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Abstract

Knowledge-based Visual Question Answer-
ing (KVQA) tasks require answering ques-
tions about images using extensive background
knowledge. Despite significant advancements,
the large generative visual-language models of-
ten struggle with these tasks due to the lim-
ited integration of external knowledge. In
this paper, we introduce EchoSight, a novel
multimodal Retrieval-Augmented Generation
(RAG) framework that enables to answer vi-
sual questions requiring fine-grained encyclo-
pedic knowledge. To strive for high-performing
retrieval, EchoSight first searches wiki arti-
cles by using visual-only information, subse-
quently, these candidate articles are further
reranked according to their relevance to the
combined text-image query. This approach
significantly improves the integration of mul-
timodal knowledge, leading to enhanced re-
trieval outcomes and more accurate VQA re-
sponses. Our experimental results on the Ency-
clopedic VQA and InfoSeek datasets demon-
strate that EchoSight establishes new state-
of-the-art results in knowledge-based VQA,
achieving an accuracy of 41.8% on Encyclo-
pedic VQA and 31.3% on InfoSeek.

1 Introduction

Visual Question Answering (VQA) addresses the
challenge of enabling machines to understand and
respond to questions about visual content, typically
images or videos. Broadly, this task can be divided
into two categories: standard VQA (Antol et al.,
2015; Goyal et al., 2017) with questions that can
be answered directly from the visual content, for
example, counting objects, identifying colors, or
recognizing simple actions, which rely solely on
commonsense and information present in the im-
age; and knowledge-based VQA (Marino et al.,
2019; Schwenk et al., 2022; Mensink et al., 2023;
Chen et al., 2023) requiring additional context or
external knowledge, such as historical facts, de-

tailed object properties, or specific situational con-
texts not evident in the visual content.

Addressing these two types of questions presents
different challenges for VQA systems. Questions
that draw answers directly from visual content de-
mand robust image understanding capabilities, en-
compassing tasks such as object detection, scene
recognition, and spatial reasoning. Conversely,
questions requiring external knowledge call for ad-
ditional mechanisms to access and integrate infor-
mation from external sources. In this paper, we
focus on the latter type of visual question answer-
ing, by building a retrieval-augmented multimodal
system, that enables searching an external knowl-
edge base for more nuanced understanding and
accurate responses.

Despite the recent accomplishments in devel-
oping Visual-language Models (VLMs) (Achiam
et al., 2023; Gemini Team et al., 2023; Abdin et al.,
2024; Liu et al., 2024), knowledge-based VQA
remains challenging. This complexity primarily
stems from two aspects. (i) Existing VLMs strug-
gle to adequately encode all essential knowledge,
due to its limited model capacity, and infrequent
inclusion of encyclopedic, long-tail information
in their training data (Mensink et al., 2023). (ii)
The visual component of the questions often pro-
vides limited help in addressing the queries, as
establishing a meaningful connection between en-
tity knowledge and visual attributes can be difficult.
For example, an image of a church alone barely
reveal information about its construction date.

In this paper, we introduce EchoSight, a novel
retrieval-augmented vision-language system de-
signed for knowledge-based visual question an-
swering. EchoSight employs a dual-stage search
mechanism that integrates a retrieval-and-reranking
process with the Retrieval Augmented Generation
(RAG) paradigm. Initially, the system performs a
visual-only retrieval from an external knowledge
base, to effectively narrow the knowledge search
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Figure 1: For visual questions such as “When was the 1st ascent of this mountain?”, visual-only search methods
consider image similarity only, ignoring the textual details of the accompanying article. By incorporating multimodal
reranking, the correct entry, accounting for both visual and textual information, can be accurately identified.

space, only focusing on candidates that are closely
align with the visual context of the reference image.
In the subsequent multimodal reranking stage, the
system refines the candidates ranking by incorporat-
ing both the reference image and the textual query.
This approach guarantees that the selected results
are pertinent not only visually, but also contextu-
ally to the multimodal query. After acquiring the
most relevant information through this coarse-to-
fine grained search, our model generates the precise
answer to the posed question.

Overall, we present three contributions: First,
we propose a multimodal retrieval-augmented gen-
eration framework, termed as EchoSight, that
enables to answer visual questions that require
fine-grained encyclopedic knowledge; Second, we
adopt a retrieval-and-reranking scheme to improve
retrieval performance, specifically, it first searches
images with visual-only information, and then con-
duct a fine-grained multimodal reranking on the
candidates; Third, we conduct thorough experi-
ments on both Encyclopedic VQA (Mensink et al.,
2023) and InfoSeek (Chen et al., 2023) bench-
marks, EchoSight demonstrates state-of-the-art
performance on both benchmarks, significantly
outperforming existing VLMs or other retrieval-
augmented architectures.

