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Abstract

Large language models (LLMs) have achieved
state-of-the-art performance in machine trans-
lation (MT) and demonstrated the ability to
leverage in-context learning through few-shot
examples. However, the mechanisms by which
LLMs use different parts of the input context
remain largely unexplored. In this work, we
provide a comprehensive analysis of context
utilization in MT, studying how LLMs use var-
ious context parts, such as few-shot examples
and the source text, when generating transla-
tions. We highlight several key findings: (1)
the source part of few-shot examples appears
to contribute more than its corresponding tar-
gets, irrespective of translation direction; (2)
finetuning LLMs with parallel data alters the
contribution patterns of different context parts;
and (3) there is a positional bias where ear-
lier few-shot examples have higher contribu-
tions to the translated sequence. Finally, we
demonstrate that inspecting anomalous context
contributions can potentially uncover patholog-
ical translations, such as hallucinations. Our
findings shed light on the internal workings of
LLM-based MT which go beyond those known
for standard encoder-decoder MT models.

1 Introduction

Large language models (LLMs) have reached state-
of-the-art performance in machine translation (MT)
and are making significant strides toward becoming
the de facto solution for neural MT (Kocmi et al.,
2023; Alves et al., 2024). Compared to the classi-
cal standard approach using encoder-decoder mod-
els (Bahdanau et al., 2016; Vaswani et al., 2017),
LLMs are typically decoder-only models param-
eterized by billions of parameters. Remarkably,
LLMs have demonstrated the ability to perform
translation tasks without being explicitly trained
for them, instead leveraging in-context learning
(ICL) through demonstrations of the task (Zhang
et al., 2022; Agrawal et al., 2023; Hendy et al.,

2023; Alves et al., 2023; Garcia et al., 2023). Yet,
there is a gap in the literature on understanding
the internal workings of LLM-based MT. Previous
interpretability research on MT has been limited
to traditional, specialized encoder-decoder models
(Ding et al., 2017; Ferrando et al., 2022a,b; Voita
et al., 2021; Sarti et al., 2024; Mohammed and Nic-
ulae, 2024), and while substantial work has investi-
gated ICL in other tasks, such as classification (Min
et al., 2022; Lu et al., 2022; Yoo et al., 2022; Wang
et al., 2023) and question answering (Liu et al.,
2022; Liu et al., 2023; Si et al., 2023; Wei et al.,
2023), the mechanisms by which LLMs leverage
parts of context in MT remain largely unexplored.

In this work, we aim to fill this research gap by
contributing towards a better understanding of how
LLMs utilize different parts of the provided con-
text (e.g., few-shot examples, the source text, or
previously generated target tokens) in MT. While
previous work conducted on understanding the im-
pact of context in MT largely focuses on perform-
ing modifications on the LLM input and measuring
performance drop (Zhu et al., 2023; Raunak et al.,
2023), we take instead an attribution-based ap-
proach (Ferrando et al., 2022a), tracking the input
tokens’ relevance in all parts of the context—this
allows us to estimate how different parts of context
contribute to the generated translations, providing
a more fine-grained analysis of context utilization.

We study several key aspects of context uti-
lization in MT using general purpose LLaMA-2
models (Touvron et al., 2023) and TOWER models
(Alves et al., 2024)—a suite of models specifically
adapted for translation tasks. First, we investigate
how different input parts contribute to the trans-
lated sequence. Next, we explore whether the pro-
vided few-shot examples contribute equally to the
translated sequence. We also analyze if undergo-
ing adaptation via continuous pretraining (Gupta
et al., 2023; Çağatay Yıldız et al., 2024; Alves
et al., 2024) on relevant multilingual and parallel

14899



MT y1

MT y2

MT y3

MT y4

MT y5

MT y6

E1
x1

E1
x2

E1
x3

E2
x4

E2
x5

E2
x6

SRC
x7

SRC
x8

SRC
x9

SRC
x10

MT
y1

MT
y2

MT
y3

MT
y4

MT
y5

Matrix of contributions M ℓ
y E1

0 0.5 1

E2

0 0.5 1

SRC

0 0.5 1

0.30 0.14 0.35

Context Part Contributions

Figure 1: Illustration of synthetic part-level total contributions computation given 2 examples as context. From the
token-to-token level contribution matrix M ℓ

y , we compute the total contribution of each input part to each generated
token, by summing the corresponding token-level contributions. Subsequently, we compute the part-level total
contribution of each input part to the translated sequence, by averaging over the generated tokens.

data leads to a change in these contribution patterns.
Moreover, to further understand the translation dy-
namics, we examine how context contributions vary
at different stages of the generation process. Fi-
nally, we also assess whether anomalous context
contributions can uncover catastrophic translations,
such as hallucinations (Dale et al., 2023a).

Our analysis reveals several key insights on con-
text utilization by LLMs for translation, including:

• Irrespective of the translation direction, the
source of each few-shot example contributes
more than its corresponding target;

• The examined models exhibit a positional
bias—earlier few-shot examples tend to have
higher contributions to the translated se-
quence. Additionally, the bias is maintained
across different generation stages;

• Training on task-specific data reduces the
influence of few-shot examples and conse-
quently shrinks the positional bias observed;

• Low source contributions can potentially un-
cover pathological translations.

We release all our code, and make our results
available across all tested models and languages.1

2 Problem Formulation

In this section, we introduce ICL and describe
how we employ the ALTI method (Ferrando et al.,
2022a) to measure the contribution of each input
part in the context to the translated sequence.

1https://github.com/deep-spin/interp_llm

2.1 In-Context Learning (ICL)

ICL is a paradigm where LLMs "learn" to solve
new tasks at inference time by being provided
with a few task demonstrations as part of the
input prompt, without requiring any updates to
their parameters or fine-tuning (Brown et al., 2020;
Agrawal et al., 2023; Hendy et al., 2023). More
broadly, for MT, few-shot examples can also be
used for inference time adaptation, e.g. to different
domains, terminology, or other elements of trans-
lation, guiding the model to produce outputs that
are more suitable for the given context (Alves et al.,
2023; Aycock and Bawden, 2024).

2.2 ALTI for autoregressive language models

For our analysis, we choose the ALTI (Aggrega-
tion of Layer-Wise Token-to-Token Interactions)
method (Ferrando et al., 2022a) for its simplicity
and proven success in various applications. ALTI
has been successfully employed for detecting hal-
lucinations in MT (Dale et al., 2023b; Guerreiro
et al., 2023), identifying toxicity in multilingual
text (Team et al., 2022; Costa-jussà et al., 2023),
and explaining information flows in LLMs (Fer-
rando and Voita, 2024; Tufanov et al., 2024).

