Guanghui Qin


2024

pdf
Dodo: Dynamic Contextual Compression for Decoder-only LMs
Guanghui Qin | Corby Rosset | Ethan Chau | Nikhil Rao | Benjamin Van Durme
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transformer-based language models (LMs) are inefficient in long contexts. We propose Dodo, a solution for context compression. Instead of one vector per token in a standard transformer model, Dodo represents text with a dynamic number of hidden states at each layer, reducing the cost of self-attention to a fraction of typical time and space. Moreover, off-the-shelf models such as LLaMA can be adapted to Dodo by efficient parameter tuning methods such as LoRA. In use, Dodo can act as either an autoregressive LM or a context compressor for downstream tasks. We demonstrate through experiments in language modeling, question answering, and summarization that Dodo retains capabilities in these tasks, while drastically reducing the overhead during decoding. For example, in the autoencoding task, Dodo shrinks context at a 20x compression ratio with a BLEU score of 98% for reconstruction, achieving nearly lossless encoding.

2023

pdf
The NLP Task Effectiveness of Long-Range Transformers
Guanghui Qin | Yukun Feng | Benjamin Van Durme
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Transformer models cannot easily scale to long sequences due to their O(Nˆ2) time and space complexity. This has led to Transformer variants seeking to lower computational complexity, such as Longformer and Performer. While such models have theoretically greater efficiency, their effectiveness on real NLP tasks has not been well studied. We benchmark 7 variants of Transformer models on 5 difficult NLP tasks and 7 datasets. We design experiments to isolate the effect of pretraining and hyperparameter settings, to focus on their capacity for long-range attention. Moreover, we present various methods to investigate attention behaviors to illuminate model details beyond metric scores. We find that the modified attention in long-range transformers has advantages on content selection and query-guided decoding, but they come with previously unrecognized drawbacks such as insufficient attention to distant tokens and accumulated approximation error.

2021

pdf
LOME: Large Ontology Multilingual Extraction
Patrick Xia | Guanghui Qin | Siddharth Vashishtha | Yunmo Chen | Tongfei Chen | Chandler May | Craig Harman | Kyle Rawlins | Aaron Steven White | Benjamin Van Durme
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

We present LOME, a system for performing multilingual information extraction. Given a text document as input, our core system identifies spans of textual entity and event mentions with a FrameNet (Baker et al., 1998) parser. It subsequently performs coreference resolution, fine-grained entity typing, and temporal relation prediction between events. By doing so, the system constructs an event and entity focused knowledge graph. We can further apply third-party modules for other types of annotation, like relation extraction. Our (multilingual) first-party modules either outperform or are competitive with the (monolingual) state-of-the-art. We achieve this through the use of multilingual encoders like XLM-R (Conneau et al., 2020) and leveraging multilingual training data. LOME is available as a Docker container on Docker Hub. In addition, a lightweight version of the system is accessible as a web demo.

pdf
Everything Is All It Takes: A Multipronged Strategy for Zero-Shot Cross-Lingual Information Extraction
Mahsa Yarmohammadi | Shijie Wu | Marc Marone | Haoran Xu | Seth Ebner | Guanghui Qin | Yunmo Chen | Jialiang Guo | Craig Harman | Kenton Murray | Aaron Steven White | Mark Dredze | Benjamin Van Durme
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English. While the advance of pretrained multilingual encoders suggests an easy optimism of “train on English, run on any language”, we find through a thorough exploration and extension of techniques that a combination of approaches, both new and old, leads to better performance than any one cross-lingual strategy in particular. We explore techniques including data projection and self-training, and how different pretrained encoders impact them. We use English-to-Arabic IE as our initial example, demonstrating strong performance in this setting for event extraction, named entity recognition, part-of-speech tagging, and dependency parsing. We then apply data projection and self-training to three tasks across eight target languages. Because no single set of techniques performs the best across all tasks, we encourage practitioners to explore various configurations of the techniques described in this work when seeking to improve on zero-shot training.