2 Method

This section starts with the problem formulation
of retrieval-augmented VQA (Sec. 2.1), followed
by detailing the retrieval-and-reranking module in
EchoSight (Sec. 2.2), and finally the answer gener-
ation module (Sec. 2.3).

2.1 Problem Formulation

Given a reference image, and question of free-form
texts, our goal is to construct a visual question
answering system, that can benefit from the access
of an external knowledge base. In our case, this is
a million-scale dataset of entity articles and their
corresponding images from Wikipedia webpage,
i.e., B = {(a1, I1), . . . , (an, In)}.

The overall architecture of our proposed method,
EchoSight, is illustrated in Figure 2. It consists of
four main components: an external knowledge base
(KB), a retriever, a reranker, and an answer genera-
tor. (i) The process begins with the retriever, which
utilizes the reference image to filter and extract rel-
evant KB entries with similar images; (ii) Next, the
reranker takes these candidate entries and employs
their textual contents to have them reranked, based
on their relevance to both the reference image and
the textual question; (iii) Finally, the reranked KB
entries are fed into the answer generator to produce
the final answer.

2.2 Retrieval and Reranking

The goal of this stage is to identify relevant en-
tries from a large-scale external knowledge base
using the given reference image and question. We
employ a two-stage procedure: first, a visual-only
search identifies candidates that are visually similar
to the query image. Subsequently, a multimodal
reranking process evaluates both visual and textual
information to reorder the retrieved entries. This
ensures that the most pertinent article entry can be
ranked at the top, facilitating efficient and accurate
answer generation.
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Figure 2: The overall view of our proposed EchoSight. (i) Given a visual question with an image, the retriever
searches the reference image in the knowledge base for top k similar images to get their corresponding Wikipedia
Entries. (ii) After changing the granularity to sections, all the sections of retrieved entries are then reranked with
the maximum pairwise similarity of their textual embeddings and the reference image+question’s Q-Former query
tokens. (iii) The top reranked section will be utilized as RAG prompt for the LLM to generate the ultimate answer.

Visual-only Search. Given the extensive size of the
knowledge base, potentially encompassing millions
of image-article pairs, optimizing the efficiency of
the image search process is critical. To achieve this,
we transform all images into vectors and utilize the
cosine similarity metric to assess their proximity to
a reference image.

SΩ =

{
si =

〈
vr

||vr||
· vi
||vi||

〉
, i = 1, . . . , n

}
,

where vr = Φvis(Iref) and vi = Φvis(Ii) denote the
visual embedding for reference image and database
image, respectively, computed by a pre-trained vi-
sual encoder. We employ the FAISS library(Douze
et al., 2024) for vector search, and keep the top
k best-matched images and their corresponding
wiki article entries from the knowledge base, i.e.,
Ev = {(a1, I1), . . . , (ak, Ik)}, k ≪ n.

Multimodal Reranking. After initially filtering
the candidates based on visual similarities, the
reranker module integrates both textual and visual
inputs from the multimodal query and the top k re-
trieved Wikipedia article entries. This stage aims to
prioritize entries that are most pertinent to the ques-
tion, ensuring the articles with highest relevancy
are ranked at the top.

Specifically, we employ the Q-Former (Li et al.,
2023b) architecture to extract multimodal informa-
tion from the reference image and textual question,

resulting 32 query tokens.

zim = Q-Former (Iref, Q)i ,

where zim denotes the ith query token embedding
of the reference image Iref and textual question Q.

On the candidates side, we break each of the
wiki articles into sections, with each section pre-
fixed by the article’s title, for example, ai =
{seci1, seci2, . . . , secip}, and further encode them
with Q-Former’s text encoder. We initialize the
Q-Former with BLIP-2’s weights and fine-tune all
parameters except the visual encoder.

The reranking score for each section is calcu-
lated as follows:

Ssec
r = max

1≤i≤Nq

(
sim(zim, zsec

s )
)
,

where Ssec
r is the reranking score for section “sec”,

determined using the Q-Former’s Image-to-Text
Correspondence (ITC) method. This method com-
putes the highest pairwise similarity between each
multimodal query token embedding zim from the
reference image and question pair, and the [CLS]
token embedding of a Wikipedia article section zsec

s .
Nq denotes the number of query tokens.

