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Abstract

In this work, we study in-context teaching
(ICT), where a teacher provides in-context
example rationales to teach a student to reason
over unseen cases. Human teachers are usually
required to craft in-context demonstrations,
which are costly and have high variance. We
ask whether a large language model (LLM)
can serve as a more effective in-context
teacher for itself or other LLMs, compared to
humans. Inspired by the Encoding Specificity
Hypothesis from human episodic memory,
we hypothesize that in-context exemplars
crafted by the teacher should match the
training data of the student. This hypothesis
motivates us to propose Self-Explain where
an LLM’s self-elicited explanations are used
as in-context demonstrations for prompting
it as they are generalized from the model’s
training examples. Self-Explain is shown to
significantly outperform using human-crafted
exemplars and other baselines.

Furthermore, we reveal that for ICT, ra-
tionales from different teacher LLMs or
human experts that more resemble the student
LLM’s self-explanations are better in-context
demonstrations. This supports our encoding
specificity hypothesis. We then propose
Teach-Back that aligns a teacher LLM with
the student to enhance the ICT performance.
For example, Teach-Back enables a 7B model
to teach the much larger GPT-3.5 in context,
surpassing human teachers by around 5% in
test accuracy on medical question answering.

1 Introduction

Knowledge reasoning, different from numerical rea-
soning, requires large language models (LLMs) to
deduce the association between questions and answers
that do not usually explicitly appear in the training
corpus, although LLMs may have memorized all the
facts involved in the question. Such a compositionality
gap (Press et al., 2023) between testing and pretraining
makes knowledge reasoning difficult and beyond mere
fact retrieval. However, LLMs have demonstrated

impressive knowledge reasoning performance on di-
verse tasks (Wei et al., 2022) with few-shot prompting.
Exemplars of reasoning are provided in the prompt as
context to teach LLMs to reason through in-context
learning (ICL) (Brown et al., 2020) at inference. LLMs
will generate intermediate reasoning steps (known
as Chain-of-Thought (CoT)1 (Wei et al., 2022)) for
deducing the test cases.

Standard few-shot CoT prompting requires humans
to first craft high-quality demonstrations of reasoning
for LLMs, as depicted in the upper part of Figure 1.
However, this may bring some issues. On the one hand,
in professional domains such as medicine, experts like
physicians are needed to produce fine-grained ratio-
nales with correct jargon, which is time-consuming
and expensive (Pal et al., 2022; Yang et al., 2023). On
the other hand, different from labels, rationales can be
phrased in varied ways, while all being correct (Yao
et al., 2023). Collecting reasoning examples through
crowd-sourcing can thus have great uncertainty (Ge-
breegziabher et al., 2023). The constructed rationales
heavily depend on human annotators’ own experience
and thus, may be very subjective (Lee et al., 2022).

More fundamentally, there is a limited understand-
ing of the principles behind constructing effective
rationale exemplars for in-context learning. Currently,
the majority of works depend on human-crafted
demonstrations (usually by professionals) that are
based on some heuristic rules (Fu et al., 2023b; Zhou
et al., 2022; Khot et al., 2023). However, it is unclear
whether those sophisticated rationales crafted by hu-
mans are equally the most sensible to LLMs. Demon-
strations of rationales from humans may not always
be helpful (Yao et al., 2023), although they are often
assumed to be gold standards (Muller et al., 2021).

Therefore, we are motivated to ask, can an LLM
teach itself or other models through in-context
learning for knowledge reasoning, preferably better
than humans? We consider a generic framework of in-
context teaching (ICT), where a teacher (e.g., human or
LLM) constructs example rationales that are then used
as in-context demonstrations to prompt a student LLM.

In terms of how to construct exemplars for effective
ICT, we consider the Encoding Specificity Hypoth-
esis (Tulving, 1972), which is initially proposed for

1We use “CoT” and “rationale” interchangeably to refer
to reasoning paths.
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Standard

Ours
Encoding Specificity Hypothesis: In-context exemplars should match the training data of the student LLM.

[Design 1] Self-Explain: Self-elicited rationales imply the student’s training data the most.

[Design 2] Teach-Back: Aligning the teacher LLM with the student improves teaching performance.

Generate rationales Student LLMHuman Expert
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◼ 56% Acc
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◼ w/o Teach-Back: 54% Acc
◼ w/ Teach-Back:   61% Acc
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Generate rationales

Student LLM Generate rationales

Few-shot prompting
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Figure 1: Overview of our approaches. Existing few-shot CoT prompting methods rely on human experts to craft
rationales as in-context demonstrations. We propose Encoding Specificity Hypothesis to make large language
models better in-context teachers than humans. We accordingly design Self-Explain for an LLM itself to be the
teacher and Teach-Back to improve the LLM’s capability of teaching another model in context.

retrieval from human episodic memory. The hypoth-
esis postulates that the context during recalling infor-
mation from episodic memory should match the con-
text during encoding. As inspired by the convergence
between memory and attention module in language
models (Ramsauer et al., 2020; Bricken and Pehlevan,
2021; Zhao, 2023), for few-shot prompting, we simi-
larly hypothesize that in-context exemplars at test time
should match the encoded rationales from the student’s
training corpora related to the test domain. For exam-
ple, when the student reasons over medical questions
at inference, in-context rationales are expected to be
phrased similarly to examples in the medical corpus
learned by the student model during training.

The encoding specificity hypothesis can be easily
satisfied when the teacher model is the student model
itself. We directly prompt the student model to explain
the given answer to a question sampled from the
same dataset as the test data as inspired by learning
theory in cognitive science (Chi et al., 1989). Those
elicited self-explanations can represent the model’s
encoded knowledge for the test task and are then
used as in-context demonstrations at inference. We
refer to this approach as Self-Explain. On the other
hand, when the teacher model is different from the
student model (e.g., using a weak and small model
to teach a much larger model (Burns et al., 2024)),
we first let the teacher model learn from the student’s
self-explanations before eliciting the teacher’s expla-
nations (see the lower part of Figure 1). We refer to
this method as Teach-Back, which is how healthcare
providers (i.e., teachers) reduce the communication
gap with patients (i.e., student) for effective health
education (Talevski et al., 2020).