ALTI is an input attribution method that quanti-
fies the mixing of information in the transformer
architecture (Vaswani et al., 2017). It follows
the modeling approach proposed by Abnar and
Zuidema (2020), where the information flow in the
model is simplified as a directed acyclic graph, with
nodes representing token representations and edges
representing the influence of each input token rep-
resentation on the output token representation (for

14900

https://github.com/deep-spin/interp_llm


each layer of the transformer). ALTI proposes us-
ing token contributions instead of raw attention
weights, and computes the amount of information
flowing from one node to another in different lay-
ers by summing over the different paths connecting
both nodes, where each path is the result of the
multiplication of every edge in the path. Formally,
given an input sequence of length S and an output
sequence of length T , we compute a token-to-token
contribution matrix Cℓ ∈ R(S+T )×(S+T ), where ℓ
is the ℓ-th layer of the model.2 The element cℓi,j of
the matrix represents the contribution of the j-th
input token at layer ℓ− 1 to the i-th output token
at layer ℓ. By multiplying the layer-wise coeffi-
cient matrices, M ℓ = Cℓ · Cℓ−1 · · ·C1 we can
describe representations of intermediate layers (and
final layer) as a linear combination of the model
input tokens—an example of a contribution matrix
is shown in Figure 1.3 This matrix can be used to
interpret the model’s behavior and study how differ-
ent parts of the input influence generated outputs.
For more details, see Ferrando et al. (2022a).

2.3 Part-level contributions
To quantify the contribution of each input part to
the translated sequence, we perform a two-step ag-
gregation process, illustrated in Figure 1. First, we
compute the total contribution of each part to each
generated token by summing the corresponding
token-level contributions within each part (right
hand-side of Figure 1). Then, we average the part-
to-token contributions across the generated tokens
to compute the contributions of each context part
to the entire translated sequence. Similarly to (Fer-
rando et al., 2022a; Dale et al., 2023a,b; Guerreiro
et al., 2023), these part-level contributions are used
for the analysis in the following sections.4

3 Experimental Setup

We provide an overview of the models and datasets
used throughout our study, as well as important
considerations on how we prompt the models.

Models. We experiment with two families of
models: the general-purpose LLAMA-2 7B base
model (Touvron et al., 2023), and the state-of-the-
art TOWER 7B base model, which is a continued

2Note that this matrix is causal masked.
3For simplicity, we will consider M ℓ

y as the matrix con-
taining the last T rows of M ℓ—these rows contain the contri-
butions of the input parts to the output tokens.

4We follow previous work and analyze the last-layer con-
tributions.

pretrained checkpoint of LLAMA-2 7B on a mix-
ture of monolingual and parallel data (Alves et al.,
2024). We also experiment with TOWERINSTRUCT

7B, which is obtained via finetuning TOWER on a
set of instructions for translation-related tasks.5

Datasets. We conduct our study on the publicly
available WMT22 test sets, examining English to
German (en-de), German to English (de-en), En-
glish to Russian (en-ru) and Russian to English
(ru-en) language pairs.6

Few-shot setting and prompt selection. We con-
duct our analysis under a 5-shot setting, using the
few-shot examples provided by Hendy et al. 2023,
which were selected to be high-quality examples
and relevant—according to embedding similarity—
to the source text. We make sure that the examples
in the context are shuffled and not sorted by rele-
vance to the source.7 We use the prompt templates
suggested in Zhang et al. 2023. Additional details
are provided in Appendix A.1.

Filtering. Due to the high GPU memory require-
ments of the attribution method when applied to
a 7B parameter model, we had to filter samples
with large context length. We provide more details
about the filtering process in Appendix A.2.

4 How Do Different Context Parts
Contribute to the Translated Sequence?

In this section, we conduct a top-level analysis
by measuring and comparing the contributions of
different input parts to the generated translation.

4.1 Analysis setup

To investigate the contribution of different prompt
parts to the translated sequence, we first divide the
context into the following parts: source and target
side of each few-shot example, source text, and tar-
get prefix. Then, we follow the approach described
in Section 2.3 and obtain part-level contributions
that are used for analysis.

5We use the following HuggingFace checkpoints:
LLAMA-2 (meta-llama/Llama-2-7b-hf), TOWER
(Unbabel/TowerBase-7B-v0.1), and TOWERINSTRUCT
(Unbabel/TowerInstruct-7B-v0.2).

6German is the second most frequent language in LLAMA-
2 (Touvron et al., 2023), just behind English, while Russian
accounts for approximately 0.13% of the training data.

7We include experiments with a different shuffling seed in
Appendix B—trends in results are similar to those reported in
the main text.
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Figure 2: Illustration of context’s part-level contributions to the translated sequence, for all the examined models.

E1|SRC Es gibt auch zwei schöne Parks in der Nähe, den Espanya Industrial Park und den Parc de Joan Miró.

E1|TGT There are also two beautiful parks nearby, the Espanya Industrial Park and the Parc de Joan Miró.

E2|SRC Das Frühstück ist im Preis (10 C) enthalten, es ist aber optional.

[...]

SRC Die gibt es zwar auch (anscheinend?) bei den Marathon Plus Reifen, aber der Großteil ist schon breiter.

MT There are also two beautiful parks nearby, the Espanya Industrial Park and the Parc de Joan Miró.

Contribution Ratio
to E1|SRC

0 0.5 1

Figure 3: Example of anomalous source contributions for TOWER which hallucinates, copying information from the
first example. We show contribution ratios to E1|SRC—1 being the contribution of E1|SRC .

4.2 Results

In Figure 2, we show, for all the examined mod-
els, the total contribution of each context part to
the translated sequence for German to English and
English to German language pairs.

The source of each few-shot example consis-
tently contributes more than its corresponding
target. For each of the examined models, we no-
tice that the source of each provided example is
more influential than the corresponding target for
generating the translation. This finding is consis-
tent across language pairs. Aligning with findings
in classical encoder-decoder MT models (Ferrando
et al., 2022a; Guerreiro et al., 2023), where it was
found that models tend to have higher source text
contribution when translating into English than out
of English, we find that the source contribution,
both at the example and test source level, is higher
for German to English than in English to German.

Training on parallel data reduces the impact
of the provided examples on the translated se-
quence. We observe that the contributions of few-
shot examples, particularly the first examples, are

much greater for LLAMA-2 than for both TOWER

models. One hypothesis is that the continued pre-
training with parallel data on TOWER makes it rely
less on the examples since it is not required to
“learn” the task “on-the-fly”. This leads to an in-
teresting question: what if we replace the parallel
data and instead only use monolingual data for
multiple languages? To investigate this, we exam-
ine the TOWER-MONO model.8 Interestingly, we
find that TOWER-MONO behaves much more simi-
larly to LLAMA-2 than TOWER. This suggests that
continual pretraining with task-specific data may
lead the model to rely less on examples to perform
the task. Exploring how to train dedicated models
to be better guided by in-context examples is an
interesting direction for future work.

