Fan Wu

Also published as:, 钒


2024

pdf
BiKT: Enabling Bidirectional Knowledge Transfer Between Pretrained Models and Sequential Downstream Tasks
Hang Zeng | Chaoyue Niu | Fan Wu | Shaojie Tang | Leihao Pei | Chengfei Lv | Guihai Chen
Findings of the Association for Computational Linguistics: EMNLP 2024

Adapting pretrained models to downstream tasks is important in practical applications. Existing frameworks adapt from an initial pretrained model to each downstream task directly, but ignore the sequential nature of the downstream tasks and their feedback effect on the pretrained model. In this work, we propose a new framework, called BiKT, to enable bidirectional knowledge transfer between pretrained models and downstream tasks in rounds. We model each downstream task in the current round as a target task for adaptation and treat all the tasks in the previous rounds as source tasks for feedback. We design a feedback algorithm by multi-task learning over the labeled data of the source tasks, where task-specific prompts are plugged into the backbone network for decoupling task-exclusive knowledge from task-shared knowledge. We further utilize the good initiation of the new backbone network updated in the feedback phase and the trained prompts of the source tasks for adaptation. Evaluation over 9 GLUE datasets, 6 SuperGLUE datasets, and 8 other datasets using models with different pretraining levels and different parameter scales shows remarkable improvement in full-shot and few-shot adaptation settings.

2023

pdf
CCL23-Eval 任务3系统报告:基于旋转式位置编码的实体分类在汉语框架语义解析中的应用(System Report for CCL23-Eval Task 3: Application of Entity Classification Model Based on Rotary Position Embedding in Chiness Frame Semantic Parsing)
Zuoheng Li (李作恒) | Xuanzhi Guo (郭炫志) | Dengjian Qiao (乔登俭) | Fan Wu (吴钒)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“汉语框架语义解析(Chinese Frame Semantic Parsing,CFSP)是中文自然语言处理领域中的一项重要任务,其目标是从句子中提取框架语义结构,实现对句子中涉及到的事件或情境的深层理解。本文主要研究子任务框架识别和论元角色识别,自然语言处理中常用的方法在框架识别和论元角色识别中会丢失目标词与整体句子之间的位置信息关系以及目标词内部信息,对此本文提出基于旋转式位置编码的实体分类模型对实体之间计算注意力然后进行分类,并在天池“CCL2023-Eval 汉语框架语义解析评测”比赛上获得A、B榜第一名的成绩1。”

2020

pdf
基于阅读理解框架的中文事件论元抽取(Chinese Event Argument Extraction using Reading Comprehension Framework)
Min Chen (陈敏) | Fan Wu (吴凡) | Zhongqing Wang (王中卿) | Peifeng Li (李培峰) | Qiaoming Zhu (朱巧明)
Proceedings of the 19th Chinese National Conference on Computational Linguistics

传统的事件论元抽取方法把该任务当作句子中实体提及的多分类或序列标注任务,论元角色的类别在这些方法中只能作为向量表示,而忽略了论元角色的先验信息。实际上,论元角色的语义和论元本身有很大关系。对此,本文提议将其当作机器阅读理解任务,把论元角色表述为自然语言描述的问题,通过在上下文中回答这些问题来抽取论元。该方法更好地利用了论元角色类别的先验信息,在ACE2005中文语料上的实验证明了该方法的有效性。

2014

pdf
Domain Adaptation for CRF-based Chinese Word Segmentation using Free Annotations
Yijia Liu | Yue Zhang | Wanxiang Che | Ting Liu | Fan Wu
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)