Fatemeh Shiri


2024

pdf
An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models
Fatemeh Shiri | Xiao-Yu Guo | Mona Golestan Far | Xin Yu | Reza Haf | Yuan-Fang Li
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks. However, their spatial reasoning capabilities are under-investigated. In this paper, we construct a novel VQA dataset, Spatial-MM, to comprehensively study LMMs’ spatial understanding and reasoning capabilities. Our analyses on object-relationship and multi-hop reasoning reveal several important findings. Firstly, bounding boxes and scene graphs, even synthetic ones, can significantly enhance LMMs’ spatial reasoning. Secondly, LMMs struggle more with questions posed from the human perspective than the camera perspective about the image. Thirdly, chain of thought (CoT) prompting does not improve model performance on complex multi-hop questions involving spatial relations. Moreover, spatial reasoning steps are much less accurate than non-spatial ones across MLLMs. Lastly, our perturbation analysis on GQA-spatial reveals that LMMs are much stronger at basic object detection than complex spatial reasoning. We believe our new benchmark dataset and in-depth analyses can spark further research on LMMs spatial reasoning.

pdf
Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs
Thi Nguyen | Linhao Luo | Fatemeh Shiri | Dinh Phung | Yuan-Fang Li | Thuy-Trang Vu | Gholamreza Haffari
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) have demonstrated strong reasoning abilities when prompted to generate chain-of-thought (CoT) explanations alongside answers. However, previous research on evaluating LLMs has solely focused on answer accuracy, neglecting the correctness of the generated CoT. In this paper, we delve deeper into the CoT reasoning capabilities of LLMs in multi-hop question answering by utilizing knowledge graphs (KGs). We propose a novel discriminative and generative CoT evaluation paradigm to assess LLMs’ knowledge of reasoning and the accuracy of the generated CoT. Through experiments conducted on 5 different families of LLMs across 2 multi-hop question-answering datasets, we find that LLMs possess sufficient knowledge to perform reasoning. However, there exists a significant disparity between answer accuracy and faithfulness of the CoT generated by LLMs, indicating that they often arrive at correct answers through incorrect reasoning.

2023

pdf
On Robustness of Prompt-based Semantic Parsing with Large Pre-trained Language Model: An Empirical Study on Codex
Terry Yue Zhuo | Zhuang Li | Yujin Huang | Fatemeh Shiri | Weiqing Wang | Gholamreza Haffari | Yuan-Fang Li
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Semantic parsing is a technique aimed at constructing a structured representation of the meaning of a natural-language question. Recent advances in language models trained on code have shown superior performance in generating these representations compared to language models trained solely on natural language text. The existing fine-tuned neural semantic parsers are vulnerable to adversarial attacks on natural-language inputs. While it has been established that the robustness of smaller semantic parsers can be enhanced through adversarial training, this approach is not feasible for large language models in real-world scenarios, as it requires both substantial computational resources and expensive human annotation on in-domain semantic parsing data. This paper presents the first empirical study on the adversarial robustness of a prompt-based semantic parser based on CODEX, a stateof-the-art (SOTA) language model trained on code. Our results demonstrate that the large language model of code is vulnerable to carefully crafted adversarial examples. To overcome this challenge, we propose methods for enhancing robustness without requiring substantial amounts of labelled data or intensive computational resources.

pdf
Theia: Weakly Supervised Multimodal Event Extraction from Incomplete Data
Farhad Moghimifar | Fatemeh Shiri | Van Nguyen | Yuan-Fang Li | Gholamreza Haffari
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

2022

pdf
TCG-Event: Effective Task Conditioning for Generation-based Event Extraction
Fatemeh Shiri | Tongtong Wu | Yuanfang Li | Gholamreza Haffari
Proceedings of the 20th Annual Workshop of the Australasian Language Technology Association