Close inspection of context contributions can un-
cover anomalous translations. Previous works
in neural MT have connected trends in context

8TOWER-MONO was trained following the same training
procedure as TOWER (Alves et al., 2024). The only difference
to the former is that, instead of using 20B tokens of text split
in 2/3 monolingual data and 1/3 parallel data, it was trained
with 20B tokens of monolingual data.
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contributions, particularly low source contribu-
tions, to pathological translations such as halluci-
nations (Ferrando et al., 2022a; Dale et al., 2023b;
Guerreiro et al., 2023). Through close inspection
of our analyzed samples, we indeed find a series
of pathological translations. Figure 3 presents one
such example—here, the source contribution is par-
ticularly low, representing only about 25% of the
contribution of the first example; interestingly, the
generated translation is, in fact, an exact copy of
the translation from that first example. We provide
additional examples in Appendix B.3. We will re-
turn to these and other salient cases in Section 6 to
examine how contributions evolve for such cases
during the generation process.

A clear positional trend emerges in few-shot ex-
ample contributions. Figure 2 shows a remark-
able “stair-like” trend in the contribution of few-
shot examples to the translated sequence. On av-
erage, the influence of each example appears to be
strongly correlated with its position in the context,
with earlier examples exhibiting higher contribu-
tions than later ones. This suggests there may be
a positional bias in how the models leverage the
provided examples during the translation process.

5 Examining Positional Bias over the
Provided Few-shot Examples

Motivated by the findings from the previous section,
we now closely inspect properties of the positional
bias in few-shot example contributions.

5.1 Are examples that occur early in the
context more influential than later ones?

Here we perform a sample-level analysis to obtain a
better understanding of the relationship between ex-
amples’ contributions and their respective position.
Specifically, we aim to explore whether there is a
systematic and monotonic relationship between the
order of few-shot examples and their contributions.

5.1.1 Analysis setup

We examine whether the contributions of the first
K few-shot examples monotonically dominate the
remaining N − K examples, where N is the to-
tal number of examples used in the context. In
other words, for each sample, we check if the con-
tributions of the first K examples are sorted in de-
scending order and if they are strictly higher than
the contributions of the remaining N −K exam-
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Figure 4: Proportion of de-en samples that follow posi-
tional bias, for different values of K, in the (a) original
and (b) replace-last-ex settings.

ples.9 We consider different values of K to repre-
sent different types of positional bias. For instance,
when K = 1, the first few-shot example attains
the highest level of contribution. When K = 4,
the few-shot examples exhibit globally monotonic
contributions, indicating a strong positional bias
across all examples. Examples for each bias type
are provided in Appendix C.

To quantify the prevalence of each type of po-
sitional bias, we measure the proportion of sam-
ples that satisfy the aforementioned condition for
each value of K. We then compare these propor-
tions to the probability, under a permutation of
the examples drawn uniformly at random (denoted
as RANDOM), of the first K few-shot examples
monotonically dominating the remaining N −K
examples, which is given as p = (N −K)!/N !.

5.1.2 Results
We show results for German to English translation
in Figure 4a.10

9We do not require the contributions of the remaining
N −K examples to be monotonically sorted.

10We include results for the rest language pairs examined
in Appendix C—trends are largely similar.
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Figure 5: Illustration of context’s part-level contribu-
tions, when the task description is added. Translation
direction: German to English

Positional bias is prevalent and follows a mono-
tonic pattern. Our analysis reveals that posi-
tional bias is significantly more common than the
RANDOM baseline for all values of K, suggesting
that it is a prevalent phenomenon in the examined
models. Additionally, we observe a monotonic re-
lationship: the bias is more frequent for the first
few examples than for later ones. This implies that
the influence of positional bias gradually decreases
as we move further down the context.

The bias is particularly stark for the first few-
shot examples. All models tend to assign higher
contribution to the first example, with this bias
being more prevalent for models not trained on
parallel data. For these models, over 95% of the
analyzed samples exhibit the highest contribution
for the first example.11 Models trained with par-
allel data, either through continued pretraining or
additional finetuning, show a slight decrease in the
first-example bias, but it remains significant com-
pared to the RANDOM baseline.

The observed positional bias raises an important
question: are contributions merely a function of
position or are they connected to content of the
context parts? We will conduct two additional
experiments in the next section to inspect this phe-
nomenon closer.

5.2 How strong is the positional bias?

We now turn to a more detailed investigation of
the positional trend we found in the results above.
Specifically, we investigate how the introduction of
other context parts and the relevance of the exam-
ples interact with the trend.

11We remark again that the examples in the context are
shuffled and not sorted by relevance to the source.

5.2.1 Is it all about position?
First, we examine the impact of adding a task de-
scription before the examples.12 If the bias is solely
position-dependent, we might expect the task de-
scription to receive higher contribution due to its
placement at the beginning of the context. This
analysis will help us understand whether the posi-
tional bias is influenced by the nature of the content
or if it is strictly position-based.

Task description receives minimal contribution
despite its position. The results of our first ex-
periment, shown in Figure 5, reveal that, despite
appearing at the beginning of the input text, the
task description receives significantly lower contri-
bution compared to the examples and other parts of
the context. This suggests that the positional bias is
not merely a function of absolute position, but may
rather depend on the nature of the content. Interest-
ingly, even though a new part of context was added,
the positional bias over the examples—“stair-like”
trend in the contributions—is still present.

5.2.2 Can relevance to the test example break
the bias?

We now investigate whether an overwhelmingly
relevant example can break the positional bias, even
when it appears later in the context.

To test this, we create an artificial setup—
replace-last-ex—where a copy of the test ex-
ample (source and translation) is placed as the last
example in the context. Intuitively, if the model is
shown a source text along with its corresponding
translation in the context, the most straightforward
approach would be to copy the translation. As such,
we expect the model to assign higher contribution
to this last example, overriding the positional bias.

The bias is shrunk significantly. Figure 4b
shows that this intervention significantly reduces
the positional bias, particularly for the TOWER and
TOWERINSTRUCT models. In contrast, for models
not trained on parallel data, the first example still
contributes more than all other examples—even
when a copy is present in the context—way more
frequently than random chance. Interestingly, the
bias is almost entirely broken for all other example
positions. These findings suggest that while rele-
vant content can indeed shrink the bias, the first ex-

12We can assume the "task description" as an additional
part of the context. We use the following description tem-
plate: Translate the following text from [SRC_LANG] to
[TGT_LANG]\n.
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Figure 6: Illustration of how context contributions evolve across different generation stages for the TOWER model.
Each generated bin accounts for 10% of the generated sequence.

amples influence the translation generation beyond
simply “solving the task.” They likely provide addi-
tional cues, such as the language pair and expected
output format, that shape the model’s behavior.

6 How Do Context Contributions Evolve
during the Generation Process?

In the previous sections, we examined which parts
of the provided context have the greatest influence
on the translated sequence. We now shift our focus
to explore how these context contributions evolve
across different stages of the generation process.

