lack of attention to user questions and possible responses. Hence, we propose to develop a time-saving and careful reading assistant for CSRs, named CARE. It can help the CSRs quickly find proper responses from the user manuals via explicit clue chains. Specifically, each of the clue chains is formed by inferring over the user manuals, starting from the question clue aligned with the user question and ending at a possible response. To overcome the shortage of supervised data, we adopt the self-supervised strategy for model learning. The offline experiment shows that CARE is efficient in automatically inferring accurate responses from the user manual. The online experiment further demonstrates the superiority of CARE to reduce CSRs’ reading burden and keep high service quality, in particular with >35% decrease in time spent and keeping a >0.75 ICC score.
pdf
abs
Strength Lies in Differences! Improving Strategy Planning for Non-collaborative Dialogues via Diversified User Simulation
Tong Zhang
|
Chen Huang
|
Yang Deng
|
Hongru Liang
|
Jia Liu
|
Zujie Wen
|
Wenqiang Lei
|
Tat-Seng Chua
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
We investigate non-collaborative dialogue agents, which are expected to engage in strategic conversations with diverse users, for securing a mutual agreement that leans favorably towards the system’s objectives. This poses two main challenges for existing dialogue agents: 1) The inability to integrate user-specific characteristics into the strategic planning, and 2) The difficulty of training strategic planners that can be generalized to diverse users. To address these challenges, we propose TRIP to enhance the capability in tailored strategic planning, incorporating a user-aware strategic planning module and a population-based training paradigm. Through experiments on benchmark non-collaborative dialogue tasks, we demonstrate the effectiveness of TRIP in catering to diverse users.
pdf
abs
EfficientRAG: Efficient Retriever for Multi-Hop Question Answering
Ziyuan Zhuang
|
Zhiyang Zhang
|
Sitao Cheng
|
Fangkai Yang
|
Jia Liu
|
Shujian Huang
|
Qingwei Lin
|
Saravan Rajmohan
|
Dongmei Zhang
|
Qi Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Retrieval-augmented generation (RAG) methods encounter difficulties when addressing complex questions like multi-hop queries.While iterative retrieval methods improve performance by gathering additional information, current approaches often rely on multiple calls of large language models (LLMs).In this paper, we introduce EfficientRAG, an efficient retriever for multi-hop question answering.EfficientRAG iteratively generates new queries without the need for LLM calls at each iteration and filters out irrelevant information.Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.The code is available in [aka.ms/efficientrag](https://github.com/NIL-zhuang/EfficientRAG-official).
pdf
abs
Q-Tuning: Queue-based Prompt Tuning for Lifelong Few-shot Language Learning
Yanhui Guo
|
Shaoyuan Xu
|
Jinmiao Fu
|
Jia Liu
|
Chaosheng Dong
|
Bryan Wang
Findings of the Association for Computational Linguistics: NAACL 2024
This paper introduces Q-tuning, a novel approach for continual prompt tuning that enables the lifelong learning of a pre-trained language model. When learning a new task, Q-tuning trains a task-specific prompt by adding it to a prompt queue consisting of the prompts from older tasks. To better transfer the knowledge of old tasks, we design an adaptive knowledge aggregation technique that reweighs previous prompts in the queue with a learnable low-rank matrix. Once the prompt queue reaches its maximum capacity, we leverage a PCA-based eviction rule to reduce the queue’s size, allowing the newly trained prompt to be added while preserving the primary knowledge of old tasks. In order to mitigate the accumulation of information loss caused by the eviction, we additionally propose a globally shared prefix prompt and a memory retention regularization based on information theory. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods substantially on continual prompt tuning benchmarks. Moreover, our approach enables lifelong learning on linearly growing task sequences while requiring constant complexity for training and inference.
pdf
abs
STYLE: Improving Domain Transferability of Asking Clarification Questions in Large Language Model Powered Conversational Agents
Yue Chen
|
Chen Huang
|
Yang Deng
|
Wenqiang Lei
|
Dingnan Jin
|
Jia Liu
|
Tat-Seng Chua
Findings of the Association for Computational Linguistics: ACL 2024
Equipping a conversational search engine with strategies regarding when to ask clarification questions is becoming increasingly important across various domains. Attributing to the context understanding capability of LLMs and their access to domain-specific sources of knowledge, LLM-based clarification strategies feature rapid transfer to various domains in a post-hoc manner.However, they still struggle to deliver promising performance on unseen domains, struggling to achieve effective domain transferability.We take the first step to investigate this issue and existing methods tend to produce one-size-fits-all strategies across diverse domains, limiting their search effectiveness.In response, we introduce a novel method, called STYLE,to achieve effective domain transferability.Our experimental results indicate that STYLE bears strong domain transferability, resulting in an average search performance improvement of 10% on four unseen domains.
2023
pdf
abs
TRAVEL: Tag-Aware Conversational FAQ Retrieval via Reinforcement Learning
Yue Chen
|
Dingnan Jin
|
Chen Huang
|
Jia Liu
|
Wenqiang Lei
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Efficiently retrieving FAQ questions that match users’ intent is essential for online customer service. Existing methods aim to fully utilize the dynamic conversation context to enhance the semantic association between the user query and FAQ questions. However, the conversation context contains noise, e.g., users may click questions they don’t like, leading to inaccurate semantics modeling. To tackle this, we introduce tags of FAQ questions, which can help us eliminate irrelevant information. We later integrate them into a reinforcement learning framework and minimize the negative impact of irrelevant information in the dynamic conversation context. We experimentally demonstrate our efficiency and effectiveness on conversational FAQ retrieval compared to other baselines.