Our experimental results provide sources of evi-
dence for our encoding specificity hypothesis. We find
that the student model itself tends to be the best in-
context teacher for it, surpassing human teachers or
other LLM teachers (w/o Teach-Back). Our exper-
iments across models of different sizes and reason-
ing abilities suggest that for ICT, larger and stronger
models are not necessarily better in-context teachers,
though they may produce more reliable rationales. We
show that in-context reasoning examples that more re-
semble the student’s self-explanations can lead to better
student performance. This also supports our encoding
specificity hypothesis. Furthermore, applying Teach-
Back can significantly improve the ICT capability of
a teacher model for the student model and even out-
perform Self-Explain depending on the teacher model.
For example, Teach-Back enables a small deployable
7B model to teach the much larger GPT-3.5 in context,
surpassing human teachers by around 5% in test accu-
racy on medical question answering.

In summary, our contributions are mainly in three
folds:

• We investigate in-context teaching for knowledge
reasoning, where a teacher provides in-context
demonstrations to teach a student model to reason.
We propose the Encoding Specificity Hypothesis
as the guideline for composing in-context exem-
plars and provide sufficient evidence for our hy-
pothesis.

• We propose a new way of eliciting rationales from
an LLM by prompting it to explain question-
answer pairs. We then propose Self-Explain
prompting to use an LLM’s self-explanations as
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its in-context exemplars, which outperforms using
human-crafted CoTs.

• Our experiments suggest that in-context exem-
plars of rationales from LLM teachers or human
teachers that more resemble the student’s self-
explanations may produce better reasoning perfor-
mance. We then propose Teach-Back, demon-
strating that the in-context teaching ability of
LLMs can be improved by aligning the teacher
with the student’s self-explanations.

2 Revisiting ICL
We first detail some annotations and give a formal setup
of in-context learning. We denote the model parame-
ters as θ, rationale as π and assume a labeled dataset D
with distribution p∗. Given a test query x, the model
will predict ỹ by conditioning on the query and in-
context exemplars. We can then have,

ỹ = argmaxyP (y|e,x, θ), (1)

where e, is the sequence of all K in-context exemplars
i.e., e = e1, ..., eK) and ei = (xi, πi, yi) where (xi, yi)
is sampled from p∗.

2.1 Encoding Specificity Hypothesis
A key question for ICL is how to compose in-context
rationales for some task dataset D(x,y)? Rationales
can be rephrased differently while delivering the same
logic. To understand this question, we take a mem-
ory view of ICL by conceptualizing LLMs as mem-
ory networks (Hopfield, 1982; Kanerva, 1988; Kaiser
and Bengio, 2016; Ramsauer et al., 2020; Krotov and
Hopfield, 2016). The feed-forwarding through hidden
layers of LLM is to retrieve and generalize learned in-
formation in memory to construct the output y to com-
plete the query x under the guidance of context C (i.e.,
in-context exemplars). The pretraining stage can be
viewed as encoding information into the weights, i.e.,
memories of LLMs.

From a memory perspective, we draw inspiration
from the encoding specificity hypothesis (Tulving
and Thomson, 1973), which suggests that successful
retrieval of information depends on the match between
the context during encoding and the context at re-
trieval. To see this hypothesis, a simplified thought
experiment can be considered: supposing that a
specific datapoint (x, y) has been seen during language
modeling in pretraining and C is the corresponding
context prepending (x, y), (i.e., a consecutive string
(C, x, y) is seen by LLM during training), at test time,
to let the model generate y with great probability, we
can prompt it with (C, x).

More generally, the encoding specificity hypothesis
suggests that in-context exemplars of reasoning at
test time should match the distribution of reason-
ing examples seen during training, especially the
training corpus containing information similar to task

data D(x,y). LLMs may have seen many sentences
involving reasoning during pre-training and further
instruction fine-tuning. It may be easier for LLMs
to generalize from in-context exemplars similar to
those rationales from training data (e.g., having similar
reasoning logic or using similar expressions/ jargon)
to answer new questions at inference.

3 Methodology
The general framework of our proposed methods and
our prompting format is shown in Figure 2. We first
introduce Self-Explain, where the student and teacher
are the same (Section 3.1), as a straightforward im-
plementation of the encoding specificity hypothesis.
We then extend this approach to employing a different
teacher model (Section 3.2).

3.1 Self-Explain
Motivated by the encoding specificity, we would like
our in-context exemplars of reasoning to match the
LLMs’ training corpus containing information similar
to the task data. To achieve this, we directly prompt an
LLM to elicit its explanation for some question-answer
pairs of task data. Such self-explaining is actually how
humans integrate new information with their existing
knowledge (Chi et al., 1989). Similarly, the LLM is
expected to utilize its existing encoded knowledge
relevant to the unseen question provided, in order
to generate its explanations. These self-explanations
are then used as in-context exemplars of reasoning to
prompt the model itself.

Eliciting LLMs’ Self-explanations. Formally, we
assume access to labeled training data where we have
some data (x, y) sampled from the distribution ptrain

and assume ptest ≈ ptrain. We consider a realistic set-
ting where human-crafted CoTs are not available. We
define an oracle CoT as

π∗ := argmaxπP (y|x, π, θ). (2)

Self-explanation is then obtained as,

πself = argmaxπP (π|x, y, γ, θ), (3)

where γ is an instruction. We hope LLMs generate
rationales based on a given (x, y) by recalling relevant
encoded knowledge so as to satisfy the encoding speci-
ficity. We find P (y|x, πself, θ) >> P (y|x, πhuman, θ)
(see Appendix C). We may arguably state that πself is
a more reasonable estimation to π∗ than πhuman.