6.1 Analysis setup
To investigate this, we divide the generated se-
quence into 10 bins of equal length and compute
the total contribution of each context part to each
bin. We then average these contributions across
samples to obtain a comprehensive view of how
the influence of different context parts changes as
the translation progresses.

Results. In Figure 6, we present the average total
contribution of each individual part to each gener-
ated bin, for the TOWER models.

Relative ranking of context parts’ contributions
remains stable throughout generation. We ob-
serve that the relative ranking of contributions from
different context parts is largely preserved through-
out the generation process. Specifically, the source
text consistently exhibits the highest contribution
across all bins, followed by the few-shot exam-
ples in descending order of their position—this
reinforces the notion of positional bias. The only
exception to this pattern is the target prefix, which
attains higher contribution as it grows in length.
This is expected: with a longer prefix, the model
increasingly relies on the previously generated to-
kens to inform its predictions. Moreover, we also

find a decrease in the source contribution at the last
stage of generation, suggesting that the model relies
less on the source when generating the final tokens.
Interestingly, both these observations align with
findings in traditional neural MT models, which
have shown similar patterns in the relative contri-
butions of source and target information during the
generation process (Voita et al., 2021).

Translation direction impacts the evolution of
context contributions. While the overall ranking
of context part contributions remains similar, we
observe notable differences when translating into
or out of English. As noted earlier in Section 4,
the source contribution is higher when translating
into English (de-en) compared to when translat-
ing out of English (en-de). Interestingly, in de-en
translation, the source of each example also consis-
tently contributes more than its corresponding tar-
get, resulting in a “stacked” appearance of source
contributions—the contribution from any exam-
ple’s source is bigger than that of any example’s
target text. In contrast, en-de translation exhibits
an alternating contribution ranking, with the source
and target of each example interleaved (e.g., src
example 1 > tgt example 1 > src example 2 >
tgt example 2, and so on). Moreover, we also ob-
serve that the target prefix contribution grows much
more steeply in en-de than in de-en, suggesting
that when translating a non-English text, the model
relies more heavily on the context (examples and
source) throughout the generation process.

Highlighting the importance of source-part con-
tributions in anomalous cases. Building on our
findings from Section 4, which showed that close
inspection of context contributions can potentially
uncover anomalous translations, we further analyze
such cases in terms of how context contributions
evolve during the generation process. We compare

14905



E1|SRC Es gibt auch zwei schöne Parks in der Nähe, den Espanya Indus-
trial Park und den Parc de Joan Miró.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Generated Seq in Bins (b)

0.0

0.1

0.2

0.3

0.4

T
ot

al
C

on
tr

ib
u

ti
on

(A
L
T

I)

Llama-2

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Generated Seq in Bins (b)

0.0

0.1

0.2

0.3

0.4

T
ot

al
C

on
tr

ib
u

ti
on

(A
L
T

I)

Tower

Ex Src 1

Ex Trgt 1

Ex Src 2

Ex Trgt 2

Ex Src 3

Ex Trgt 3

Ex Src 4

Ex Trgt 4

Ex Src 5

Ex Trgt 5

Source

Target PrefixE1|TGT There are also two beautiful parks nearby, the Espanya Industrial
Park and the Parc de Joan Miró.

E2|SRC Das Frühstück ist im Preis (10 C) enthalten, es ist aber optional.
E2|TGT Breakfast is included in the price (10 C), but it is optional.

E3|SRC Es gibt auch kostenlose Internet 24/7 and WiFi in allen Zimmern.
E3|TGT There is also free internet 24/7and wifi in all rooms.

E4|SRC Bisher gibt es noch keine Bewertungen für S-Plus Company!
E4|TGT There are no reviews for S-Plus Company yet!

E5|SRC Die Größe der Wohnung ist 15 m2, es ist klein, aber sehr
gemütlich.

E5|TGT The size of the apartment is 15 m2, it’s small but very cosy.

SRC Die gibt es zwar auch (anscheinend?) bei den MarathonPlus
Reifen, aber der Großteil ist schon breiter.

LLAMA-2 ✓

MT There are also (apparently?) at Marathon Plus Tyres, but the
majority is wider.

TOWER ✗

MT There are also two beautiful parks nearby, the Espanya Industrial
Park and the Parc de Joan Miró.

Table 1: Illustration of an example exhibiting anomalous source contributions for TOWER — which hallucinates,
followed by LLAMA-2’s contributions, which performs normally.

the behavior of LLAMA-2 and TOWER models us-
ing the example presented in Table 1 (the same
presented in Section 4). For LLAMA-2, which
generates a correct translation, the context con-
tribution trends align with the average case for
German to English translation (see Figure 19 in
Appendix D.1). In contrast, TOWER, which pro-
duces an incorrect translation by copying the first
example, exhibits anomalous contribution trends
(compared to Figure 6). Specifically, we ob-
serve a steeply increasing contribution from the
first example, while the source contribution de-
creases significantly, highlighting the copying be-
havior. Additional salient cases are discussed in Ap-
pendix D.2.13 Crucially, we find that in such cases,
source contributions—both at the example and test
source levels—can potentially indicate pathologi-
cal translations and also provide insights into the
factors driving the generation.

Language Pair Model AUROC

en-ru LLAMA-2 52.3
de-en TOWER 97.3
en-ru TOWER 88.7

Table 2: AUROC of low source contribution scores.

13Here, we not only provide examples of other halluci-
nations, but also of other correct translations for which the
context contributions follow interesting non-typical patterns.

Low source contributions are, in some cases, pre-
dictive of hallucinations. Our previous observa-
tions may potentially align well with previous neu-
ral MT research linking pathological translations
to low source contributions (Ferrando et al., 2022a;
Dale et al., 2023b; Guerreiro et al., 2023). Note
again that classical encoder-decoder MT models
and large language models (LLMs) are distinct in
terms of the parts of context they often support: in
classical encoder-decoder NMT models, the "con-
text" for generation typically comprises only the
source sentence and previously generated tokens;
LLMs, however, often maintain a much broader
context, potentially including various other rele-
vant information. This distinction means that low
source contribution in LLMs may not be so pre-
dictive of pathological translations, as the model
might be drawing from other relevant contextual
information. To explore this further, we conduct a
quantitative analysis to assess the extent to which
low-source contribution can be associated with
hallucinations. Initially, for each model and lan-
guage pair combination, we identify instances of
"fully-detached" hallucinations by annotating the
generated translations using the LLAMA-3-70B-
INSTRUCT model (Dubey et al., 2024), following
the exact approach outlined by Benkirane et al.,
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2024.14 For each model-language pair combina-
tion for which we observed a reasonable number15

of "fully-detached" hallucinations, we report the
AUROC of the low source contribution score in Ta-
ble 2. Our findings, suggest that while for TOWER

low source contributions are particularly associated
with hallucinations, it is not the case for LLAMA2.
Upon closer inspection, we find that the low source
contribution is particularly predictive of hallucina-
tions that come in the form of exact copies of the
provided few-shot examples16. Investigating these
trends further, not only in machine translation but
also in other tasks where context is relevant, is an
interesting direction for future research.