In the final step of multimodal reranking, the
reranker combines the visual similarity score from
the previous stage and the reranking score into a
weighted sum:

secvl = argmax
sec∈a

(α · Ssec
v + (1− α) · Ssec

r ) ,
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where secvl refers to the highest-ranked entry sec-
tion produced by the reranker, α is a weight param-
eter that balances the visual similarity score Ssec

v

and the reranking score Ssec
r . Note that, Ssec

v is
calculated in the visual-only search stage using the
best-matched image from the wiki entry to which
sec belongs.

Reranker Training. Here, we implement hard
negative sampling within a contrastive learning
framework. Specifically, the negative samples are
specifically selected from examples that are visu-
ally similar yet contextually distinct, i.e., the ini-
tial visual-only retrieval efforts were unsuccessful.
With such training, the reranker is thus forced to
select the most relevant articles for the multimodal
queries, enhancing the overall accuracy and effec-
tiveness of the system (Robinson et al., 2021).

The training objective of the reranker is given as
follows:

L = − log
exp(max1≤i≤Nq sim(zim, zs)/T )

∑N
j=1 exp(max1≤i≤Nq sim(zim, zjs)/T )

,

where zs denotes the positive section embedding,
N is the total number of samples including both
positive and negatives and T is the temperature pa-
rameter that controls the smoothness of the softmax
distribution.

2.3 Answer Generation with LLMs

Once the relevant entries are identified from the
knowledge base, large language models (LLMs)
will integrate such information to answer the ques-
tions, i.e., A = LLM(secvl, Q), where the off-the-
shelf LLM acts as an answer generator, secvl de-
notes the retrieved wiki article section, and Q refers
to the target question. Comparing to existing gen-
erative VLMs, such retrieval-augmented genera-
tion (RAG) (Lewis et al., 2020), enables the model
with the essential contextual knowledge, improving
the system’s ability to handle complex questions
that demand precise and detailed knowledge.

3 Experiments

3.1 Datasets

Encyclopedic VQA (Mensink et al., 2023) con-
tains 221k unique question and answer pairs each
matched with (up to) 5 images, resulting in a to-
tal of 1M VQA samples. These images are de-
rived from iNaturalist 2021 (iNat21) (Van Horn
et al., 2021) and Google Landmarks Dataset V2

(GLDv2) (Weyand et al., 2020). The visual ques-
tions focus on the fine-grained categories and in-
stances. There are single-hop and two-hop ques-
tions that require different reasoning steps in the
dataset. Notably, the dataset provides a controlled
knowledge base with 2M Wikipedia articles with
images, ensuring all the questions can be answered
if correct Wikipedia article is given. For our ex-
periments on E-VQA, we consider the single-hop
questions using the provided 2M knowledge base.

InfoSeek (Chen et al., 2023) comprises 1.3M vi-
sual information-seeking questions, covering more
than 11K visual entities from OVEN (Hu et al.,
2023a). InfoSeek provides a knowledge base with
100K Wikipedia articles with images. The ques-
tions of the dataset are diverse and the answers
can be referenced from Wikipedia. There are a
human-labeled 8.9K collection and an automated
generated 1.3M collection in InfoSeek. Due to the
unavailability of groundtruth for test split, we re-
port evaluation results on the validation split. We
note that, the original authors did not publicly re-
lease their knowledge base, we therefore filter a
100K knowledge base from E-VQA instead. We
will release ours to the community for reproduction
and future comparison.

3.2 Metrics

To evaluate the performance of our proposed
retrieval-augmented QA model, we focus on two
aspects, namely, retrieval and question answering.
The retrieval results gauge the system’s capabil-
ity to accurately retrieve relevant articles from a
large-scale multimodal knowledge base, while the
question answering results assess its holistic effec-
tiveness in providing precise and correct answers
to visual questions

Metrics for Retrieval. We utilize the standard
metric Recall@K. Recall@K assesses whether the
correct article entries appear among the top k re-
trieved results. An article is considered correct only
if its URL exactly matches the target URL, making
our retrieval evaluation more stringent and precise
compared to methods that only match the content
of answers to the retrieved articles.

