Haoyuan Wu
2024
Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks
Haoyuan Wu
|
Haisheng Zheng
|
Zhuolun He
|
Bei Yu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) have demonstrated considerable proficiency in general natural language processing (NLP) tasks. Instruction tuning, a successful paradigm, enhances the ability of LLMs to follow natural language instructions and exhibit robust generalization across general tasks. However, these models often encounter performance limitations across multiple tasks due to constrained model capacity. Expanding this capacity during the instruction tuning phase poses significant challenges. To address this issue, we introduce parameter-efficient sparsity crafting (PESC), which crafts dense models into sparse models using the mixture-of-experts (MoE) architecture. PESC integrates adapters into the MoE layers of sparse models, differentiating experts without altering the individual weights within these layers. This method significantly reduces computational costs and GPU memory requirements, facilitating model capacity expansion through a minimal parameter increase when guaranteeing the quality of approximation in function space compared to original sparse upcycling. Our empirical evaluation demonstrates the effectiveness of the PESC method. Using PESC during instruction tuning, our best sparse model outperforms other sparse and dense models and exhibits superior general capabilities compared to GPT-3.5.Our code is available at https://github.com/wuhy68/Parameter-Efficient-MoE.
EvoR: Evolving Retrieval for Code Generation
Hongjin Su
|
Shuyang Jiang
|
Yuhang Lai
|
Haoyuan Wu
|
Boao Shi
|
Che Liu
|
Qian Liu
|
Tao Yu
Findings of the Association for Computational Linguistics: EMNLP 2024
Recently the retrieval-augmented generation (RAG) has been successfully applied in code generation. However, existing pipelines for retrieval-augmented code generation (RACG) employ static knowledge bases with a single source, limiting the adaptation capabilities of Large Language Models (LLMs) to domains they have insufficient knowledge of. In this work, we develop a novel pipeline, EVOR, that employs the synchronous evolution of both queries and diverse knowledge bases. On two realistic settings where the external knowledge is required to solve code generation tasks, we compile four new datasets associated with frequently updated libraries and long-tail programming languages, named EVOR-BENCH. Extensive experiments demonstrate that EVOR achieves two to four times of execution accuracy compared to other methods such as Reflexion (Shinn et al., 2024), DocPrompting (Zhou et al., 2023), etc. We demonstrate that EVOR is flexible and can be easily combined with them to achieve further improvement. Further analysis reveals that EVOR benefits from the synchronous evolution of queries and documents and the diverse information sources in the knowledge base. We hope that our studies will inspire more insights into the design of advanced RACG pipelines in future research.
Search
Co-authors
- Bei Yu 1
- Boao Shi 1
- Che Liu 1
- Haisheng Zheng 1
- Hongjin Su 1
- show all...