pdf
Learning How to Ask: Querying LMs with Mixtures of Soft Prompts
Guanghui Qin | Jason Eisner
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Natural-language prompts have recently been used to coax pretrained language models into performing other AI tasks, using a fill-in-the-blank paradigm (Petroni et al., 2019) or a few-shot extrapolation paradigm (Brown et al., 2020). For example, language models retain factual knowledge from their training corpora that can be extracted by asking them to “fill in the blank” in a sentential prompt. However, where does this prompt come from? We explore the idea of learning prompts by gradient descent—either fine-tuning prompts taken from previous work, or starting from random initialization. Our prompts consist of “soft words,” i.e., continuous vectors that are not necessarily word type embeddings from the language model. Furthermore, for each task, we optimize a mixture of prompts, learning which prompts are most effective and how to ensemble them. Across multiple English LMs and tasks, our approach hugely outperforms previous methods, showing that the implicit factual knowledge in language models was previously underestimated. Moreover, this knowledge is cheap to elicit: random initialization is nearly as good as informed initialization.

pdf
Iterative Paraphrastic Augmentation with Discriminative Span Alignment
Ryan Culkin | J. Edward Hu | Elias Stengel-Eskin | Guanghui Qin | Benjamin Van Durme
Transactions of the Association for Computational Linguistics, Volume 9

We introduce a novel paraphrastic augmentation strategy based on sentence-level lexically constrained paraphrasing and discriminative span alignment. Our approach allows for the large-scale expansion of existing datasets or the rapid creation of new datasets using a small, manually produced seed corpus. We demonstrate our approach with experiments on the Berkeley FrameNet Project, a large-scale language understanding effort spanning more than two decades of human labor. With four days of training data collection for a span alignment model and one day of parallel compute, we automatically generate and release to the community 495,300 unique (Frame,Trigger) pairs in diverse sentential contexts, a roughly 50-fold expansion atop FrameNet v1.7. The resulting dataset is intrinsically and extrinsically evaluated in detail, showing positive results on a downstream task.

2020

pdf bib
CopyNext: Explicit Span Copying and Alignment in Sequence to Sequence Models
Abhinav Singh | Patrick Xia | Guanghui Qin | Mahsa Yarmohammadi | Benjamin Van Durme
Proceedings of the Fourth Workshop on Structured Prediction for NLP

Copy mechanisms are employed in sequence to sequence (seq2seq) models to generate reproductions of words from the input to the output. These frameworks, operating at the lexical type level, fail to provide an explicit alignment that records where each token was copied from. Further, they require contiguous token sequences from the input (spans) to be copied individually. We present a model with an explicit token-level copy operation and extend it to copying entire spans. Our model provides hard alignments between spans in the input and output, allowing for nontraditional applications of seq2seq, like information extraction. We demonstrate the approach on Nested Named Entity Recognition, achieving near state-of-the-art accuracy with an order of magnitude increase in decoding speed.

2018

pdf
Learning Latent Semantic Annotations for Grounding Natural Language to Structured Data
Guanghui Qin | Jin-Ge Yao | Xuening Wang | Jinpeng Wang | Chin-Yew Lin
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Previous work on grounded language learning did not fully capture the semantics underlying the correspondences between structured world state representations and texts, especially those between numerical values and lexical terms. In this paper, we attempt at learning explicit latent semantic annotations from paired structured tables and texts, establishing correspondences between various types of values and texts. We model the joint probability of data fields, texts, phrasal spans, and latent annotations with an adapted semi-hidden Markov model, and impose a soft statistical constraint to further improve the performance. As a by-product, we leverage the induced annotations to extract templates for language generation. Experimental results suggest the feasibility of the setting in this study, as well as the effectiveness of our proposed framework.

pdf
Data2Text Studio: Automated Text Generation from Structured Data
Longxu Dou | Guanghui Qin | Jinpeng Wang | Jin-Ge Yao | Chin-Yew Lin
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Data2Text Studio is a platform for automated text generation from structured data. It is equipped with a Semi-HMMs model to extract high-quality templates and corresponding trigger conditions from parallel data automatically, which improves the interactivity and interpretability of the generated text. In addition, several easy-to-use tools are provided for developers to edit templates of pre-trained models, and APIs are released for developers to call the pre-trained model to generate texts in third-party applications. We conduct experiments on RotoWire datasets for template extraction and text generation. The results show that our model achieves improvements on both tasks.