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Abstract

We propose a novel method for translation
selection in statistical machine translation,
in which a convolutional neural network is
employed to judge the similarity between
a phrase pair in two languages. The specif-
ically designed convolutional architecture
encodes not only the semantic similarity
of the translation pair, but also the con-
text containing the phrase in the source
language. Therefore, our approach is
able to capture context-dependent seman-
tic similarities of translation pairs. We
adopt a curriculum learning strategy to
train the model: we classify the training
examples into easy, medium, and difficult
categories, and gradually build the abil-
ity of representing phrases and sentence-
level contexts by using training examples
from easy to difficult. Experimental re-
sults show that our approach significantly
outperforms the baseline system by up to
1.4 BLEU points.

1 Introduction

Conventional statistical machine translation
(SMT) systems extract and estimate translation
pairs based on their surface forms (Koehn et al.,
2003), which often fail to capture translation
pairs which are grammatically and semantically
similar. To alleviate the above problems, several
researchers have proposed learning and utilizing
semantically similar translation pairs in a contin-
uous space (Gao et al., 2014; Zhang et al., 2014;
Cho et al., 2014). The core idea is that the two
phrases in a translation pair should share the same
semantic meaning and have similar (close) feature
vectors in the continuous space.
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The above methods, however, neglect the infor-
mation of local contexts, which has been proven
to be useful for disambiguating translation candi-
dates during decoding (He et al., 2008; Marton and
Resnik, 2008). The matching scores of translation
pairs are treated the same, even they are in dif-
ferent contexts. Accordingly, the methods fail to
adapt to local contexts and lead to precision issues
for specific sentences in different contexts.

To capture useful context information, we pro-
pose a convolutional neural network architecture
to measure context-dependent semantic similari-
ties between phrase pairs in two languages. For
each phrase pair, we use the sentence contain-
ing the phrase in source language as the context.
With the convolutional neural network, we sum-
marize the information of a phrase pair and its con-
text, and further compute the pair’s matching score
with a multi-layer perceptron. We discriminately
train the model using a curriculum learning strat-
egy. We classify the training examples according
to the difficulty level of distinguishing the positive
candidate from the negative candidate. Then we
train the model to learn the semantic information
from easy (basic semantic similarities) to difficult
(context-dependent semantic similarities).

Experimental results on a large-scale transla-
tion task show that the context-dependent convo-
lutional matching (CDCM) model improves the
performance by up to 1.4 BLEU points over a
strong phrase-based SMT system. Moreover,
the CDCM model significantly outperforms its
context-independent counterpart, proving that it is
necessary to incorporate local contexts into SMT.
Contributions. Our key contributions include:
• we introduce a novel CDCM model to cap-

ture context-dependent semantic similarities
between phrase pairs (Section 2);
• we develop a novel learning algorithm to

train the CDCM model using a curriculum
learning strategy (Section 3).
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Figure 1: Architecture of the CDCM model. The convolutional sentence model (bottom) summarizes the
meaning of the tagged sentence and target phrase, and the matching model (top) compares the represen-
tations using a multi-layer perceptron. “/” indicates all-zero padding turned off by the gating function.

2 Context-Dependent Convolutional
Matching Model

The model architecture, shown in Figure 1, is a
variant of the convolutional architecture of Hu et
al. (2014). It consists of two components:

• convolutional sentence model that summa-
rizes the meaning of the source sentence and
the target phrase;

• matching model that compares the two
representations with a multi-layer percep-
tron (Bengio, 2009).

Let ê be a target phrase and f be the source sen-
tence that contains the source phrase aligning to ê.
We first project f and ê into feature vectors x and
y via the convolutional sentence model, and then
compute the matching score s(x,y) by the match-
ing model. Finally, the score is introduced into a
conventional SMT system as an additional feature.
Convolutional sentence model. As shown in Fig-
ure 1, the model takes as input the embeddings of
words (trained beforehand elsewhere) in f and ê.
It then iteratively summarizes the meaning of the
input through layers of convolution and pooling,
until reaching a fixed length vectorial representa-
tion in the final layer.

