Anqi Li


2024

pdf
SMILE: Single-turn to Multi-turn Inclusive Language Expansion via ChatGPT for Mental Health Support
Huachuan Qiu | Hongliang He | Shuai Zhang | Anqi Li | Zhenzhong Lan
Findings of the Association for Computational Linguistics: EMNLP 2024

Developing specialized dialogue systems for mental health support requires multi-turn conversation data, which has recently garnered increasing attention. However, gathering and releasing large-scale, real-life multi-turn conversations that could facilitate advancements in mental health support presents challenges in data privacy protection and the time and cost involved in crowdsourcing. To address these challenges, we introduce SMILE, a single-turn to multi-turn inclusive language expansion technique that prompts ChatGPT to rewrite public single-turn dialogues into multi-turn ones. Our work begins by analyzing language transformation and validating the feasibility of our proposed method. We conduct a study on dialogue diversity, including lexical features, semantic features, and dialogue topics, demonstrating the effectiveness of our method. Further, we employ our method to generate a large-scale, lifelike, and diverse dialogue dataset named SMILECHAT, consisting of 55k dialogues. Finally, we utilize the collected corpus to develop a mental health chatbot, MeChat. To better assess the quality of SMILECHAT, we collect a small-scale real-life counseling dataset conducted by data anonymization. Both automatic and human evaluations demonstrate significant improvements in our dialogue system and confirm that SMILECHAT is high-quality. Code, data, and model are publicly available at https://github.com/qiuhuachuan/smile.

pdf
Understanding the Therapeutic Relationship between Counselors and Clients in Online Text-based Counseling using LLMs
Anqi Li | Yu Lu | Nirui Song | Shuai Zhang | Lizhi Ma | Zhenzhong Lan
Findings of the Association for Computational Linguistics: EMNLP 2024

Robust therapeutic relationships between counselors and clients are fundamental to counseling effectiveness. The assessment of therapeutic alliance is well-established in traditional face-to-face therapy but may not directly translate to text-based settings. With millions of individuals seeking support through online text-based counseling, understanding the relationship in such contexts is crucial.In this paper, we present an automatic approach using large language models (LLMs) to understand the development of therapeutic alliance in text-based counseling. We adapt a theoretically grounded framework specifically to the context of online text-based counseling and develop comprehensive guidelines for characterizing the alliance. We collect a comprehensive counseling dataset and conduct multiple expert evaluations on a subset based on this framework. Our LLM-based approach, combined with guidelines and simultaneous extraction of supportive evidence underlying its predictions, demonstrates effectiveness in identifying the therapeutic alliance. Through further LLM-based evaluations on additional conversations, our findings underscore the challenges counselors face in cultivating strong online relationships with clients. Furthermore, we demonstrate the potential of LLM-based feedback mechanisms to enhance counselors’ ability to build relationships, supported by a small-scale proof-of-concept.

2023

pdf
Understanding Client Reactions in Online Mental Health Counseling
Anqi Li | Lizhi Ma | Yaling Mei | Hongliang He | Shuai Zhang | Huachuan Qiu | Zhenzhong Lan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Communication success relies heavily on reading participants’ reactions. Such feedback is especially important for mental health counselors, who must carefully consider the client’s progress and adjust their approach accordingly. However, previous NLP research on counseling has mainly focused on studying counselors’ intervention strategies rather than their clients’ reactions to the intervention. This work aims to fill this gap by developing a theoretically grounded annotation framework that encompasses counselors’ strategies and client reaction behaviors. The framework has been tested against a large-scale, high-quality text-based counseling dataset we collected over the past two years from an online welfare counseling platform. Our study show how clients react to counselors’ strategies, how such reactions affect the final counseling outcomes, and how counselors can adjust their strategies in response to these reactions. We also demonstrate that this study can help counselors automatically predict their clients’ states.