2024
pdf
bib
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)
Ali Hürriyetoğlu
|
Hristo Tanev
|
Surendrabikram Thapa
|
Gökçe Uludoğan
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)
pdf
abs
Detecting Hate Speech in Turkish Print Media: A Corpus and A Hybrid Approach with Target-oriented Linguistic Knowledge
Gökçe Uludoğan
|
Atıf Emre Yüksel
|
Ümit Tunçer
|
Burak Işık
|
Yasemin Korkmaz
|
Didar Akar
|
Arzucan Özgür
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)
The use of hate speech targeting ethnicity, nationalities, religious identities, and specific groups has been on the rise in the news media. However, most existing automatic hate speech detection models focus on identifying hate speech, often neglecting the target group-specific language that is common in news articles. To address this problem, we first compile a hate speech dataset, TurkishHatePrintCorpus, derived from Turkish news articles and annotate it specifically for the language related to the targeted group. We then introduce the HateTargetBERT model, which integrates the target-centric linguistic features extracted in this study into the BERT model, and demonstrate its effectiveness in detecting hate speech while allowing the model’s classification decision to be explained. We have made the dataset and source code publicly available at url{https://github.com/boun-tabi/HateTargetBERT-TR}.
pdf
abs
Overview of the Hate Speech Detection in Turkish and Arabic Tweets (HSD-2Lang) Shared Task at CASE 2024
Gökçe Uludoğan
|
Somaiyeh Dehghan
|
Inanc Arin
|
Elif Erol
|
Berrin Yanikoglu
|
Arzucan Özgür
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)
This paper offers an overview of Hate Speech Detection in Turkish and Arabic Tweets (HSD-2Lang) Shared Task at CASE workshop to be held jointly with EACL 2024. The task was divided into two subtasks: Subtask A, targeting hate speech detection in various Turkish contexts, and Subtask B, addressing hate speech detection in Arabic with limited data. The shared task attracted significant attention with 33 teams that registered and 10 teams that participated in at least one task. In this paper, we provide the details of the tasks and the approaches adopted by the participant along with an analysis of the results obtained from this shared task.
pdf
abs
A Concise Report of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text
Ali Hürriyetoğlu
|
Surendrabikram Thapa
|
Gökçe Uludoğan
|
Somaiyeh Dehghan
|
Hristo Tanev
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)
In this paper, we provide a brief overview of the 7th workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE) co-located with EACL 2024. This workshop consisted of regular papers, system description papers submitted by shared task participants, and overview papers of shared tasks held. This workshop series has been bringing together experts and enthusiasts from technical and social science fields, providing a platform for better understanding event information. This workshop not only advances text-based event extraction but also facilitates research in event extraction in multimodal settings.
pdf
abs
TURNA: A Turkish Encoder-Decoder Language Model for Enhanced Understanding and Generation
Gökçe Uludoğan
|
Zeynep Balal
|
Furkan Akkurt
|
Meliksah Turker
|
Onur Gungor
|
Susan Üsküdarlı
Findings of the Association for Computational Linguistics: ACL 2024
The recent advances in natural language processing have predominantly favored well-resourced English-centric models, resulting in a significant gap with low-resource languages. In this work, we introduce TURNA, a language model developed for the low-resource language Turkish and is capable of both natural language understanding and generation tasks.TURNA is pretrained with an encoder-decoder architecture based on the unified framework UL2 with a diverse corpus that we specifically curated for this purpose. We evaluated TURNA with three generation tasks and five understanding tasks for Turkish. The results show that TURNA outperforms several multilingual models in both understanding and generation tasks and competes with monolingual Turkish models in understanding tasks.
2022
pdf
abs
BOUN-TABI@SMM4H’22: Text-to-Text Adverse Drug Event Extraction with Data Balancing and Prompting
Gökçe Uludoğan
|
Zeynep Yirmibeşoğlu
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task
This paper describes models developed for the Social Media Mining for Health 2022 Shared Task. We participated in two subtasks: classification of English tweets reporting adverse drug events (ADE) (Task 1a) and extraction of ADE spans in such tweets (Task 1b). We developed two separate systems based on the T5 model, viewing these tasks as sequence-to-sequence problems. To address the class imbalance, we made use of data balancing via over- and undersampling on both tasks. For the ADE extraction task, we explored prompting to further benefit from the T5 model and its formulation. Additionally, we built an ensemble model, utilizing both balanced and prompted models. The proposed models outperformed the current state-of-the-art, with an F1 score of 0.655 on ADE classification and a Partial F1 score of 0.527 on ADE extraction.