7 Conclusion

We have comprehensively studied context contri-
butions in LLM-based MT using the general pur-
pose LLAMA-2 and translation-specialized TOWER

models, exploring a broad range of key aspects, in-
cluding investigating how different parts of context
contribute to generated translations, and how these
contributions evolve during the generation process.

Our findings reveal a strong positional bias,
where earlier few-shot examples in the context have
higher contributions to the translated sequence,
both at the sentence level and across different gen-
eration stages. Interestingly, our experiments show
that this bias is shrunk by continuous pretraining
on task-specific data. Moreover, we reveal that the
source part of each few-shot example has higher
contribution compared to its corresponding target,
irrespective of the translation direction. Finally,
we stress the importance of source-part contribu-
tions by demonstrating that anomalous contribu-
tions can potentially uncover pathological trans-
lations, such as hallucinations. We believe our
work not only provides insights into the internal
workings of LLM-based MT, but also draws impor-
tant connections to classical encoder-decoder NMT
models.

To support future research on this topic, we are
open-sourcing our code and releasing all data used
in our analysis.

14In this paper, the authors show that this LLM can achieve
performance comparable or even better than previously pro-
posed detectors.

15We provide further quantitative resuls on the number of
detected hallucinations in Appendix D.3.

16TOWER’s pathological translations are usually copies of
the few-shot examples, while this is not the case for LLAMA2.

Limitations

While our study provides a valuable insight of how
context is utilized by LLMs in MT, there are a few
limitations that should be acknowledged.

Firstly, due to limitations in terms of computa-
tional resources paired with the fact that the ALTI
method employed in our study can be computa-
tionally intensive, we restricted our analysis to 7B
parameter models. This constraint raises the ques-
tion of whether our findings still hold true when
larger LLMs are considered, making it a potential
direction for future studying.

Secondly, it should be noted that we focused
exclusively on LLAMA-based models, particularly
aiming on analyzing the TOWER-family of models,
which are specifically oriented for MT. This selec-
tion enabled us to study how continued pretraining
and finetuning on task-specific data impacts context
utilization. However, this decision makes it so that
it is still unclear whether our findings generalize to
other LLM families.

Despite these limitations, we believe our study
can lead to a better understanding of the dynamics
of context utilization in LLM-based MT, providing
key insights that can motivate future work on the
field and inspire other research directions.

Ethical Considerations & Potential Risks

Utilizing LLMs for MT might raise potential risks
that should be pointed out, particularly regarding
pathological translations and the ethical usage of
contextual data.

Firstly, one of the critical risks which arises
when using LLMs for MT is the phenomenon of
pathological translations, such as hallucinations.
As our study reveals, anomalous context contri-
butions can potentially indicate these pathological
translations, especially when low reliance on the
source text is noticed. Despite the potential of
detecting these pathological translations, their oc-
currence remains an important concern, as misinter-
pretations and incorrect translations might lead to
significant consequences in specific domains such
as healthcare, law etc. Thus ensuring that LLMs
provide reliable translations is crucial.

Secondly, the reliance of LLMs in specific parts
of the context when translating, introduces ethical
considerations that should be taken into account
regarding the choice of some context parts, such as
the few-shot examples. The provided context might
contain biases and misleading or inappropriate con-
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tent and as a result this might be propagated into
the generated translations. Our research can signifi-
cantly contribute to mitigate this risk by identifying
which parts of the provided context are responsible
for propagating biases or inappropriate content to
the translated sequence.

To conclude, addressing these risks and ethical
considerations is important to foster a better usage
of these systems and prevent potential harms.
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A Further Details on Experimental Setup

A.1 Few-shot setting & Prompt selection
We conduct our experiments using the few-shot
examples provided by Hendy et al. 2023, which
were selected to be of high-quality and relevant to
the source.

Following prior work (Zhang et al., 2023), we
use the in-context template illustrated in Table 3.

SRC_LANG: E1|SRC

TGT_LANG: E1|TGT

SRC_LANG: E2|SRC

TGT_LANG: E2|TGT
[...]

SRC_LANG: SRC
TGT_LANG:

Table 3: Prompt template for few-shot inference.

A.2 Filtering details

Due to our resource constraints, coupled with the
high GPU memory requirements of the attribution
method when applied to a 7B parameter model,
we had to filter samples with large context length.
More specifically, we exclude samples exceeding
400 tokens, when considering the concatenation
of the input prompt with the generated sequence.
We additionally filter out the samples for which the
generated sequence does not exceed the length of
10 tokens.17 We report the sizes of the sets—over
1000 samples for each language pair—examined in
our analysis in Table 4.

Language Pair Sample Size

De-En 1021
Ru-En 1017
En-De 1174
En-Ru 1107

Table 4: Sample sizes for each language pair considered
in our analysis.

A.3 Evaluation Details

We evaluate the models used in our work on
all language directions examined to ensure high
translation quality. We report BLEU (Papineni
et al., 2002), COMET-22 (Rei et al., 2022a), and
COMETKiwi (Rei et al., 2022b) in Table 5.

A.4 Inference

We used greedy decoding at inference time, setting
300 tokens as the maximum length for the gener-
ated sequence.

17In our analysis in Section 6, we separate the generated
sequences into 10 bins.

14912

https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.48550/arXiv.2303.03846
https://doi.org/10.48550/arXiv.2303.03846
https://doi.org/10.18653/v1/2022.emnlp-main.155
https://doi.org/10.18653/v1/2022.emnlp-main.155
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://api.semanticscholar.org/CorpusID:258048937
https://api.semanticscholar.org/CorpusID:258048937
https://api.semanticscholar.org/CorpusID:258048937
https://arxiv.org/abs/2402.17400
https://arxiv.org/abs/2402.17400


A.5 Hardware specifications

All our experiments were conducted using 3
NVIDIA RTX A6000 GPUs.

A.6 Discussion on artifacts

The data used for analysis in this paper was initially
released for the WMT22 General MT task (Kocmi
et al., 2022) and can be freely used for research pur-
poses. All translation demonstrations (few-shot ex-
amples) used in our paper were released in (Hendy
et al., 2023) under a MIT license.

Our code was developed on top of original ALTI
repositories (Ferrando et al., 2022a, 2023), which
have been released under Apache-2.0 License.

B Top-level Analysis

In the top-level analysis conducted in Section 4,
we examined the contributions of individual parts
of the context to the translated sequence and high-
lighted several findings. In addition, we provide
results for the Russian to English and English to
Russian language pairs (§ B.1). As supplemen-
tary material, we include an additional experiment
(§ B.2) to enhance the validity of our findings, and
we also present examples exhibiting anomalous
part-level contributions (§ B.3) for completeness.