Filtering Self-explanations. We filter out the elicited
self-explanations based on the explanation faithful-
ness (Jacovi and Goldberg, 2020). Explanations that
fail to guide the model to produce the given answer, i.e.,
y ̸= argmaxỹP (ỹ|x, πself, θ), are screened. We em-
pirically verify the self-explanation ability of different
LMs and show that those models succeed in justifying
the given (x, y) most of the time (see Section 5.1).
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Explanation: Ethambutol is a medication that

is used to treat tuberculosis …

Q: You are seeing a patient in clinic who …

A: Ethambutol is a … The answer is D: Visual Loss.

…
Q: A 42-year-old man comes to the office for

preoperative…

A: The patient has an adrenal … The answer is D:

Phenoxybenzamine.

Q: Two weeks after undergoing an emergency 

cardiac catherization … ?

The patient has undergone an emergency

cardiac catheterization with stenting … So,

the answer is C: Cholesterol embolization.

Test question

Teacher LLM

In-context exemplars

Student LLM

Q: A 42-year-old man comes to the office for preoperative

… Choose from …

A: The answer is D: Phenoxybenzamine.

Generate Self-explanation

Q: You are seeing a patient in clinic who recently started

treatment for active tuberculosis…… which of the

following is a known side effect? Choose from A:

Cutaneous flushing, B: Elevated liver enzymes…

A: The answer is D: Visual Loss.

Explain how to reach this answer.

Generate explanations

Figure 2: The overall framework and prompting format of our approach. The teacher LLM is prompted to generate
explanations on sampled training data. Those teacher’s explanations are used as in-context demonstrations for the
student model at test time. The student model and the teacher model can be the same.

ICL with Self-explanations. The self-explanations
πself elicited by the model are then used as in-context
exemplars for prompting it following Equation 1. This
can be viewed as the model teaching itself via ICL
to do reasoning. Additionally, the ICL performance
is very close when using respective πself elicited with
either wrong or ground-truth y for the input question x
in Equation 3 (see Section 4.2).

Generalization through generation diversity. The
underlying logic of πself might be very specific to its
corresponding (x, y) and thus lacks generalizability to
other different cases from test data. Then, the output
explanation π̂te at test time may fail to apply to the input
cases, leading to wrong answers. To mitigate this issue,
we also design a new instruction γ′ so as to prompt the
model to generate solutions employing distinct logics.
Formally, we have,

(πself
1 , ..., πself

n ) = argmaxπP (π|x, y, γ′, θ), (4)

where n ∈ (1, N) and N is the number of different
explanations to generate. For example, if N = 5, γ′

will be “Explain how to reach this answer in five dif-
ferent ways”. Then at test time, πself

i for an in-context
exemplar (xi, yi) will be randomly sampled from the
according {πself

n |n ∈ (1, N)} of (xi, yi).

3.2 Teach-Back
Instead of ICL with self-explanations where the stu-
dent model teaches itself to reason, these explanations
can be provided as in-context exemplars by a different
model (parameterized by θteacher), i.e.,

πself = argmaxπP (π|x, y, γ, θteacher). (5)

However, explanations of one model may not be
the most helpful reasoning demonstrations for another

model, especially when the teacher’s explanations are
very distinct from the student’s self-explanations (see
results in Section 4.3). Based on our encoding speci-
ficity hypothesis, we propose to let the teacher model
learn from the student’s self-explanations (through su-
pervised fine-tuning) before eliciting the teacher’s ex-
planations. This method is called Teach-Back, which
is similar to how healthcare providers reduce the com-
munication gap with patients for effective health ed-
ucation (Talevski et al., 2020). Doctors will rephrase
and clarify their explanations based on patients’ ex-
planations for better communication. In Section 4.4,
we empirically show the effectiveness of Teach-Back
in improving teaching efficacy and enhancing student’s
performance.

4 Experiments
4.1 Experimental Setup
Datasets. We focus on knowledge-intensive
question-answering tasks that require logical rea-
soning and associating encoded knowledge, rather
than just retrieving facts. Such knowledge-intensive
QA is common and important for the applications of
LLMs (Jin et al., 2021b; Tran et al., 2023). We eval-
uate our method in both general domains and expert
domains. We employ widely-used StrategyQA (Geva
et al., 2021) for commonsense reasoning. For expert
domains, we use challenging MedMCQA (Pal et al.,
2022) and MedQA (Jin et al., 2021a) with standard
splits. These datasets consist of multiple-choice
questions to diagnose clinical cases, which are used
for physician qualification exams.
Models. We use a variety of language models. We
employ the chat version of 7B model and 13B model
of Llama2 (Touvron et al., 2023), the 7B model of Mis-
tral (Jiang et al., 2023), the Phi3-128k-mini that has
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Method\Dataset MedCQA MedQA StrategyQA
No CoT 51.7 52.1 46.8

Zero-shot CoT (Kojima et al., 2022) 51.1 54.4 45.6

Auto-CoT (Zhang et al., 2023) 52.5 55.2 52.7

Human CoT 53.1 55.6 56.1

Self-Explain 53.2 57.5 58.5

w/ Multi-Exp 56.6 59.6 59.7

Table 1: Test accuracy of different prompting methods on three datasets for knowledge reasoning.

MedMCQA MedQA StrategyQA
Right 56.6 59.6 59.7

Wrong 56.0 59.4 59.1

Table 2: Test accuracy of prompting with self-
explanations that are generated provided by right an-
swers and wrong answers.

1 3 5 7
#Explanations to generate for each exemplar

57.5

58.0

58.5

59.0

59.5

Te
st

 A
cc
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Figure 3: The test performance with respect to the num-
ber of self-explanations to generate for each exemplar.