Metrics for Question Answering. Here, we fol-
low the conventional practise, use different met-
rics depending on the considered datasets. For
E-VQA dataset (Mensink et al., 2023), we use the
BEM (Balanced Evaluation Metric) score (Zhang
et al., 2019), while for the InfoSeek dataset (Chen
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Method Recall@K
K=1 K=5 K=10 K=20

Google Lens 47.4 62.5 64.7 65.2
CLIP I-T 3.3 7.7 12.1 16.5

EchoSight
w/o. Reranking 13.3 31.3 41.0 48.8
w. Reranking 36.5 47.9 48.8 48.8

Table 1: E-VQA retrieval experiments. While Google
Lens can be recognized as a upperbound in E-VQA,
CLIP I-T indicates the retrieval from the reference im-
age to Wikipedia entry texts with CLIP (Radford et al.,
2021).

et al., 2023), we employ the VQA accuracy (Goyal
et al., 2017; Marino et al., 2019) and Relaxed Ac-
curacy (Methani et al., 2020; Masry et al., 2022).
These metrics are chosen to align with the evalua-
tion settings specific to each dataset.

3.3 Implementation Details

The Retriever. We compute the visual embedding
for the reference images and images from database
with a frozen Eva-CLIP vision encoder (Eva-CLIP-
8B) (Sun et al., 2024). The pooled last-layer embed-
ding are used as the features for computing cosine
similarity between images, with FAISS library.

The Reranker. The reranking module is initialized
with pre-trained BLIP-2 (Li et al., 2023b) weights
using the LAVIS Library (Li et al., 2023a). The
number of query tokens Nq is 32 and weighting
parameter α is 0.5. Instead of using in-batch con-
trastive learning, we employ hard negative sam-
pling, where each positive sample is paired with
N = 24 negative samples.

In practise, a positive sample is constructed us-
ing the evidence section text from the correspond-
ing Wikipedia article. While for negative samples,
we perform a visual-only search on the reference
images. Knowledge base entries with images that
fail to match the reference images ranked within
the top k are selected as negative samples. During
training, we randomly sample sections from these
negative entries as well as from the non-evidence
sections of the positive entries. Note that, as only
E-VQA dataset provides labeled evidence sections
for all its training data, we train the reranker on
this dataset, and directly use it on InfoSeek in a
zero-shot manner.

We adopt OneCycleLR (Smith and Topin, 2019)
scheduler, with AdamW (Loshchilov and Hutter,
2018) optimizer. We use learning rate 10−4, batch

Method Recall@K
K=1 K=5 K=10 K=20

DPR∗
V +T 29.6 - - -

CLIP I-T 32.0 54.0 61.6 68.2

EchoSight
w/o. Reranking 45.6 67.1 73.0 77.9
w. Reranking 53.2 74.0 77.4 77.9

Table 2: InfoSeek retrieval experiments. Note that,
DPR∗

V+T (Lerner et al., 2024) actually used an in-house
1.5M knowledge base. Its recall is calculated by answer
matching (if the answer appeared in the retrieved text)
instead of the absolute article matching we used.

size 6, and the negative samples per example being
24. For training the reranker module with 900K ex-
amples in Encyclopedic VQA, 150K steps require
40 hours on 1 Nvidia A100 (80G).

The Answer Generator. We use Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023) as the ques-
tion generator for E-VQA and LLaMA-8B-
Instruct (AI@Meta, 2024) for InfoSeek.

3.4 Results

In this section, we present experimental results on
the E-VQA and InfoSeek benchmarks.

On Retrieval. The experiment results for the re-
trieval tasks across different configurations are de-
tailed in Table 1 and Table 2. The CLIP I-T set-
ting involves using CLIP for cross-modal similarity
search, from the reference image to the Wikipedia
article. The articles are represented as CLIP em-
bedding of their title and descriptions. The ‘Google
Lens’ refers to the approach used in Encyclopedic
VQA (Mensink et al., 2023), where Google Lens
indexes billions of images from the Internet, not
limited to Wikipedia, to find and return the most
closely matching images along with an entity pre-
diction. The best corresponding knowledge base
entry identified by Google Lens is considered as its
retrieval results. Given its vast image index, which
potentially includes the image from the test set and
capability to associate images with relevant entities,
Google’s retrieval can be viewed as a top performer
in E-VQA retrieval.