B.1 Context’s part-level contributions for
additional language pairs

In Figure 7, we show, for all the examined mod-
els, the total contribution of each context part to
the translated sequence for Russian to English and
English to Russian language pairs. We observe
that results are largely similar with those presented
in the main text for the German to English and
English to German language pairs.

B.2 Additional experiment by reshuffling the
order of few-shot examples

To ensure our findings hold against any potential,
yet highly unlikely, content-related bias stemming
from the position of the few-shot examples, we
conduct a supplementary experiment. Put simply,
we reshuffle the order of the few-shot examples for
each sample and repeat the analysis. We report the
results in Figures 8 and 9 for German and Russian
languages respectively. The top-level part-level
contributions remain largely consistent with those
presented in the main text. This result underscores
the validity of the findings presented in Section 4.

B.3 Examples with anomalous part-level
contributions

In Figures 10 and 11, we include some additional
cases where the models hallucinate by copying one
of the provided few-shot examples. We observe
that in all cases the models exhibit anomalous con-
tributions and particularly the contribution of the
source is minimal. We also closely inspect similar
cases in Appendix D.2, where we analyze the con-
text dynamics across the generation stages and we
discuss our findings.

C Positional Bias Analysis

C.1 Details on analysis setup and examples of
positional bias types

In the analysis conducted in Section 5.1, we as-
sess the prevalence and the extent of the positional
bias observed. Particularly, we examine whether
the contributions of the first K few-shot examples
monotonically dominate the remaining N −K ex-
amples. We consider different values of K to rep-
resent the different types of positional bias. For
instance, when K = 1, the first few-shot example
attains the highest level of contribution. In the case
where K = 2, the first two examples exhibit sorted
contributions in a descending order and the remain-
ing three have lower contributions than the first two,
but they are not necessarily sorted in a descending
order. Similarly, in the case where K = 3, the
first three few-shot examples exhibit sorted contri-
butions in a descending order and the remaining
two have lower contributions than the first three,
but they are not necessarily sorted in a descending
order. Finally, when K = 4, the few-shot examples
exhibit globally monotonic contributions, indicat-
ing a strong positional bias across all examples. We
visually illustrate examples of the aforementioned
cases in Figure 12.

C.2 Additional plots

Is it all about position? In Figures 13, 14 and 15
we show the context’s part-level contributions,
when the task description is added for the English
to German, English to Russian and Russian to En-
glish translation directions respectively. We notice
that in all translation directions the task descrip-
tion receives significantly lower contribution com-
pared to the examples and other parts of the context,
suggesting that the positional bias is not merely a
function of absolute position.
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De-En En-De

BLEU COMET-22 COMETKiwi BLEU COMET-22 COMETKiwi

LLAMA-2 28.42 82.25 78.82 21.12 78.79 74.95
TOWER-MONO 28.19 82.45 78.90 23.42 80.99 77.88
TOWER 30.19 83.22 79.60 29.39 84.40 81.58
TOWERINSTRUCT 35.24 85.72 81.43 42.66 88.11 83.11

Ru-En En-Ru

BLEU COMET-22 COMETKiwi BLEU COMET-22 COMETKiwi

LLAMA-2 32.99 82.53 78.84 20.03 80.78 76.80
TOWER-MONO 33.47 83.04 79.16 23.19 83.26 79.31
TOWER 37.78 83.84 79.79 28.33 86.10 82.03
TOWERINSTRUCT 44.48 86.53 81.51 40.02 89.72 83.41

Table 5: Translation performance of each examined model on the WMT22 test set.
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Figure 7: Illustration of context’s part-level contributions to the translated sequence, for all the examined models.

Can relevance to the test example break the
bias? In Figures 16a and 16b, we present the
proportion of en-de samples that follow positional
bias, for different values of K, in the original and
replace-last-example settings respectively. We
additionally provide the corresponding results for
the Russian to English and English to Russian trans-
lation directions in Figures 17 and 18 respectively.
In all settings examined, we observe that results are
largely similar with those presented in Sections 5.1
and 5.2.

D Context Contributions across
Generation Stages

In Section 6, we explored how context contribu-
tions evolve across different stages of the gener-
ation process for the TOWER model. In the fol-
lowing part, we include additional plots examining
how context contributions evolve across the genera-
tion process for the rest of the models and language

pairs examined. We additionally show examples of
anomalous context contributions and other salient
cases and we discuss the results.

D.1 Additional plots

In Figure 19, we present how context contribu-
tions evolve across different generation stages for
LLAMA-2, TOWER-MONO and TOWERINSTRUCT

models, for the de-en and en-de translation direc-
tions. For completeness, we provide in Figures 20
and 21 the corresponding plots for the ru-en and
en-ru language pairs respectively.

D.2 Examples of anomalous context
contributions and other salient cases

In Section 6, we highlighted the importance of
anomalous source-part contributions as indicators
of pathological translations. Here, we include more
such examples as well as instances of other salient
cases.
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Figure 8: Illustration of context’s part-level contributions to the translated sequence, when reshuffling the order of
provided few-shot examples.
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Figure 9: Illustration of context’s part-level contributions to the translated sequence, when reshuffling the order of
provided few-shot examples.

In Tables 7, 8 and 9, we present 3 examples
where one of the examined models hallucinates,
exhibiting anomalous contributions. The example
shown in Table 7 is particularly interesting, as both
models in the beginning of the translation process
exhibit low source contributions — compared to
the source-part contribution of the first example —
indicating that they primarily rely on the first ex-
ample. However, as the translation progresses, the
source contributions of the examined models fol-
low completely opposite trends. TOWER exhibits
extremely anomalous contributions — a steeply in-
creasing contribution from the source-part of the
first example and a decreasing one from the source
— producing in this way a hallucination, by copying
the first example. In contrast, LLAMA-2 produces
a correct translation, with its contributions follow-
ing the average case trends for German to English
translation. Importantly, in all the provided exam-
ples, the models that produce a correct translation
exhibit contribution trends that align with the aver-

age case trends we presented for German to English
translation (see Figures 6 and 19 for TOWER and
LLAMA-2 respectively).

Let’s now turn to some other salient cases. In par-
ticular, we now turn to examples where the models
do not produce any pathological translations (see
Tables 10 and 11). Note that the models exhibit
low source contributions in the early steps of the
translation process (compared to the contributions
of the few-shot examples) indicating a greater in-
fluence from the few-shot examples that are seman-
tically similar. Then, as the translation progresses,
they exhibit increased source contributions being
very similar with the average case trends for Ger-
man to English translation (see Figures 6 and 19
for TOWER and LLAMA-2 respectively), indicat-
ing the reliance on the source to produce a correct
translation.
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E1|SRC Leider konnten wir keine Shops finden,die Folgendes anbieten: Buch mit ISBN ’9789635487899’.