3.8B parameters (Abdin et al., 2024) and the frozen
version (0613) of GPT-3.5 2.
Prompting. For the instruction used for eliciting
models’ self-explanations, an ablation study is con-
ducted in Appendix A. For few-shot prompting at test
time, we use five in-context exemplars sampled from
the training data.
Baselines. Apart from comparing our approach with
standard few-shot prompting with human CoTs, we in-
clude three more baselines. (1) “No CoT”: We remove
rationales and use input-output pairs only for in-context
exemplars; (2) ”Zero-shot CoT” (Kojima et al., 2022):
This method does not require human-crafted demon-
strations as it is not few-shot prompting. It directly
elicits reasoning from LLMs for the test question by
using the prompt “Let’s think step by step”. (3) “Auto-
CoT” (Zhang et al., 2023): This work uses the same
method as Kojima et al. (2022) to elicit rationales from
LLMs. But it further proposes a way of exemplar se-
lection to choose elicited rationales as in-context ex-
emplars. For fair comparison, in each trial, we use
the same question-answer pairs for few-shot demon-
strations for all baselines.

2https://platform.openai.com/docs/models/gpt-3-5-turbo

4.2 Few-shot Prompting with Self-explanations

In this section, we evaluate the test performance of
Self-Explain, i.e., when the model’s self-explanations
are used as in-context exemplars of reasoning for few-
shot prompting. We conduct experiments with GPT-
3.5-turbo on reasoning tasks in both general domains
and expert domains.

Prompting with self-explanations is better than
using human-crafted CoTs. Our results are shown
in Table 1. Self-Explain can impressively outper-
form using CoTs crafted by human professionals by
around 2% in both challenging MedQA and general
domain, while reaching similar performance to Human
CoT for MedCQA. Our approach also outperforms
Auto-CoT (Zhang et al., 2023) and vanilla zero-shot
CoT (Kojima et al., 2022), both of which cannot
effectively surpass Human CoT for knowledge reason-
ing. The superior performance of Self-Explain may
support our encoding specificity hypothesis. Overall,
considering the difficulty and expense of crafting CoTs
by humans, Self-Explain can thus be very useful
in expert domains. Example self-explanations and
human-crafted CoTs can be found in Appendix D.

Generation diversity is helpful. Apart from
naive Self-Explain, we generate five different
self-explanations for each in-context exemplar and
randomly select one for ICL at test time (see details in
Section 3.1). As shown in results of “w/ Multi-Exp” in
Table 1, this approach further boosts the performance
of Self-Explain to significantly surpass Human CoT
by around 4% in all datasets. To better understand
the effects of this component, we experiment with
generating different numbers of self-explanations for
one exemplar input. Results are shown in Figure 3.
We find generating different self-explanations for an
in-context exemplar can generally improve the test
performance, while such improvement experiences
diminishing returns with further increased numbers of
generations.

Does the correctness of self-explanations matter?
A natural question raised in Self-Explain is what if
the self-generated explanations are wrong since the
generation process is not supervised by humans. We
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Teacher\Student Llama2-7B Llama2-13B Mistral-7B Phi3-mini GPT-3.5
No CoT 28.4 31.1 31.8 49.5 41.1
Human 27.3 31.4 38.2 53.3 55.6
Llama2-7B 30.6 32.2 40.8 49.1 51.2
Llama2-13B 30.2 35.5 41.1 55.3 56.9
Mistral-7B 25.1 34.7 44.2 54.4 53.5
Phi3-mini 18.7 35.1 40.7 57.1 57.1
GPT-3.5 18.1 34.4 43.1 57.7 57.5

Table 3: Results of teaching student LLMs with teachers’ self-explanations through in-context learning. The best
test accuracy is highlighted in bold.

Human
Llama-7B

Llama-13B
Mistral-7B

Phi3-mini
GPT-3.5

Human

Llama-7B

Llama-13B

Mistral-7B

Phi3-mini

GPT-3.5

100.0 9.3 14.0 15.8 14.2 12.9

9.3 100.0 23.6 18.9 15.9 15.2

14.0 23.6 100.0 31.0 29.6 32.6

15.8 18.9 31.0 100.0 28.2 26.9

14.2 15.9 29.6 28.2 100.0 30.8

12.9 15.2 32.6 26.9 30.8 100.0
10

100

(a)

15 20 25 30 35 100
ROUGE (%)
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(%
)

Llama-7B; Pearson=52.6
Llama-13B; Pearson=88.2
Mistral-7B; Pearson=83.0

Phi3-mini; Pearson=81.3
GPT-3.5; Pearson=72.6

(b)

Figure 4: (a) ROUGE scores between self-explanations of teacher and student. For “Human” teachers, human-
crafted CoTs are used for computation. (b) Strong linear correlation is observed between ROUGE scores of
self-explanations of teacher and student and the student’s test accuracy.

look into this question by providing the LLM with
random wrong answers to generate misleading expla-
nations of the input question (i.e., we use (x, ywrong)
in Equation 3). Those self-explanations with wrong
answers i.e., (x, πself

wrong, ywrong) are then used for
prompting as in-context exemplars. The results are
shown in Table 2. We find that the performance of
prompting with self-explanation seems insensitive to
its correctness. This result suggests that a correctly
labeled dataset may not be necessary for Self-Explain
prompting. Similar results on text classification are
observed that label space is more important for ICL
than label correctness (Min et al., 2022). We simi-
larly speculate that what carries more weight is how
self-explanations are phrased, as they should match
the context seen during encoding relevant information
according to our encoding specificity hypothesis. We
look deeper into this hypothesis in Section 4.3.

