Hallucination Diversity-Aware Active Learning for Text Summarization

Yu Xia, Xu Liu, Tong Yu, Sungchul Kim, Ryan Rossi, Anup Rao, Tung Mai, Shuai Li


Abstract
Large Language Models (LLMs) have shown propensity to generate hallucinated outputs, i.e., texts that are factually incorrect or unsupported. Existing methods for alleviating hallucinations typically require costly human annotations to identify and correct hallucinations in LLM outputs. Moreover, most of these methods focus on a specific type of hallucination, e.g., entity or token errors, which limits their effectiveness in addressing various types of hallucinations exhibited in LLM outputs. To our best knowledge, in this paper we propose the first active learning framework to alleviate LLM hallucinations, reducing costly human annotations of hallucination needed. By measuring fine-grained hallucinations from errors in semantic frame, discourse and content verifiability in text summarization, we propose HAllucination Diversity-Aware Sampling (HADAS) to select diverse hallucinations for annotations in active learning for LLM finetuning. Extensive experiments on three datasets and different backbone models demonstrate advantages of our method in effectively and efficiently mitigating LLM hallucinations.
Anthology ID:
2024.naacl-long.479
Volume:
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Editors:
Kevin Duh, Helena Gomez, Steven Bethard
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
8665–8677
Language:
URL:
https://preview.aclanthology.org/build-pipeline-with-new-library/2024.naacl-long.479/
DOI:
10.18653/v1/2024.naacl-long.479
Bibkey:
Cite (ACL):
Yu Xia, Xu Liu, Tong Yu, Sungchul Kim, Ryan Rossi, Anup Rao, Tung Mai, and Shuai Li. 2024. Hallucination Diversity-Aware Active Learning for Text Summarization. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 8665–8677, Mexico City, Mexico. Association for Computational Linguistics.
Cite (Informal):
Hallucination Diversity-Aware Active Learning for Text Summarization (Xia et al., NAACL 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/build-pipeline-with-new-library/2024.naacl-long.479.pdf