In Layer-1, the convolution layer takes sliding
windows on f and ê respectively, and models all

the possible compositions of neighbouring words.
The convolution involves a filter to produce a new
feature for each possible composition. Given a
k-sized sliding window i on f or ê, for example,
the jth convolution unit of the composition of the
words is generated by:

ci(1,j) = g(ĉi(0)) · φ(w(1,j) · ĉi(0) + b(1,j)) (1)

where

• g(·) is the gate function that determines
whether to activate φ(·);

• φ(·) is a non-linear activation function. In
this work, we use ReLu (Dahl et al., 2013)
as the activation function;

• w(1,j) is the parameters for the jth convolu-
tion unit on Layer-1, with matrix W(1) =
[w(1,1), . . . ,w(1,J)];

• ĉi(0) is a vector constructed by concatenating
word vectors in the k-sized sliding widow i;

• b(1,j) is a bias term, with vector B(1) =
[b(1,1), . . . ,b(1,J)].

To distinguish the phrase pair from its con-
text, we use one additional dimension in word
embeddings: 1 for words in the phrase pair and
0 for the others. After transforming words to
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their tagged embeddings, the convolutional sen-
tence model takes multiple choices of composition
using sliding windows in the convolution layer.
Note that sliding windows are allowed to cross
the boundary of the source phrase to exploit both
phrasal and contextual information.

In Layer-2, we apply a local max-pooling in
non-overlapping 1 × 2 windows for every convo-
lution unit

c(2,j)
i = max{c(1,j)

2i , c(1,j)
2i+1} (2)

In Layer-3, we perform convolution on output
from Layer-2:

ci(3,j) = g(ĉi(2)) · φ(w(3,j) · ĉi(2) + b(3,j)) (3)

After more convolution and max-pooling opera-
tions, we obtain two feature vectors for the source
sentence and the target phrase, respectively.
Matching model. The matching score of a source
sentence and a target phrase can be measured
as the similarity between their feature vectors.
Specifically, we use the multi-layer perceptron
(MLP), a nonlinear function for similarity, to com-
pute their matching score. First we use one layer
to combine their feature vectors to get a hidden
state hc:

hc = φ(wc · [xf̄i
: yēj ] + bc) (4)

Then we get the matching score from the MLP:

s(x,y) = MLP (hc) (5)

3 Training

We employ a discriminative training strategy with
a max-margin objective. Suppose we are given
the following triples (x,y+,y−) from the ora-
cle, where x,y+,y− are the feature vectors for
f , ê+, ê− respectively. We have the ranking-based
loss as objective:

LΘ(x,y+,y−) = max(0, 1+s(x,y−)−s(x,y+))
(6)

where s(x,y) is the matching score function de-
fined in Eq. 5, Θ consists of parameters for both
the convolutional sentence model and MLP. The
model is trained by minimizing the above ob-
jective, to encourage the model to assign higher
matching scores to positive examples and to as-
sign lower scores to negative examples. We use
stochastic gradient descent (SGD) to optimize the

model parameters Θ. We train the CDCM model
with a curriculum strategy to learn the context-
dependent semantic similarity at the phrase level
from easy (basic semantic similarities between
the source and target phrase pair) to difficult
(context-dependent semantic similarities for the
same source phrase in varying contexts).

3.1 Curriculum Training
Curriculum learning, first proposed by Bengio et
al. (2009) in machine learning, refers to a se-
quence of training strategies that start small, learn
easier aspects of the task, and then gradually in-
crease the difficulty level. It has been shown
that the curriculum learning can benefit the non-
convex training by giving rise to improved gener-
alization and faster convergence. The key point is
that the training examples are not randomly pre-
sented but organized in a meaningful order which
illustrates gradually more concepts, and gradually
more complex ones.

For each positive example (f , ê+), we have three
types of negative examples according to the diffi-
culty level of distinguishing the positive example
from them:

• Easy: target phrases randomly chosen from
the phrase table;

• Medium: target phrases extracted from the
aligned target sentence for other non-overlap
source phrases in the source sentence;

• Difficult: target phrases extracted from other
candidates for the same source phrase.

We want the CDCM model to learn the following
semantic information from easy to difficult:

• the basic semantic similarity between the
source sentence and target phrase from the
easy negative examples;

• the general semantic equivalent between
the source and target phrase pair from the
medium negative examples;

• the context-dependent semantic similarities
for the same source phrase in varying con-
texts from the difficult negative examples.