4.3 In-context Teaching via Explanations
We have demonstrated LLMs can teach themselves
with Self-Explain for better knowledge reasoning. We
further extend this to study whether self-explanations
of one model can be used as in-context exemplars to
teach another model through ICL. Teaching through su-
pervised learning on teacher’s generated data has been
widely investigated (Zhao et al., 2024; Ho et al., 2023;
Hsieh et al., 2023), which can be framed as knowledge
distillation. However, machine supervision through
ICL has not yet been well studied. In this section,

we have a teacher LLM generate self-explanations that
are then used as in-context exemplars to teach a stu-
dent LLM for reasoning unseen test cases. Saha et al.
(2023) have explored a similar research question, while
they insert teacher’s explanations into student’s gener-
ation for test examples during inference. This may not
be fully considered as teaching as the taught model re-
ceives assistance with test examples, and its generaliza-
tion ability is thus not evaluated.
The student is often its own best teacher. Results
are shown in Table 3. When doing few-shot prompting
with the students’ own self-explanations as in-context
exemplars, the students can generally reach the best
performance, which is aligned with results in Sec-
tion 4.2. This also supports the encoding specificity
hypothesis. Noticeably, larger or stronger models
may not necessarily be better in-context teachers. For
example, for Llama2 and Mistral, prompting them with
GPT-3.5’s explanations gives worse results than using
those models’ own self-explanations. The performance
for Llama2-7B with GPT-3.5 as the in-context teacher
is even worse than not using any demonstrations of
reasoning (i.e., “No CoT”).

Better teachers tend to produce rationales that more
resemble student’s self-explanations. The perfor-
mance or scale of the teacher model is shown not in-
dicative of its in-context teaching ability. Instead, we
observe a strong correlation between students’ perfor-
mance and the similarity between teachers’ demon-
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Figure 5: Students’ accuracy improvement after apply-
ing Teach-Back. Values in brackets stand for students’
respective test accuracy w/ Teach-Back. The x-axis
represents students who do reasoning. The y-axis is
teacher models that provide in-context demonstrations
for students.

strations and students’ self-explanations. Specifically,
ROUGE-L (Lin, 2004) is used to measure the close-
ness between rationales of teachers and students. We
observe that explanations generated by different LLMs
tend to be more similar to each other than to human-
crafted rationales, as shown in Figure 4a. Meanwhile,
LLM teachers tend to yield better student’s perfor-
mance than human teachers shown in Table 3. We fur-
ther compute Pearson correlation coefficient between
the student LLM’s test accuracy and the ROUGE score
between its self-explanations and the teacher LLMs’
explanations/ human-crafted rationales. As shown in
Figure 4b, evident linear correlations between accu-
racy and ROUGE score are observed, especially for
the models stronger than Llama2-7B. This may further
support our encoding specificity hypothesis: in-context
exemplars for the student should match its training
data because rationales similar to the student’s self-
explanations are more likely to align with the student’s
training data.

4.4 Learning from Students for Better Teaching
Given the strong correlation between students’ test ac-
curacy and closeness between teacher and student ex-
planations, we are motivated to further look into the
underlying causality, i.e., whether in-context teach-
ing can be improved by letting the teacher learn
the student’s self-explanations. In this section, the
teacher model will first be fine-tuned on the student’s
self-explanations to generate its new self-explanations
that are then used as in-context exemplars for the stu-
dent (i.e., Teach-Back introduced in Section 3.2).

Each student model generates self-explanations for
500 held-out training examples (will not be used for in-
context demonstrations) for fine-tuning teacher models.
To accommodate our available computing resources,
we only fine-tune the teacher models whose size is
smaller or equal to 7B with LoRA (Hu et al., 2021).
Detailed implementations for fine-tuning are shown
in Appendix B. Example generations before and after

Teach-Back are shown in Appendix E.

Teach-Back improves in-context teaching. As
shown in Figure 5, when the teacher model is different
from the student model, Teach-Back can greatly
enhance the teaching performance of the teacher LLM,
as evidenced by the improvement of test accuracy
among students. Noticeably, fine-tuned teachers using
Teach-Back can enable students to achieve signifi-
cantly higher accuracy than the former best teachers
in Table 3. For example, a fine-tuned Mistral-7B can
guide Phi3-mini to achieve 59.3% accuracy. This is
4.9% higher than the accuracy achieved with an unfine-
tuned Mistral-7B teacher and 1.6% higher than the best
unfine-tuned teacher (i.e., GPT-3.5, see the column for
“Phi3-mini” in Table 3). Interestingly, Teach-Back
enables the smaller Mistral-7B to teach the much larger
GPT-3.5 in context, surpassing human teachers by
around 5% and Self-Explain by around 4% as visual-
ized in Figure 7 of Appendix. Our results showcase the
promising use of Teach-Back in leveraging a small
tunable model to improve the few-shot prompting
performance of a much larger LM without human
supervision (i.e., human-crafted demonstrations).

5 Further Analysis of LLMs’
Explanations

5.1 Faithfulness of Self-explanations

To elicit self-explanations πself from an LLM, we
prompt it to explain a given pair of question and
answer (x, y) as shown in Equation 3, and then
(x, πself, y) will be used as one in-context demonstra-
tion. In this section, we evaluate how many of those
raw self-explanations (before filtering) actually support
the model to predict the given answer (Hase et al.,
2020). We append the elicited explanations πself back
to the given question x as the prompt fed to the model.
We then examine whether the model will correctly
output the given answer y. We empirically find that
diverse models can produce faithful explanations most
of the time. For example, Mistral-7B reaches 94.2 %
rate of faithful explanations, GPT 3.5 reaches 98.3%
and Llama2-13B reaches 93.9 %. Our results may
confirm the LLM’s ability to explain given questions
and answers.

5.2 How Similar are Self-explanations to
Human-crafted CoTs?

The common standard to measure the quality of
machine-generated samples is how similar they are
to human-crafted ones (Lu et al., 2022; Wang et al.,
2022). The more similar, the better the quality is
assumed to be. However, Hase et al. (2020) have
pointed out that evaluation based on plausibility by
matching human explanations is not sufficient. Our re-
sults also challenge this evaluation criterion. We show
that LLMs’ self-explanations are very different from
human-crafted CoTs in terms of ROUGE-L score, ter-
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Figure 6: Similarity between human-crafted CoTs and self-explanations in terms of ROUGE score, terminology
covered, and length.

minology used, and length. However, few-shot prompt-
ing with LLMs’ self-explanations demonstrates supe-
rior performance to using human-crafted CoTs.