From both tables, we can draw the observation
that, our proposed reranking module has shown
to significantly improve the retrieval performance,
for example, it improves Recall@1 from 13.3%
to 36.5% on E-VQA benchmark, 45.6% to 53.2%
on InfoSeek, largely bridging the gap towards the
‘Google Lens’ top performer.
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Method LLM Retrieval E-VQA InfoSeek

Google Lens PaLM KB Article 48.0 -
Google Lens PaLM KB Section 48.8 -

Vanilla
PaLM - 19.7 1.0
Mistral-7B - 21.0 0.4
LLaMA3-8B - 18.7 2.4

BLIP-2 Flan-T5XXL - 12.6 12.5
LLaVA-1.5 Vicuna-7B - 16.3 9.5
Wiki-LLaVA Vicuna-7B KB Section 21.8 28.9
DPR∗

V +T Multi-passage BERT KB Section 29.1 12.4

EchoSight
w/o. Reranking Mistral-7B | LLaMA3-8B1 KB Article 19.4 27.7
w. Reranking Mistral-7B | LLaMA3-8B1 KB Section 41.8 31.3

Table 3: VQA Accuracy comparison with the SOTA methods. Google Lens method is the closed source top
performer. Vanilla method indicates the LLM directly generate answers with textual questions only. BLIP-2 (Li
et al., 2023b) and LLaVA(Liu et al., 2024) are strong vision language models yet with no retrieval augmented. Wiki-
LLaVA(Caffagni et al., 2024) and DPR∗

V+T (Lerner et al., 2024) are recent works focusing on retrieval-augmented
answer generation. Our proposed EchoSight is reported without and with multimodal reranking.

VQA Results. As shown in Table 3, we present
the comparison to state-of-the-art approaches on
final VQA results. For methods that do not uti-
lize an external knowledge base or retrieval system,
we present the results of large language models
(LLMs), and multimodal large language models
(MLLMs). The vanilla method refers to scenarios
where only the textual question of the multimodal
query is provided. The performance of multimodal-
LLMs, including BLIP2 (Li et al., 2023b) and
LLaVA (Liu et al., 2024), are reported in Wiki-
LLaVA (Caffagni et al., 2024), where both the
reference image and question are simultaneously
processed. For methods with external knowledge
bases, we compare with Wiki-LLaVA (Caffagni
et al., 2024) and DPR∗

V+T (Lerner et al., 2024).
It is clear that our proposed EchoSight (w. rerank-

ing) has outperform the prior works by a significant
margin, even approaching the upperbound results
reported by original E-VQA (Mensink et al., 2023)
benchmark, where two giant models are adopted,
i.e., ‘Google Lens’ for knowledge retrieval, and
PaLM for answer generation.

3.5 Ablation Study
For all ablation studies, we use the E-VQA dataset.
On the retrieval side, we conduct the following
ablations: (i) to compare different vision backbones
in retrieval, (ii) to study the impact of reranking
scope, and (iii) to investigate the importance of hard
negative sampling. On final answer generation, we
carry out ablation studies on: (i) the impact of
various language models and (ii) to experiment
with the answer generator under oracle settings.

Backbone Recall@K
K=1 K=5 K=10 K=20

OpenAI-CLIP
w/o. Reranking 10.1 19.5 25.8 32.2
w. Reranking 23.8 31.4 32.1 32.2

Eva-CLIP
w/o. Reranking 13.3 31.3 41.0 48.8
w. Reranking 36.5 47.9 48.8 48.8

Table 4: Retrieval performance analysis on different vi-
sion backbones.OpenAI-CLIP is CLIP-ViT-Large (Rad-
ford et al., 2021) and Eva-CLIP is Eva-CLIP-8B (Sun
et al., 2024) from BAAI. We both take the visual en-
coder’s last layer output as the image feature.

Impact of vision backbones. We assess the ef-
fect of different vision backbones on the retrieval
stage, as detailed in Table 4. We compare the Vi-
sion Transformer (ViT) from EvaCLIP-8B (Sun
et al., 2024) with OpenAI’s CLIP-ViT-Large (Rad-
ford et al., 2021). The EvaCLIP-8B’s ViT achieves
a recall@20 of 48.8%, outperforming the CLIP-
ViT-Large, which scored 32.2%. This substantial
improvement is likely due to EvaCLIP-8B’s larger
parameter size and more extensive training dataset,
allowing it to develop more robust representations.

While the initial Recall@1 shows a modest dif-
ference between the two models (10% for CLIP-
ViT-Large and 13% for EvaCLIP-8B), adopting our
multimodal reranking significantly boosts perfor-
mance, increasing Recall@1 to 23.8% and 36.5%
for CLIP-ViT-Large and EvaCLIP-8B, respectively.

1The E-VQA accuracy is tested with Mistral-7B and In-
foSeek accuracy is tested with LLaMA3-8B.
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This results in a marked 13% difference, underscor-
ing the effectiveness of our approach, especially
when combined with a more capable backbone.

