Chengxiang Gao

Also published as: 盛祥


2021

pdf
基于模型不确定性约束的半监督汉缅神经机器翻译(Semi-Supervised Chinese-Myanmar Neural Machine Translation based Model-Uncertainty)
Linqin Wang (王琳钦) | Zhengtao Yu (余正涛) | Cunli Mao (毛存礼) | Chengxiang Gao (高盛祥) | Zhibo Man (满志博) | Zhenhan Wang (王振晗)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

基于回译的半监督神经机器翻译方法在低资源神经机器翻译取得了明显的效果,然而,由于汉缅双语资源稀缺、结构差异较大,传统基于Transformer的回译方法中编码端的Self-attention机制不能有效区别回译中产生的伪平行数据的噪声对句子编码的影响,致使译文出现漏译,多译,错译等问题。为此,该文提出基于模型不确定性为约束的半监督汉缅神经机器翻译方法,在Transformer网络中利用基于变分推断的蒙特卡洛Dropout构建模型不确定性注意力机制,获取到能够区分噪声数据的句子向量表征,在此基础上与Self-attention机制得到的句子编码向量进行融合,以此得到句子有效编码表征。实验证明,本文方法相比传统基于Transformer的回译方法在汉语-缅甸语和缅甸语-汉语两个翻译方向BLEU值分别提升了4.01和1.88个点,充分验证了该方法在汉缅神经翻译任务的有效性。

pdf
基于中文信息与越南语句法指导的越南语事件检测(Vietnamese event detection based on Chinese information and Vietnamese syntax guidance)
Long Chen (陈龙) | Junjun Guo (郭军军) | Yafei Zhang (张亚飞) | Chengxiang Gao (高盛祥) | Zhengtao Yu (余正涛)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

当前基于深度学习的事件检测模型都依赖足够数量的标注数据,而标注数据的稀缺及事件类型歧义为越南语事件检测带来了极大的挑战。根据“表达相同观点但语言不同的句子通常有相同或相似的语义成分”这一多语言一致性特征,本文提出了一种基于中文信息与越南语句法指导的越南语事件检测框架。首先通过共享编码器策略和交叉注意力网络将中文信息融入到越南语中,然后使用图卷积网络融入越南语依存句法信息,最后在中文事件类型指导下实现越南语事件检测。实验结果表明,在中文信息和越南语句法的指导下越南语事件检测取得了较好的效果。

pdf
融合多层语义特征图的缅甸语图像文本识别方法(Burmese Image Text Recognition Method Fused with Multi-layer Semantic Feature Maps)
Fuhao Liu (刘福浩) | Cunli Mao (毛存礼) | Zhengtao Yu (余正涛) | Chengxiang Gao (高盛祥) | Linqin Wang (王琳钦) | Xuyang Xie (谢旭阳)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

由于缅甸语存在特殊的字符组合结构,在图像文本识别研究方面存在较大的困难,直接利用现有的图像文本识别方法识别缅甸语图片存在字符缺失和复杂背景下识别效果不佳的问题。因此,本文提出一种融合多层语义特征图的缅甸语图像文本识别方法,利用深度卷积网络获得多层图像特征并对其融合获取多层语义信息,缓解缅甸语图像中由于字符嵌套导致特征丢失的问题。另外,在训练阶段采用MIX UP的策略进行网络参数优化,提高模型的泛化能力,降低模型在测试阶段对训练样本产生的依赖。实验结果表明,提出方法相比基线模型准确率提升了2.2%。

pdf
基于阅读理解的汉越跨语言新闻事件要素抽取方法(News Events Element Extraction of Chinese-Vietnamese Cross-language Using Reading Comprehension)
Enchang Zhu (朱恩昌) | Zhengtao Yu (余正涛) | Chengxiang Gao (高盛祥) | Yuxin Huang (黄宇欣) | Junjun Guo (郭军军)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

新闻事件要素抽取旨在抽取新闻文本中描述主题事件的事件要素,如时间、地点、人物和组织机构名等。传统的事件要素抽取方法在资源稀缺型语言上性能欠佳,且对长文本语义建模困难。对此,本文提出了基于阅读理解的汉越跨语言新闻事件要素抽取方法。该方法首先利用新闻长文本关键句检索模块过滤含噪声的句子。然后利用跨语言阅读理解模型将富资源语言知识迁移到越南语,提高越南语新闻事件要素抽取的性能。在自建的汉越双语新闻事件要素抽取数据集上的实验证明了本文方法的有效性。

pdf
融合多粒度特征的低资源语言词性标记和依存分析联合模型(A Joint Model with Multi-Granularity Features of Low-resource Language POS Tagging and Dependency Parsing)
Sha Lu (陆杉) | Cunli Mao (毛存礼) | Zhengtao Yu (余正涛) | Chengxiang Gao (高盛祥) | Yuxin Huang (黄于欣) | Zhenhan Wang (王振晗)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

研究低资源语言的词性标记和依存分析对推动低资源自然语言处理任务有着重要的作用。针对低资源语言词嵌入表示,已有工作并没有充分利用字符、子词层面信息编码,导致模型无法利用不同粒度的特征,对此,提出融合多粒度特征的词嵌入表示,利用不同的语言模型分别获得字符、子词以及词语层面的语义信息,将三种粒度的词嵌入进行拼接,达到丰富语义信息的目的,缓解由于标注数据稀缺导致的依存分析模型性能不佳的问题。进一步将词性标记和依存分析模型进行联合训练,使模型之间能相互共享知识,降低词性标记错误在依存分析任务上的线性传递。以泰语、越南语为研究对象,在宾州树库数据集上,提出方法相比于基线模型的UAS、LAS、POS均有明显提升。