David A. Clifton
2024
Large Language Models Are Poor Clinical Decision-Makers: A Comprehensive Benchmark
Fenglin Liu
|
Zheng Li
|
Hongjian Zhou
|
Qingyu Yin
|
Jingfeng Yang
|
Xianfeng Tang
|
Chen Luo
|
Ming Zeng
|
Haoming Jiang
|
Yifan Gao
|
Priyanka Nigam
|
Sreyashi Nag
|
Bing Yin
|
Yining Hua
|
Xuan Zhou
|
Omid Rohanian
|
Anshul Thakur
|
Lei Clifton
|
David A. Clifton
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The adoption of large language models (LLMs) to assist clinicians has attracted remarkable attention. Existing works mainly adopt the close-ended question-answering (QA) task with answer options for evaluation. However, many clinical decisions involve answering open-ended questions without pre-set options. To better understand LLMs in the clinic, we construct a benchmark ClinicBench. We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks. Furthermore, we construct six novel datasets and clinical tasks that are complex but common in real-world practice, e.g., open-ended decision-making, long document processing, and emerging drug analysis. We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings. Finally, we invite medical experts to evaluate the clinical usefulness of LLMs
2023
MiniALBERT: Model Distillation via Parameter-Efficient Recursive Transformers
Mohammadmahdi Nouriborji
|
Omid Rohanian
|
Samaneh Kouchaki
|
David A. Clifton
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
Pre-trained Language Models (LMs) have become an integral part of Natural Language Processing (NLP) in recent years, due to their superior performance in downstream applications. In spite of this resounding success, the usability of LMs is constrained by computational and time complexity, along with their increasing size; an issue that has been referred to as overparameterisation. Different strategies have been proposed in the literature to alleviate these problems, with the aim to create effective compact models that nearly match the performance of their bloated counterparts with negligible performance losses. One of the most popular techniques in this area of research is model distillation. Another potent but underutilised technique is cross-layer parameter sharing. In this work, we combine these two strategies and present MiniALBERT, a technique for converting the knowledge of fully parameterised LMs (such as BERT) into a compact recursive student. In addition, we investigate the application of bottleneck adapters for layer-wise adaptation of our recursive student, and also explore the efficacy of adapter tuning for fine-tuning of compact models. We test our proposed models on a number of general and biomedical NLP tasks to demonstrate their viability and compare them with the state-of-the-art and other existing compact models. All the codes used in the experiments and the pre-trained compact models will be made publicly available.
Search
Co-authors
- Anshul Thakur 1
- Bing Yin 1
- Chen Luo 1
- Fenglin Liu 1
- Haoming Jiang 1
- show all...