Impact of reranking scope. The reranking scope
refers to the number of candidates considered by
the reranker module. Involving a higher reranking
scope means calculating more embeddings during
the reranking process. The reranking scope, which
can be any number up to k, i.e., the total number
of candidates returned by the retriever. As shown
in Table 5, our reranker can consistently improve
the results with increasing scope from Top-5 to
Top-500. As the thoughput experiment showed in
Table 6, considering the balance of efficiency and
quality, the scope of 20 candidate entries is used
when reporting our final VQA accuracy on E-VQA
and InfoSeek.

Scope Recall@K
K=1 K=5 K=10 K=20

Top 5 29.4 32.2 - -
Top 10 34.3 40.7 40.9 -
Top 20 36.5 47.9 48.8 48.8
Top 50 38.3 53.6 56.9 57.9
Top 100 38.8 55.9 60.8 63.0
Top 500 39.8 58.5 65.3 70.3

Table 5: The ablation study on impact of the reranking
scope. Our reranker can consistently improve the results
with increasing scope from Top-5 to Top-500.

Scope Total Retrieval Time Throughput

Top 10 0.602 1.66
Top 20 1.171 0.85
Top 50 2.720 0.37
Top 100 5.082 0.20
Top 500 21.591 0.05

Table 6: Throughput Study. This study uses a NVIDIA
A100 GPU with 80GB memory limiting the batch size
to 1. For visual-only retrieval, we use the Faiss library
with an exhaustive search. The throughput is calculated
as the number of queries processed per second (QPS).

Impact of hard negative sampling. The training
strategy of the reranker module is critical for its
performance. Rather than using randomly selected,
irrelevant article entries, we employ a hard neg-
ative sampling during training, i.e., top negative
candidates returned by the retriever. This approach
ensures the reranker to be trained on more demand-
ing examples, thereby improving its performance
and robustness. The effects of different training
strategies on reranking performance are detailed in
Table 7.

Sampling Recall@K
K=1 K=5 K=10 K=20

EchoSight
w/o. Hard Neg 31.4 46.0 48.5 48.8
w. Hard Neg 36.5 47.9 48.8 48.8

Table 7: The ablation study of how sampling methods
affect the overall retrieval-and-reranking performance.

LLMs GPT-4 PaLM Mistral LLaMA3

Accuracy 44.4 39.0 41.8 38.9

Table 8: The ablation study of impact of language mod-
els. The results are generated with the retrieval results
of EchoSight with reranking scope 20.

Consistency of EchoSight across LLMs. The
choice of LLMs influences the RAG paradigm
greatly (Shao et al., 2023; Hu et al., 2022).
We compare PaLM (Chowdhery et al., 2023),
GPT-4 (Achiam et al., 2023), Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) and LLaMA3-8B-
Instruct (AI@Meta, 2024) as answer generators.
Specifically, we provide them with same rerank-
ing results (KB entries). As shown in Table 8, the
accuracy results are calculated with BEM (Zhang
et al., 2019) following (Mensink et al., 2023). The
results indicate that though better language models
yield better scores, the overall performance across
all tested language models is quite stable. This
validates our method adapts well across modern
language models.

Effect of oracle retrieval. Oracle retrieval indi-
cates that the correct Wikipedia entry is always
provided for generating the answer. As shown in
Table 9, LLMs can almost answer the question if
oracle retrieval is provided.

LLM Retrieval Accuracy

PaLM KB Title 31.0
Mistral-7B KB Title 29.4
LLaMA3-8B KB Title 32.0

PaLM KB Article 78.4
Mistral-7B KB Article 84.8
LLaMA3-8B KB Article 84.6

PaLM KB Section 87.0
Mistral-7B KB Section 89.9
LLaMA3-8B KB Section 90.7

Table 9: The ablation study with VQA results on the
effect of oracle retrieval.
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In addition to expositions, 
rock concerts, conferences 
and courses, what else does 
this building host?
GPT-4V:
Multimedia installations, 
digital cinema screenings.
EchoSight:
The building also hosts 
workshops.

Who designed this museum?

GPT-4V:
I can‘t tell from the image 
alone.
EchoSight:
A Vienna-based builder 
named J. Langer.

In which country is this 
mountain located?

GPT-4V:
The mountain isMount
Taranaki, located in New 
Zealand.
EchoSight:
The Osorno Volcano is 
located in Chile.

What has bulgaria
traditionally used this 
plant for?
GPT-4V:
to treat fever and
inflammation.
EchoSight:
for the healing of wounds

How do the upper and 
undersides of the female of 
this butterfly compare to 
those of the male?
GPT-4V:
Females duller, males more 
vivid.
EchoSight:
Having Similarities.