E1|TGT Unfortunately we could not find any stores offering the Book with ISBN ’9789635487899’.

E2|SRC Deezer auf Xbox One – Deezer Support

E2|TGT Deezer on Xbox One – Deezer Support

E3|SRC Installieren Sie die Mercedes PRO Adapter App2 auf Ihrem Smartphone.

E3|TGT Install the Mercedes PRO Adapter App2 on your smartphone.

E4|SRC Spielen MetalStorm: Online auf Ihrem mobilen Gerät.

E4|TGT Play MetalStorm: Online on your mobile device.

E5|SRC support@vivago.com (Technischer Support)

E5|TGT support@vivago.com (Technical Support)

SRC Leider warte ich vergeblich auf die email von ihrem Support.

MT Unfortunately, we could not find any stores offering the Book with ISBN ’9789635487899’.

Contribution Ratio
to E1|SRC

0 0.5 1

Figure 10: Example of anomalous source contributions for TOWER which hallucinates, copying information from
the first example. We show contribution ratios to E1|SRC—1 being the contribution of E1|SRC .

Language Pair Model # of hall.

En-De LLAMA-2 3
En-De TOWER-MONO 4
En-De TOWER 1
En-De TOWERINSTRUCT 1
De-En LLAMA-2 2
De-En TOWER-MONO 2
De-En TOWER 11
De-En TOWERINSTRUCT 0
En-Ru LLAMA-2 23
En-Ru TOWER-MONO 4
En-Ru TOWER 10
En-Ru TOWERINSTRUCT 1
Ru-En LLAMA-2 1
Ru-En TOWER-MONO 5
Ru-En TOWER 2
Ru-En TOWERINSTRUCT 1

Table 6: Number of fully detached hallucination cases
by language pair and model.

D.3 Details of Quantitative Analysis

In Section 6, we examined whether anomalous con-
text contributions can serve as indicators of halluci-
nations. Specifically we focused on how low source
contributions, by conducting a quantitative analy-
sis to assess the extent to which low-source con-
tributions can be associated with "fully-detached"
hallucinations. In this section, we provide further
details regarding the annotation process.

For each model and language pair combination,
we identify instances of "fully-detached" hallucina-
tions by annotating the generated translations us-
ing the LLAMA-3-70B-INSTRUCT model (Dubey
et al., 2024), following the exact approach outlined

by Benkirane et al., 2024.18 Specifically, each
instance is annotated into one of four categories:
"No hallucination", "Small hallucination", "Partial
hallucination", and "Full hallucination". Only in-
stances classified as "Full hallucination" are consid-
ered "fully-detached" hallucinations in our analysis.
We report the number of full hallucinations for each
of model and language pair combination in Table 6.

E AI Assistants

We have used Github Copilot19 during develop-
ment of our research work.

18We used the "Severity Ranking Prompt 2" as this
was shown to be the optimal prompt for LLAMA-3-70B-
INSTRUCT.

19https://github.com/features/copilot
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E1|SRC Wir wünschen Ihnen einen angenehmen Aufenthalt in Maribor.

E1|TGT We wish you a pleasant stay in Maribor.

E2|SRC Wir wünschen Ihnen einen angenehmen Aufenthalt in Olomouc.

E2|TGT We wish you a pleasant stay in Olomouc.

E3|SRC Wir wünschen Ihnen einen angenehmen Aufenthalt in Debrecen.

E3|TGT We wish you a pleasant stay in Debrecen.

E4|SRC Wir wünschen Ihnen einen angenehmen Aufenthalt in Poznan.

E4|TGT We wish you a pleasant stay in Poznan.

E5|SRC Busbud hilft Ihnen, einen Bus von Lübeck nach Wismar zu finden.

E5|TGT Busbud helps you find a bus from Lübeck to Wismar.

SRC Wir verraten Ihnen, wo Sie im Raum Lübeck doch noch einen Weihnachtsbraten herbekommen.

MT Busbud helps you find a bus from Lübeck to Wismar.

Contribution Ratio
to MT

0 0.5 1

Figure 11: Example of anomalous source contributions for TOWER which hallucinates, copying information from
the last example. We show contribution ratios to MT—1 being the contribution of MT .

E1|SRC Ich interessiere mich für das Objekt 08867 in Salzburg-Parsch
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Source

Target Prefix

E1|TGT I am interested in the object 08867 in Salzburg-Parsch

E2|SRC Ich interessiere mich für das Objekt 55057 in Salzburg-Itzling
E2|TGT I am interested in the object 55057 in Salzburg-Itzling

E3|SRC Ich interessiere mich für ’2 bedrooms Apartment in Los Angeles.
E3|TGT I am interested in ’2 bedrooms Apartment in Los Angeles.

E4|SRC Ich interessiere mich für ’Apartment for rent in SAN DIEGO....’.
E4|TGT I am interested in ’Apartment for rent in SAN DIEGO....’.

E5|SRC Ich interessiere mich für das Objekt 33405 in Salzburg-Herrnau
E5|TGT I am interested in the object 33405 in Salzburg-Herrnau

SRC ich interessiere mich für den #PRS_ORG# Stuhl.

LLAMA-2 ✓

MT I am interested in the #PRS_ORG# Chair.

TOWER ✗

MT I am interested in the object 08867 in Salzburg-Parsch

Table 7: Illustration of an example exhibiting anomalous source contributions for TOWER — which hallucinates,
followed by LLAMA-2’s contributions, which performs normally.
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1

(a) The top sample follows the examined positional bias (K =
1) as the first example attains the highest contribution. The
bottom sample does not follow the bias, as the second example
has greater contribution than the first.
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(b) The top sample follows the examined positional bias
(K = 2) as the first two examples monotonically dominate
the remaining three and the last three have lower contributions
than the first two. Note that the last three examples do not nec-
essarily exhibit sorted contributions in decreasing order. The
bottom sample does not follow the bias, as the third example
has greater contribution than the second.
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(c) The top sample follows the examined positional bias
(K = 3) as the first three examples monotonically dominate
the remaining two and the last two have lower contributions
than the first three. Note that the last two examples do not nec-
essarily exhibit sorted contributions in decreasing order. The
bottom sample does not follow the bias, as the fourth example
has greater contribution than the third.
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(d) The top sample follows the examined positional bias
(K = 4) as the contributions of all the examples are sorted in
decreasing order. The bottom sample does not follow the bias,
as the fourth example breaks the monotonicity.

Figure 12: For each of the examined positional bias types we illustrate 2 examples. One that follows the examined
type of positional bias and one that does not. We note that the demonstrated examples are provided for purely
illustrative purposes and do not depict any real data.