We use MedCQA as our testbed, which provides
high-quality human-crafted explanations. For termi-
nology comparison, we extract terms in both kinds of
CoTs through scispaCy 3 and calculate F1 score be-
tween the two terms lists. Results are shown in Fig. 6.
We find in terms of content (measured by ROUGE-
L and term coverage), self-explanation differs from
human-crafted CoTs greatly, given the average simi-
larity is around 15%. The length distribution of self-
explanation is more centric, while the human-crafted
CoTs have more varied lengths.

6 Related Work

In-context learning. In-context learning is the abil-
ity of language models to induce answers from given
demonstrations without weights updating in supervised
tuning. In-context exemplars are the key to ICL which
have dominating influence on the generation. Quite a
few works have been proposed to optimize the selec-
tion of exemplars (Lu et al., 2023; Rubin et al., 2022;
Fu et al., 2023b). On the other hand, in the cases of no
access to task labels, Lyu et al. (2023) proposed a zero-
shot ICL that employs pseudo exemplars with random
labels for classification tasks.

Chain-of-Thought prompting without human-
crafted exemplars. Prompting with reasoning
exemplars triggers LLMs to generate similar inter-
mediate steps of thinking through ICL, known as
Chain-of-Thought (CoT) (Wei et al., 2022). Kojima
et al. (2022) propose zero-shot CoT prompting to elicit
LLMs’ reasoning without human-crafted exemplars.
This method is then leveraged to prompt LLMs to
generate CoT exemplars by themselves for ICL (Zhang
et al., 2023; Wan et al., 2023; Chen et al., 2023).
Different from our work, which focuses on eliciting
rationales from LLMs, Zhang et al. (2023); Wan et al.
(2023); Shum et al. (2023) concentrate on selecting
rationales generated according to Kojima et al. (2022).
And Chen et al. (2023) further incorporate pseudo
task generation alongside self-generated CoTs. Ad-
ditionally, Yasunaga et al. (2024) propose analogical
prompting to solve emerging new tasks without

3https://allenai.github.io/scispacy/

human-crafted demonstrations. Importantly, these
works mainly focus on prompting engineering for
very large, closed-source LMs (e.g., GPT-4). None of
them formally investigate the fundamental in-context
teaching among different LMs. Instead, our work
proposes encoding specificity hypothesis to understand
in-context teaching for LLMs, which is evidenced by
experiments across different models.

Teaching via explanations. Many past works have
explored teaching student LLMs with teacher model’s
explanations through supervised fine-tuning (Ho et al.,
2023; Hsieh et al., 2023; Fu et al., 2023a). Few have
investigated in-context teaching. Lampinen et al.
(2022) demonstrate that LLMs can learn from human-
crafted explanations in context. Instead of leveraging
in-context exemplars, Saha et al. (2023); Lee et al.
(2024) directly feed the teacher’s explanations of test
examples to the student model during inference. In
this case, the taught model receives direct assistance
with test examples, and thus, its generalization ability
from the teacher is not evaluated.

7 Conclusion

In this work, we investigate in-context teaching, where
a teacher provides in-context example rationales to
teach a student to reason over unseen questions. We
introduce the encoding specificity hypothesis that in-
context exemplars at test time should match the stu-
dent model’s related training examples. Motivated
by our hypothesis, we propose Self-Explain to let
an LLM teach itself with its self-explanations through
in-context learning, which outperforms human-crafted
chain-of-thoughts and other baselines in different rea-
soning tasks. We reveal that for in-context teach-
ing, rationales by distinct teacher LLMs or human
teachers that more resemble the student LLM’s self-
explanations are better demonstrations, which further
supports the encoding specificity hypothesis. We then
propose Teach-Back to align the teacher LLM with
the student, which can enhance the in-context teaching
performance.

8 Limitations

We propose Self-Explain and Teach-Back that ver-
ify our encoding specificity hypothesis for few-shot
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prompting. They also demonstrate impressive per-
formance on diverse models for knowledge reasoning
without human guidance. The student model’s per-
formance with Self-Explain is consistently among the
best. However, the student performance in Teach-
Back does not necessarily surpass standard prompting
with human CoTs, depending on the teacher model.
For example, Mistral-7B with Teach-Back enables
different student models to reach optimal test perfor-
mance, while teachers like Llama2-7B are less effec-
tive. Therefore, we suggest using Self-Explain as a
starting point in real applications. In the future, we will
further investigate the influence of the teacher model
in Teach-Back on student performance and how fine-
tuning affects the teacher model’s self-explanations.
Overall, in this work, the main contribution of our pro-
posed Teach-Back is that it can greatly improve the
ability of one LLM to teach a different student model.

In addition, our work is limited to only one teacher.
Future work could explore many teachers, including
mixture of experts. Moreover, there are various emerg-
ing advanced prompting methods for different kinds
of reasoning tasks, e.g., tree-of-thoughts (Yao et al.,
2024) or multi-round prompting (Khot et al., 2023;
Zhou et al., 2022). In this work, we do not consider
these more advanced designs of prompting, but focus
on commonly used CoT prompting to eliminate the
need of human-crafted CoTs. However, our approaches
can be adapted to these methods e.g., by modifying
the instructions used to elicit LLMs’ rationales. The
majority of these methods still require human-crafted
demonstrations. We will further investigate whether
LLMs can implement these advanced prompting meth-
ods without human-crafted exemplars under our frame-
work in the future.
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Figure 7: Few-shot prompting performance of GPT-
3.5 on knowledge reasoning with different kinds of
in-context exemplars of reasoning. “Human” is us-
ing chain-of-thought examples crafted by humans.
“Self-Explain” is prompting GPT-3.5 with its self-
explanations elicited. ”LLM Teacher” is using ra-
tionales generated by a separate model (Mistral-7B)
as teacher, while for “w/ Teach-Back”, the teacher
model has been first fine-tuned with GPT-3.5’s self-
explanations.