What subspecies of this 
plant is found in turkey?

GPT-4V:
Helleborine Epipactis
helleborine turcica.
EchoSight:
bithynica.

In what city is this 
building located?

GPT-4V:
Toronto.
EchoSight:
Washington.

How many breeding pairs 
of this bird were in 
botswana in 2007?

GPT-4V:
This specific data isn't 
readily available.
EchoSight:
There is no information 
provided in the context.

What is one common name 
for this plant?

GPT-4V:
Field horsetail or common 
horsetail.
EchoSight:
Horseweed.

Answer: San Diego
Answer:73

Answer: standing cypress

Figure 3: Qualitative VQA results from Encyclopedic VQA comparing to GPT-4V. The first row shows results in
landmarks and the second row in natural species. Some failure cases are shown in the third row altogether with
ground-truth.

3.6 Qualitative Results

As shown in Figure 3, our EchoSight demon-
strates significant improvements in multimodal un-
derstanding and generation tasks compared to the
state-of-the-art GPT-4V (Achiam et al., 2023).

4 Related Work

4.1 Visual Question Answering

Visual Question Answering (VQA) is the task of
answering open-ended questions based on an im-
age with natural language response. VQA tasks
can be divided into two types: standard VQA and
knowledge-based VQA.

Standard VQA. Datasets such as VQAv1 (An-
tol et al., 2015), VQAv2 (Goyal et al., 2017), and
VizWiz (Gurari et al., 2018) focus on questions that
can be answered by analyzing the image content
alone, without external information. These datasets
typically cover questions about objects in the im-
age, their attributes and other perceptual details
that can be inferred from the visual input.

Knowledge-based VQA. The task involves ques-
tions that require information not present in the
image. Pioneering datasets like OK-VQA (Marino
et al., 2019) and A-OKVQA (Schwenk et al.,
2022), which include questions needing knowl-
edge beyond what is visually depicted, necessi-

tate the integration of external world knowledge
and commonsense reasoning. Uni-modal knowl-
edge bases like GS112K (Luo et al., 2021) and
Wiki21M (Karpukhin et al., 2020) are adopted in
prior works (Lin et al., 2023; Lin and Byrne, 2022;
Gao et al., 2022; Luo et al., 2021, 2023). However,
uni-modal knowledge bases are text-only, which
limits their applicability in scenarios where visual
context is paramount. To better utilize multimodal
information, multiple previous attempts have been
made (Ding et al., 2022; Zhu et al., 2020; Wu et al.,
2022; Chen et al., 2022).

Datasets such as Encyclopedic VQA (E-
VQA) (Mensink et al., 2023) and InfoSeek (Chen
et al., 2023) have been developed with multimodal
knowledge bases. These datasets utilize Wikipedia
as a multimodal knowledge base to provide de-
tailed and specific information on various topics.
E-VQA covers a wide range of topics like animals,
plants, and landmarks, while InfoSeek focuses on
info-seeking questions about various visual entities.
These datasets require models to recognize visual
entities and accurately retrieve and use relevant
information from external sources (Lerner et al.,
2024; Caffagni et al., 2024; Lin et al., 2024).

4.2 Vison Language Models for VQA
Advances in Vision Language Models (VLMs)
such as GPT-4V (Achiam et al., 2023), Gem-
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ini (Gemini Team et al., 2023), LLaVA (Liu et al.,
2024), and Phi-3-Vision (Abdin et al., 2024) have
demonstrated impressive capabilities in standard
Visual Question Answering (VQA) tasks, exhibit-
ing strong image analysis and accurate response
generation (Li et al., 2023d). However, these mod-
els encounter difficulties with knowledge-based
VQA due to issues such as hallucination, where
responses are generated based on nonexistent con-
tent and internal biases (Li et al., 2023c), and the
lack of efficient knowledge retrieval mechanisms
which hampers the integration of external knowl-
edge bases for reasoning (Caffagni et al., 2024).

Recently, research has shifted towards retrieval-
augmented generative systems. While Retrieval-
Augmented Generation (RAG) has been well-
established in Large Language Models (LLMs),
its application in VLMs remains underexplored.
Systems like KAT (Gui et al., 2021), REVIVE (Lin
et al., 2022), and REVEAL (Hu et al., 2023b) show
promise for questions involving commonsense rea-
soning, yet they struggle with complex, knowledge-
intensive tasks like Encyclopedic VQA (E-VQA)
and Infoseek. These limitations stem from their
restricted ability to fetch and incorporate precise in-
formation from extensive encyclopedic knowledge
bases (Mensink et al., 2023).