Tas
k

D
es

cr

Ex
Sr

c
1

Ex
Trg

t 1

Ex
Sr

c
2

Ex
Trg

t 2

Ex
Sr

c
3

Ex
Trg

t 3

Ex
Sr

c
4

Ex
Trg

t 4

Ex
Sr

c
5

Ex
Trg

t 5

So
ur

ce

Tar
ge

t Pre
fix

0.00

0.05

0.10

0.15

0.20

0.25

T
ot

al
C

on
tr

ib
u

ti
on

(A
L
T

I)

Llama-2 Tower-Mono Tower TowerInstruct

Figure 13: Illustration of context’s part-level contributions, when the task description is added. Translation direction:
English to German
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Figure 14: Illustration of context’s part-level contributions, when the task description is added. Translation direction:
English to Russian
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Figure 15: Illustration of context’s part-level contributions, when the task description is added. Translation direction:
Russian to English
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Figure 16: Proportion of en-de samples that follow positional bias, for different values of K, in the (a) original and
(b) replace-last-ex settings.
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Figure 17: Proportion of ru-en samples that follow positional bias, for different values of K, in the (a) original and
(b) replace-last-ex settings.
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Figure 18: Proportion of en-ru samples that follow positional bias, for different values of K, in the (a) original and
(b) replace-last-ex settings.
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Figure 19: Illustration of how context contributions evolve across different generation stages, for the LLAMA-2,
TOWER-MONO and TOWERINSTRUCT models. Each generated bin accounts for 10% of the generated sequence.
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Figure 20: Illustration of how context contributions evolve across different generation stages, for all the examined
models. Each generated bin accounts for 10% of the generated sequence. Translation direction: Russian to English

E1|SRC Wie lange dauert es von Cefalù nach Taormina zu kommen?
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E1|TGT How long does it take to get from Cefalù to Taormina?

E2|SRC Wie lange dauert es von Oslo nach Haugesund zu kommen?
E2|TGT How long does it take to get from Oslo to Haugesund?

E3|SRC Wie lange dauert es von Basel nach Montpellier zu kommen?
E3|TGT How long does it take to get from Basel to Montpellier?

E4|SRC Wie lange dauert es von Flensburg nach Århus zu kommen?
E4|TGT How long does it take to get from Flensburg to Århus?

E5|SRC Wie lange dauert es von Oslo nach Hammerfest zu kommen?
E5|TGT How long does it take to get from Oslo to Hammerfest?

SRC wie lange dauert es die gelben zu bestellen mit und ohne arm-
lehne?

LLAMA-2 ✗

MT How long does it take to get from Oslo to Hammerfest?

TOWER ✓

MT how long does it take to order the yellow with and without
armrest?

Table 8: Illustration of an example exhibiting anomalous source contribution for LLAMA-2 — which hallucinates,
followed by TOWER’s contributions, which performs normally.
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Figure 21: Illustration of how context contributions evolve across different generation stages, for all the examined
models. Each generated bin accounts for 10% of the generated sequence. Translation direction: English to Russian

E1|SRC Wir wünschen Ihnen einen angenehmen Aufenthalt in Maribor.
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E1|TGT We wish you a pleasant stay in Maribor.

E2|SRC Wir wünschen Ihnen einen angenehmen Aufenthalt in Olomouc.
E2|TGT We wish you a pleasant stay in Olomouc.

E3|SRC Wir wünschen Ihnen einen angenehmen Aufenthalt in Debrecen.
E3|TGT We wish you a pleasant stay in Debrecen.

E4|SRC Wir wünschen Ihnen einen angenehmen Aufenthalt in Poznan.
E4|TGT We wish you a pleasant stay in Poznan.

E5|SRC Busbud hilft Ihnen, einen Bus von Lübeck nach Wismar zu
finden.

E5|TGT Busbud helps you find a bus from Lübeck to Wismar.

SRC Wir verraten Ihnen, wo Sie im Raum Lübeck doch noch einen
Weihnachtsbraten herbekommen.

LLAMA-2 ✓

MT We tell you where you can still get a Christmas roast in the
Lübeck area.

TOWER ✗

MT Busbud helps you find a bus from Lübeck to Wismar.

Table 9: Illustration of an example exhibiting anomalous source contribution for TOWER — which hallucinates,
followed by LLAMA-2’s contributions, which performs normally.
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E1|SRC Telefónica Deutschland hat den SABRE Award EMEA gewon-
nen.
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Target PrefixE1|TGT Telefónica Deutschland has won the SABRE Award EMEA.

E2|SRC New York City (Bundesstaat New York, USA): Promenade im
Central Park.

E2|TGT New York city (New York State, USA): Promenade in Central
Park.

E3|SRC New York City FC oder New England Revolution
E3|TGT New York City FC or New England Revolution

E4|SRC 25.08 02:30 LA Galaxy - Los Angeles FC (Fußball,Major
League Soccer)

E4|TGT 25.08 02:30 LA Galaxy - Los Angeles FC (Calcio,Major League
Soccer)

E5|SRC FC Schalke 04 hat 2 von den letzten 3 Spiele gegen VfL Wolfs-
burg gewonnen

E5|TGT FC Schalke 04 has won 2 out of their last 3 matches against VfL
Wolfsburg

SRC New York City FC hat zum ersten Mal den Titel in der Major
League Soccer gewonnen.

LLAMA-2 ✓

MT New York City FC has won the title in the Major League Soccer
for the first time.

TOWER ✓

MT New York City FC has won the title in the Major League Soccer
for the first time.

Table 10: Illustration of an example where both LLAMA-2 and TOWER produce correct translations. We observe
that their contributions follow the average case trends for German to English translation.

E1|SRC Arminia Bielefeld - Union Berlin2. Bundesliga.
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E1|TGT Arminia Bielefeld - Union Berlin2nd Bundesliga.

E2|SRC Hertha BSC: Gewinner der 2. Bundesliga 2010/2011
E2|TGT Hertha BSC: 2. Bundesliga winners 2010/2011

E3|SRC Samstag, 9. März 2019 SV Darmstadt 98 Holstein Kiel
E3|TGT Saturday, 9 March 2019 SV Darmstadt 98 Holstein Kiel

E4|SRC Darmstadt Reisen von Saarbrücken nach Darmstadt in 4 stunden
und 59 minuten

E4|TGT Darmstadt Travel from Saarbrücken to Darmstadt in 4 hours and
59 minutes

E5|SRC Das Wasser darf nicht heißer als 60 °C sein.
E5|TGT The water must not be hotter than 60 °C.

SRC Darmstadt 98 darf von der Rückkehr in die Fußball-Bundesliga
träumen.

LLAMA-2 ✓

MT Darmstadt 98 can dream of returning to the Bundesliga.

TOWER ✓

MT Darmstadt 98 can dream of a return to the Bundesliga.

Table 11: Illustration of an example where both LLAMA-2 and TOWER produce correct translations. We observe
that their contributions follow the average case trends for German to English translation.
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