Alexis Blandin


2021

pdf
Adaptation de ressources en langue anglaise pour interroger des données tabulaires en français (Adaptation of resources in English to query French tabular data)
Alexis Blandin
Actes de la 28e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 2 : 23e REncontres jeunes Chercheurs en Informatique pour le TAL (RECITAL)

Les récents développements des approches d’apprentissage neuronal profond ont permis des avancées très significatives dans le domaine de l’interrogation des systèmes d’information en langage naturel. Cependant, pour le français, les ressources à disposition ne permettent de considérer que les requêtes sur des données stockées sous forme de texte. Or, aujourd’hui la majorité des données utilisées en entreprise sont stockées sous forme tabulaire. Il est donc intéressant d’évaluer si les ressources anglophones associées (jeux de données tabulaires et modèles) peuvent être adaptées au français tout en conservant de bons résultats.

2020

pdf
Recommandation d’âge pour des textes (Age recommendation for texts)
Alexis Blandin | Gwénolé Lecorvé | Delphine Battistelli | Aline Étienne
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles

Cet article étudie une première tentative pour prédire une recommandation d’âge estimant à partir de quand un enfant pourrait comprendre un texte donné. À ce titre, nous présentons d’abord des descripteurs issus de divers domaines scientifiques, puis proposons différentes architectures de réseaux de neurones et les comparons sur un ensemble de données textuelles en français, dédiées à des publics jeune ou adulte. Pour contourner la faible quantité de données de ce type, nous étudions l’idée de prédire les âges au niveau de la phrase. Les expériences montrent que cette hypothèse, quoique forte, conduit d’ores et déjà à de bons résultats, meilleurs que ceux fournis par des experts psycholinguistes, y compris lorsque les phrases isolées sont remplacées par textes complets.

pdf
Age Recommendation for Texts
Alexis Blandin | Gwénolé Lecorvé | Delphine Battistelli | Aline Étienne
Proceedings of the Twelfth Language Resources and Evaluation Conference

The understanding of a text by a reader or listener is conditioned by the adequacy of the text’s characteristics with the person’s capacities and knowledge. This adequacy is critical in the case of a child since her/his cognitive and linguistic skills are still under development. Hence, in this paper, we present and study an original natural language processing (NLP) task which consists in predicting the age from which a text can be understood by someone. To do so, this paper first exhibits features derived from the psycholinguistic domain, as well as some coming from related NLP tasks. Then, we propose a set of neural network models and compare them on a dataset of French texts dedicated to young or adult audiences. To circumvent the lack of data, we study the idea to predict ages at the sentence level. The experiments first show that the sentence-based age recommendations can be efficiently merged to predict text-based recommendations. Then, we also demonstrate that the age predictions returned by our best model are better than those provided by psycholinguists. Finally, the paper investigates the impact of the various features used in these results.