A Effects of Instructions in Eliciting
Self-explanations

In this section, we examine the performance of ICL
with self-explanations prompted by different cues in
our framework. We mainly follow cues in Liévin et al.
(2022) as shown in Table 4. The first one is by de-
fault used in our framework. Since Liévin et al. (2022)
focuses on medical domains, for general domains, we
modify its cues by removing information specific to
medical domains. We then generate self-explanations
and perform ICL with them. The final test results are
shown in Table 5. We find no matter what cues are
employed, ICL with self-generations elicited can all
outperform using human-crafted CoTs, which demon-
strates the robustness of our proposed Self-Explain on
the choice of cues.

B Implementation for Teach-Back with
Fine-tuning

We reformat the training data with students’ self-
explanations following the template in Table 6. We set
the learning rate as 1 × 10−5 and fine-tune the teacher
model with five epochs. We use the default setting for
LoRA.

C Analysis on Model Confidence

We find models are more confident with their predic-
tions when using Self-Explain. For exemplars se-
lected for generating self-explanation, we use Text-
Davinci-003 to compute the average P (y|x, πself, θ)
which reaches 99.96%. In comparison, for human-
crafted explanation of the same exemplars, average
P (y|x, πhuman, θ) is lower, reaching 89.05%. This im-
plies that for a given (x, y), the self-explanation πself

provides a more relevant context for eliciting y than the
human explanation πhuman.

In addition, for inference with self-explanation as
demonstrations in ICL, log probabilities are computed
for correct and wrong model outputs prompted with
self-explanation and human-crafted one. Results are
shown in Figure 8. We can observe that models’ out-
put log probabilities with self-explanation are much
higher than with human-crafted explanation, indicating
greater model’s confidence in its output. This suggests
self-explanation can be more acceptable and effective
for LLMs to elicit reasoning. Self-Explain may also
improve model’s calibration. Calibration requires the
model’s output confidence should indicate the correct-
ness of answers (e.g., wrong answers have lower con-
fidence). Well-calibrated output confidence can assist
human users to determine whether to trust model’s out-
puts or to look for alternatives in high-stakes applica-
tions. Figure 8a showcases the model is generally more
calibrated when using self-explanation. Further results
in Fig. 8b show that output confidence by using human
CoT is not indicative especially when the question is
debatable (i.e., using self-explanation and human CoT
generate different answers).
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Medical Domain General Domain
1 Explain how to reach this answer.
2 Let’s think step by step.
3 Let’s think step by step like a medical expert. Let’s think step by step like an expert.
4 Let’s use step by step inductive reasoning, Let’s use step by step inductive reasoning.

given the medical nature of the question.

Table 4: Different cues to elicit self-explanations.

Dataset Cue #1 Cue #2 Cue #3 Cue #4 Human
MedMCQA 56.6 54.6 54.3 54.2 53.1

MedQA 59.6 59.4 58.1 58.2 55.6
StrategyQA 59.7 57.7 57.2 57.3 56.1

Table 5: Test results of ICL with self-explanations elicited by different cues.

Input:{input string of training example i}
Output:{output result of training example i}
Explain how to reach this answer.
{explanation for training example i}

Table 6: The format of training data for fine-tuning
teacher LLMs on students’ self-explanations.
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Figure 8: Comparison of model confidence in different cases by using human-crafted CoT and self-explanation.
Prompting with self-explanations makes the model more calibrated and more confident as well. (a) Comparison
between confidence of true answers and false ones. (b) Further comparison of confidence in more specific cases.
“S” denotes “Self exp”, “H” denotes “Human cot”, “T” denotes “True” and “F” denotes “False”, e.g., “S T &
H F” means self explanation gives true answer, while human-crafted CoT leads to false answer.

16483



D Example self-explanations
D.1 MedQA
Question: A 22-year-old male marathon runner presents to the office with the complaint of right-sided rib pain
when he runs long distances. Physical examination reveals normal heart and lung findings and an exhalation
dysfunction at ribs 4-5 on the right. Which of the following muscles or muscle groups will be most useful in
correcting this dysfunction utilizing a direct method? (A) anterior scalene (B) latissimus dorsi (C) pectoralis
minor (D) quadratus lumborum

Self-explanation: The patient is a pregnant woman, and nitrofurantoin is considered safe for use during
pregnancy. Other antibiotics, such as ciprofloxacin and doxycycline, are contraindicated in pregnancy due to
potential harm to the fetus.

Human-crafted explanation: We refer to Wikipedia articles on medicine for help. Among the options, only
pectoralis minor muscle origins from the outer surfaces of the 3rd to 5th ribs.

Question: A 44-year-old man comes to the office because of a 3-day history of sore throat, nonproductive
cough, runny nose, and frontal headache. He says the headache is worse in the morning and ibuprofen does
provide some relief. He has not had shortness of breath. Medical history is unremarkable. He takes no medi-
cations other than the ibuprofen for pain. Vital signs are temperature 37.4 C (99.4 F), pulse 88/min, respirations
18/min, and blood pressure 120/84 mm Hg. Examination of the nares shows erythematous mucous membranes.
Examination of the throat shows erythema and follicular lymphoid hyperplasia on the posterior oropharynx. There
is no palpable cervical adenopathy. Lungs are clear to auscultation. Which of the following is the most likely
cause of this patient2̆019s symptoms? (A) Allergic rhinitis (B) Epstein-Barr virus (C) Mycoplasma pneumonia
(D) Rhinovirus

Self-explanation: The presentation of a fussy infant who is regurgitating all of his feeds and has yellow
vomit is consistent with pyloric stenosis, which is characterized by abnormal hypertrophy of the pylorus. This
condition causes narrowing of the passage between the stomach and the small intestine, leading to difficulty in
food passage and subsequent vomiting.

