Abstract
This paper studies the problem of non-factoid question answering, where the answer may span over multiple sentences. Existing solutions can be categorized into representation- and interaction-focused approaches. We combine their complementary strength, by a hybrid approach allowing multi-granular interactions, but represented at word level, enabling an easy integration with strong word-level signals. Specifically, we propose MICRON: Multigranular Interaction for Contextualizing RepresentatiON, a novel approach which derives contextualized uni-gram representation from n-grams. Our contributions are as follows: First, we enable multi-granular matches between question and answer n-grams. Second, by contextualizing word representation with surrounding n-grams, MICRON can naturally utilize word-based signals for query term weighting, known to be effective in information retrieval. We validate MICRON in two public non-factoid question answering datasets: WikiPassageQA and InsuranceQA, showing our model achieves the state of the art among baselines with reported performances on both datasets.- Anthology ID:
- D19-1601
- Volume:
- Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
- Month:
- November
- Year:
- 2019
- Address:
- Hong Kong, China
- Editors:
- Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
- Venues:
- EMNLP | IJCNLP
- SIG:
- SIGDAT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 5890–5895
- Language:
- URL:
- https://preview.aclanthology.org/build-pipeline-with-new-library/D19-1601/
- DOI:
- 10.18653/v1/D19-1601
- Cite (ACL):
- Hojae Han, Seungtaek Choi, Haeju Park, and Seung-won Hwang. 2019. MICRON: Multigranular Interaction for Contextualizing RepresentatiON in Non-factoid Question Answering. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5890–5895, Hong Kong, China. Association for Computational Linguistics.
- Cite (Informal):
- MICRON: Multigranular Interaction for Contextualizing RepresentatiON in Non-factoid Question Answering (Han et al., EMNLP-IJCNLP 2019)
- PDF:
- https://preview.aclanthology.org/build-pipeline-with-new-library/D19-1601.pdf