pdf
abs
Towards Effective Automatic Debt Collection with Persona Awareness
Tong Zhang
|
Junhong Liu
|
Chen Huang
|
Jia Liu
|
Hongru Liang
|
Zujie Wen
|
Wenqiang Lei
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
Understanding debtor personas is crucial for collectors to empathize with debtors and develop more effective collection strategies. In this paper, we take the first step towards comprehensively investigating the significance of debtor personas and present a successful commercial practice on automatic debt collection agents. Specifically, we organize the debtor personas into a taxonomy and construct a persona-aware conversation dataset. Building upon it, we implement a simple yet effective persona-aware agent called PAD. After two-month online testing, PAD increases the recovery rate by 3.31% and collects an additional ~100K RMB. Our commercial practice brings inspiration to the debt collection industry by providing an effective automatic solution.
pdf
abs
Knowing-how & Knowing-that: A New Task for Machine Comprehension of User Manuals
Hongru Liang
|
Jia Liu
|
Weihong Du
|
Dingnan Jin
|
Wenqiang Lei
|
Zujie Wen
|
Jiancheng Lv
Findings of the Association for Computational Linguistics: ACL 2023
The machine reading comprehension (MRC) of user manuals has huge potential in customer service. However, current methods have trouble answering complex questions. Therefore, we introduce the knowing-how & knowing-that task that requires the model to answer factoid-style, procedure-style, and inconsistent questions about user manuals. We resolve this task by jointly representing the sTeps and fActs in a gRAh (TARA), which supports a unified inference of various questions. Towards a systematical benchmarking study, we design a heuristic method to automatically parse user manuals into TARAs and build an annotated dataset to test the model’s ability in answering real-world questions. Empirical results demonstrate that representing user manuals as TARAs is a desired solution for the MRC of user manuals. An in-depth investigation of TARA further sheds light on the issues and broader impacts of future representations of user manuals. We hope our work can move the MRC of user manuals to a more complex and realistic stage.
pdf
abs
Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement
Zhiheng Xi
|
Senjie Jin
|
Yuhao Zhou
|
Rui Zheng
|
Songyang Gao
|
Jia Liu
|
Tao Gui
|
Qi Zhang
|
Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2023
To enhance the multi-step reasoning capabilities of large language models, researchers have extensively explored prompting methods, notably the Chain-of-Thought (CoT) method which explicitly elicits human-like rationales. However, they have inadvertently overlooked the potential of enhancing model reasoning performance by formulating higher-quality problems. In this work, we start from the problem side and propose Self-Polish (SP), a novel method that facilitates the model’s reasoning by guiding it to progressively refine the given problems to be more comprehensible and solvable. We also explore several automatic prompting varients and propose the Self-Polish prompt bank for the community. SP is orthogonal to all other prompting methods of answer/reasoning side like CoT, allowing for seamless integration with state-of-the-art techniques for further improvement. Thorough experiments show that the proposed method attains notable and consistent effectiveness on five reasoning benchmarks across different models. Furthermore, our method also showcases impressive performance on robustness evaluation. Codes and prompts are available at https://github.com/WooooDyy/Self-Polish.
2022
pdf
abs
Spelling Correction using Phonetics in E-commerce Search
Fan Yang
|
Alireza Bagheri Garakani
|
Yifei Teng
|
Yan Gao
|
Jia Liu
|
Jingyuan Deng
|
Yi Sun
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)
In E-commerce search, spelling correction plays an important role to find desired products for customers in processing user-typed search queries. However, resolving phonetic errors is a critical but much overlooked area. The query with phonetic spelling errors tends to appear correct based on pronunciation but is nonetheless inaccurate in spelling (e.g., “bluetooth sound system” vs. “blutut sant sistam”) with numerous noisy forms and sparse occurrences. In this work, we propose a generalized spelling correction system integrating phonetics to address phonetic errors in E-commerce search without additional latency cost. Using India (IN) E-commerce market for illustration, the experiment shows that our proposed phonetic solution significantly improves the F1 score by 9%+ and recall of phonetic errors by 8%+. This phonetic spelling correction system has been deployed to production, currently serving hundreds of millions of customers.
pdf
abs
Improve Interpretability of Neural Networks via Sparse Contrastive Coding
Junhong Liu
|
Yijie Lin
|
Liang Jiang
|
Jia Liu
|
Zujie Wen
|
Xi Peng
Findings of the Association for Computational Linguistics: EMNLP 2022
Although explainable artificial intelligence (XAI) has achieved remarkable developments in recent years, there are few efforts have been devoted to the following problems, namely, i) how to develop an explainable method that could explain the black-box in a model-agnostic way? and ii) how to improve the performance and interpretability of the black-box using such explanations instead of pre-collected important attributions? To explore the potential solution, we propose a model-agnostic explanation method termed as Sparse Contrastive Coding (SCC) and verify its effectiveness in text classification and natural language inference. In brief, SCC explains the feature attributions which characterize the importance of words based on the hidden states of each layer of the model. With such word-level explainability, SCC adaptively divides the input sentences into foregrounds and backgrounds in terms of task relevance. Through maximizing the similarity between the foregrounds and input sentences while minimizing the similarity between the backgrounds and input sentences, SSC employs a supervised contrastive learning loss to boost the interpretability and performance of the model. Extensive experiments show the superiority of our method over five state-of-the-art methods in terms of interpretability and classification measurements. The code is available at https://pengxi.me.
2007
pdf
Manifolds Based Emotion Recognition in Speech
Mingyu You
|
Chun Chen
|
Jiajun Bu
|
Jia Liu
|
Jianhua Tao
International Journal of Computational Linguistics & Chinese Language Processing, Volume 12, Number 1, March 2007: Special Issue on Affective Speech Processing