Hlaing Myat Nwe


2023

pdf
Enhancing Translation of Myanmar Sign Language by Transfer Learning and Self-Training
Hlaing Myat Nwe | Kiyoaki Shirai | Natthawut Kertkeidkachorn | Thanaruk Theeramunkong | Ye Kyaw Thu | Thepchai Supnithi | Natsuda Kaothanthong
Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track

This paper proposes a method to develop a machine translation (MT) system from Myanmar Sign Language (MSL) to Myanmar Written Language (MWL) and vice versa for the deaf community. Translation of MSL is a difficult task since only a small amount of a parallel corpus between MSL and MWL is available. To address the challenge for MT of the low-resource language, transfer learning is applied. An MT model is trained first for a high-resource language pair, American Sign Language (ASL) and English, then it is used as an initial model to train an MT model between MSL and MWL. The mT5 model is used as a base MT model in this transfer learning. Additionally, a self-training technique is applied to generate synthetic translation pairs of MSL and MWL from a large monolingual MWL corpus. Furthermore, since the segmentation of a sentence is required as preprocessing of MT for the Myanmar language, several segmentation schemes are empirically compared. Results of experiments show that both transfer learning and self-training can enhance the performance of the translation between MSL and MWL compared with a baseline model fine-tuned from a small MSL-MWL parallel corpus only.

2021

pdf
Hybrid Statistical Machine Translation for English-Myanmar: UTYCC Submission to WAT-2021
Ye Kyaw Thu | Thazin Myint Oo | Hlaing Myat Nwe | Khaing Zar Mon | Nang Aeindray Kyaw | Naing Linn Phyo | Nann Hwan Khun | Hnin Aye Thant
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

In this paper we describe our submissions to WAT-2021 (Nakazawa et al., 2021) for English-to-Myanmar language (Burmese) task. Our team, ID: “YCC-MT1”, focused on bringing transliteration knowledge to the decoder without changing the model. We manually extracted the transliteration word/phrase pairs from the ALT corpus and applying XML markup feature of Moses decoder (i.e. -xml-input exclusive, -xml-input inclusive). We demonstrate that hybrid translation technique can significantly improve (around 6 BLEU scores) the baseline of three well-known “Phrase-based SMT”, “Operation Sequence Model” and “Hierarchical Phrase-based SMT”. Moreover, this simple hybrid method achieved the second highest results among the submitted MT systems for English-to-Myanmar WAT2021 translation share task according to BLEU (Papineni et al., 2002) and AMFM scores (Banchs et al., 2015).