Alg. 1 shows the curriculum training algorithm
for the CDCM model. We use different portions of
the overall training instances for different curricu-
lums (lines 2-11). For example, we only use the
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Algorithm 1 Curriculum training algorithm. Here
T denotes the training examples, W the initial
word embeddings, η the learning rate in SGD, n
the pre-defined number, and t the number of train-
ing examples.
1: procedure CURRICULUM-TRAINING(T , W )
2: N1← easy negative(T )
3: N2← medium negative(T )
4: N3← difficult negative(T )
5: T ← N1

6: CURRICULUM(T , n · t) . CUR. easy
7: T ←MIX([N1, N2])
8: CURRICULUM(T , n · t) . CUR. medium
9: for step← 1 . . . n do

10: T ←MIX([N1, N2, N3], step)
11: CURRICULUM(T , t) . CUR. difficult
12: procedure CURRICULUM(T , K)
13: iterate until reaching a local minima or K iterations
14: calculate LΘ for a random instance in T
15: Θ = Θ− η · ∂LΘ

∂Θ
. update parameters

16: W = W − η · 0.01 · ∂LΘ
∂W

. update embeddings
17: procedure MIX(N, s = 0)
18: len← length of N
19: if len < 3 then
20: T ← sampling with [0.5, 0.5] from N
21: else
22: T ← sampling with [ 1

s+2
, 1

s+2
, s

s+2
] from N

training instances that consist of positive examples
and easy negative examples in the easy curriculum
(lines 5-6). For the latter curriculums, we gradu-
ally increase the difficulty level of the training in-
stances (lines 7-12).

For each curriculum (lines 12-16), we compute
the gradient of the loss objective LΘ and learn Θ
using the SGD algorithm. Note that we mean-
while update the word embeddings to better cap-
ture the semantic equivalence across languages
during training. If the loss function LΘ reaches
a local minima or the iterations reach the pre-
defined number, we terminate this curriculum.

4 Related Work

Our research builds on previous work in the field
of context-dependent rule matching and bilingual
phrase representations.

There is a line of work that employs local con-
texts over discrete representations of words or
phrases. For example, He et al. (2008), Liu et
al. (2008) and Marton and Resnik (2008) em-
ployed within-sentence contexts that consist of
discrete words to guide rule matching. Wu et
al. (2014) exploited discrete contextual features in
the source sentence (e.g. words and part-of-speech
tags) to learn better bilingual word embeddings for
SMT. In this study, we take into account all the

phrase pairs and directly compute phrasal similari-
ties with convolutional representations of the local
contexts, integrating the strengths associated with
the convolutional neural networks (Collobert and
Weston, 2008).

In recent years, there has also been growing
interest in bilingual phrase representations that
group phrases with a similar meaning across dif-
ferent languages. Based on that translation equiv-
alents share the same semantic meaning, they can
supervise each other to learn their semantic phrase
embeddings in a continuous space (Gao et al.,
2014; Zhang et al., 2014). However, these mod-
els focused on capturing semantic similarities be-
tween phrase pairs in the global contexts, and ne-
glected the local contexts, thus ignored the use-
ful discriminative information. Alternatively, we
integrate the local contexts into our convolutional
matching architecture to obtain context-dependent
semantic similarities.

Meng et al. (2015) and Zhang (2015) have
proposed independently to summary source sen-
tences with convolutional neural networks. How-
ever, they both extend the neural network joint
model (NNJM) of Devlin et al. (2014) to include
the whole source sentence, while we focus on cap-
turing context-dependent semantic similarities of
translation pairs.

5 Experiments

5.1 Setup

We carry out our experiments on the NIST
Chinese-English translation tasks. Our training
data contains 1.5M sentence pairs coming from
LDC dataset.1 We train a 4-gram language model
on the Xinhua portion of the GIGAWORD corpus
using the SRI Language Toolkit (Stolcke, 2002)
with modified Kneser-Ney Smoothing (Kneser
and Ney, 1995). We use the 2002 NIST MT
evaluation test data as the development data, and
the 2004, 2005 NIST MT evaluation test data as
the test data. We use minimum error rate train-
ing (Och, 2003) to optimize the feature weights.
For evaluation, case-insensitive NIST BLEU (Pa-
pineni et al., 2002) is used to measure translation
performance. We perform a significance test using
the sign-test approach (Collins et al., 2005).