Human-crafted explanation: We refer to Wikipedia articles on medicine for help. The symptoms, espe-
cially the headache, suggest that the most likely cause is Rhinovirus. Epstein-Barr virus will cause swollen
lymph nodes but there is no palpable cervical adenopathy. Lungs are clear to auscultation suggests it2̆019s not
Mycoplasma pneumonia.

D.2 MedCQA
Question: Which of the following statements about Total Infra Venous Anaesthesia (TIVA) is true? (A) Causes
More Renal Toxicity (B) Reduces Cerebral Metabolic Rate (C) Risk of Malignant Hyperthermia is high (D)
Inhibits Hypoxic Pulmonary Vasconstriction

Self-explanation: By understanding the mechanism of action: Total Intravenous Anaesthesia (TIVA) in-
volves the administration of intravenous drugs to induce and maintain anesthesia. One of the main drugs used in
TIVA is propofol, which is known to reduce cerebral metabolic rate.

Human-crafted explanation: Total intravenous anaesthesia refers to a technique in general anaesthesia us-
ing a compination of agents given solely by IV route and in the absence of all inhalation agents. TIVA (Total
intravenous anaesthesia) is produced by IV propoful. Propofol decreases the cerebral metabolic rate. Propofol
does not impair renal function, does not trigger malignant hyperthermia and does not inhibit hypoxic pulmonary
vasoconstriction.

Question: Shock causes: Choose the answer from A to D. A: Stagnant hypoxia. B: Anemic hypoxia. C:
Hypoxic hypoxia. D: Histotoxic hypoxia.

Self-explanation: Shock is characterized by a decrease in blood pressure and impaired circulation. This
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can result in reduced blood flow to the tissues, leading to stagnant hypoxia.

Human-crafted explanation: Ans: A (Stagnant hypoxia)Ref: Pat GK, Hypoxia and Oxygen Therapy, In:
Textbook of Medical Physiology, 2nd ed, Abuja Publishing House 2011: 94: 754-55

D.3 StrategyQA

Question: Would ramen be bad for someone with heart failure?

Self-explanation: Ramen can be bad for someone with heart failure due to its high sodium content. Sodium can
cause fluid retention and increase blood pressure, which can put additional strain on the heart.

Human-crafted explanation: People with heart failure have to limit their sodium intake. Ramen is notori-
ous for having incredibly high sodium levels.

Questions: Is Cape Town south of the Equator?

Self-explanation: By looking at a map: You can visually locate Cape Town on a map and observe that it is
situated below the Equator, in the southern hemisphere.

Human-crafted explanation: Cape Town is an important city in South Africa. South Africa is located en-
tirely south of the Equator.

E Examples of Different LLMs’ Self-explanations

Llama2-7B: The patient’s symptoms of decreased appetite, difficulty falling asleep, sadness, and compulsive
behaviors (rechecking the door lock and counting toilet paper) are consistent with a diagnosis of obsessive-
compulsive disorder (OCD). OCD is characterized by recurrent, intrusive thoughts (obsessions) and repetitive
behaviors or mental acts (compulsions) that are time-consuming and cause significant distress or impairment.
The neurotransmitter serotonin is involved in the pathophysiology of OCD. Selective serotonin reuptake inhibitors
(SSRIs), which increase the levels of serotonin in the synaptic cleft, are the most commonly used medications to
treat OCD.

Mistral-7B: The patient’s symptoms are consistent with major depressive disorder and obsessive-compulsive
disorder (OCD). OCD is characterized by recurrent and intrusive thoughts (obsessions) and repetitive behaviors
or mental acts (compulsions) aimed at reducing anxiety or distress caused by the obsessions. Serotonin is a neu-
rotransmitter that plays a crucial role in regulating mood and anxiety, as well as in the modulation of obsessive-
compulsive symptoms. Therefore, pharmacotherapy for this patient should be targeted towards increasing sero-
tonin levels in the brain. Dopamine is associated with motivation and reward, glutamate with learning and memory,
and norepinephrine with the fight-or-flight response.

E.1 Examples of Self-explanations after Teach-Back

Mistral-7B fine-tuned on Llama2-7B: The patient’s symptoms are consistent with major depressive disorder
and obsessive-compulsive disorder (OCD). Both conditions are associated with alterations in neurotransmission,
particularly serotonin. Serotonin plays a role in mood regulation and impulse control, which are affected in major
depressive disorder and OCD, respectively. Additionally, selective serotonin reuptake inhibitors (SSRIs) are
commonly used to treat both conditions.

Llama2-7B fine-tuned on Mistral-7B: The patient’s symptoms are consistent with a diagnosis of obsessive-
compulsive disorder (OCD). OCD is a neuropsychiatric disorder characterized by recurrent, intrusive thoughts
(obsessions) and repetitive behaviors or mental acts (compulsions). The most commonly affected neurotransmitter
in OCD is serotonin, which is involved in regulating mood, impulse control, and cognitive function. Therefore,
pharmacotherapy targeting serotonin should be considered as a first-line treatment for the patient’s symptoms.
The other options are not as relevant to the patient’s symptoms:
A) Dopamine: While dopamine is involved in reward processing and motivation, it is not typically implicated in
OCD.
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B) Glutamate: Glutamate is involved in excitatory neurotransmission and is not typically associated with OCD.
C) Norepinephrine: While norepinephrine is involved in arousal and attention, it is not typically implicated in
OCD.
In summary, the patient’s symptoms are best explained by a diagnosis of obsessive-compulsive disorder, and
pharmacotherapy targeting serotonin is the most appropriate treatment option.
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