1The corpus includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.
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Models MT04 MT05 All
Baseline 34.86 33.18 34.40
CICM 35.82α 33.51α 34.95α

CDCM1 35.87α 33.58 35.01α

CDCM2 35.97α 33.80α 35.21α

CDCM3 36.26αβ 33.94αβ 35.40αβ

Table 1: Evaluation of translation quality.
CDCMk denotes the CDCM model trained in the
kth curriculum in Alg. 1 (i.e., three levels of
curriculum training), CICM denotes its context-
independent counterpart, and “All” is the com-
bined test sets. The superscripts α and β indicate
statistically significant difference (p < 0.05) from
Baseline and CICM, respectively.

For training the neural networks, we use 4 con-
volution layers for source sentences and 3 convo-
lution layers for target phrases. For both of them, 4
pooling layers (pooling size is 2) are used, and all
the feature maps are 100. We set the sliding win-
dow k = 3, and the learning rate η = 0.02. All
the parameters are selected based on the develop-
ment data. We train the word embeddings using a
bilingual strategy similar to Yang et al. (2013), and
set the dimension of the word embeddings be 50.
To produce high-quality bilingual phrase pairs to
train the CDCM model, we perform forced decod-
ing on the bilingual training sentences and collect
the used phrase pairs.

5.2 Evaluation of Translation Quality
We have two baseline systems:

• Baseline: The baseline system is an open-
source system of the phrase-based model –
Moses (Koehn et al., 2007) with a set of com-
mon features, including translation models,
word and phrase penalties, a linear distortion
model, a lexicalized reordering model, and a
language model.

• CICM (context-independent convolutional
matching) model: Following the previous
works (Gao et al., 2014; Zhang et al., 2014;
Cho et al., 2014), we calculate the match-
ing degree of a phrase pair without consider-
ing any contextual information. Each unique
phrase pair serves as a positive example and
a randomly selected target phrase from the
phrase table is the corresponding negative ex-
ample. The matching score is also introduced
into Baseline as an additional feature.

Table 1 summaries the results of CDCMs
trained from different curriculums. No matter
from which curriculum it is trained, the CDCM
model significantly improves the translation qual-
ity on the overall test data (with gains of 1.0
BLEU points). The best improvement can be up to
1.4 BLEU points on MT04 with the fully trained
CDCM. As expected, the translation performance
is consistently increased with curriculum grow-
ing. This indicates that the CDCM model indeed
captures the desirable semantic information by the
curriculum learning from easy to difficult.

Comparing with its context-independent coun-
terpart (CICM, Row 2), the CDCM model shows
significant improvement on all the test data con-
sistently. We contribute this to the incorporation
of useful discriminative information embedded in
the local context. In addition, the performance of
CICM is comparable with that of CDCM1. This is
intuitive, because both of them try to capture the
basic semantic similarity between the source and
target phrase pair.

One of the hypotheses we tested in the course of
this research was disproved. We thought it likely
that the difficult curriculum (CDCM3 that distin-
guishs the correct translation from other candi-
dates for a given context) would contribute most to
the improvement, since this circumstance is more
consistent with the real decoding procedure. This
turned out to be false, as shown in Table 1. One
possible reason is that the “negative” examples
(other candidates for the same source phrase) may
share the same semantic meaning with the posi-
tive one, thus give a wrong guide in the supervised
training. Constructing a reasonable set of nega-
tive examples that are more semantically different
from the positive one is left for our future work.

6 Conclusion

In this paper, we propose a context-dependent con-
volutional matching model to capture semantic
similarities between phrase pairs that are sensitive
to contexts. Experimental results show that our ap-
proach significantly improves the translation per-
formance and obtains improvement of 1.0 BLEU
scores on the overall test data.

Integrating deep architecture into context-
dependent translation selection is a promising way
to improve machine translation. In the future, we
will try to exploit contextual information at the tar-
get side (e.g., partial translations).
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