EchoSight addresses these issues through a novel
two-stage process combining visual-only retrieval
and multimodal reranking. This approach signifi-
cantly enhances the alignment between retrieved
textual knowledge and visual content, leading to
improved performance on benchmarks such as En-
cyclopedic VQA and InfoSeek.

5 Conclusion

In this paper, we introduced EchoSight, a novel
retrieval-augmented vision language system de-
signed to address the challenges of knowledge-
based Visual Question Answering (VQA). Our ap-
proach enhances the retrieval capabilities of mul-
timodal models through a two-stage process: ini-
tial visual-only retrieval followed by a multimodal
reranking stage. This methodology significantly
improves the alignment between visual and textual
information, leading to more accurate and contextu-
ally relevant answers. Experimentally, we have con-
ducted thorough ablation studies to demonstrate the
effectiveness of our proposed components. While
comparing to existing state-of-the-art approaches
on the Encyclopedic VQA and InfoSeek datasets,

EchoSight demonstrates significant performance
improvement, with an accuracy of 41.8% on E-
VQA and 31.3% on InfoSeek. The success of
EchoSight highlights the importance of efficient
retrieval processes and the integration of multi-
modal information in enhancing the performance
of large language models (LLMs) in knowledge-
based VQA tasks.

Limitations

Although our proposed EchoSight demonstrates im-
pressive performance on Knowledge-based VQA
like Encyclopedic-VQA and InfoSeek, several limi-
tations must be acknowledged. EchoSight’s perfor-
mance is heavily dependent on the quality and com-
prehensiveness of the underlying knowledge base
used for retrieval. Domain-specific knowledge not
covered in these databases may lead to sub-optimal
performance in specialized queries. In addition, the
retrieval process, especially when involving multi-
modal reranking of candidates, introduces signifi-
cant computational overheads, making it less suit-
able for real-time applications. These overheads
can impact the efficiency and response time of the
system. Future work focusing on improving the
quality of knowledge bases and mitigating compu-
tational overheads remains to be explored.
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Dataset Question Type
Number of IQA pairs

Train Val Test

E-VQA

Templated 66,535 1,827 1,000
Automatic 737,114 8,025 2,750

Multi Answer 112,736 1,844 1,000

Total 916,385 11,696 4,750

InfoSeek Total 902,509 - 71,335

Table 10: Dataset details used in our EchoSight’s traning and testing.

A Dataset Details

In this section, we provide more details of in the
Dataset we used. We summarize the statistics of in
Table 10.

A.1 E-VQA

We focus only on Single-hop questions of E-
VQA (Mensink et al., 2023), namely Templated,
Automatic, and Multi Answer questions in the ta-
ble.

A.2 InfoSeek

And for Infoseek (Chen et al., 2023), due to the
missing entities in the knowledge-base we use, we
remove the examples in the dataset. Specifically,
916,385 examples in training split out of 934,048
are kept (98.1%), and 71,335 examples of valida-
tion split out of 73,620 are kept (96.9%). Therefore,
the results we obtain with our knowledge base are
consistent with the dataset’s original setting while
considering for the limitations of our knowledge
base.

B Vision backbones

In addition to CLIP, there are other robust vision
backbones available, such as Dino (Caron et al.,
2021; Oquab et al., 2023). Unlike CLIP, which
employs a visual-language training method, Dino
leverages a self-supervised, visual-focused train-
ing approach. To evaluate its performance, we
benchmarked DinoV2 as our visual-only retriever,
presenting the results in Tables 11 and 12. Despite
observing a notable performance improvement in
the Encyclopedic VQA task, there was a signif-
icant drop in performance on the InfoSeek task.
Therefore, to maintain the consistency and over-
all performance of EchoSight, we have decided to
continue using Eva-CLIP as our vision backbone.

Backbone Recall@K
K=1 K=5 K=10 K=20

Eva-CLIP
w/o. Reranking 13.3 31.3 41.0 48.8
w. Reranking 36.5 47.9 48.8 48.8

DINOv2
w/o. Reranking 17.3 38.6 46.0 51.4
w. Reranking 40.8 50.7 51.3 51.4

Table 11: DINOv2 comparison to CLIP in E-VQA.

Backbone Recall@K
K=1 K=5 K=10 K=20

Eva-CLIP
w/o. Reranking 45.6 67.1 73.0 77.9
w. Reranking 53.2 74.0 77.4 77.9

DINOv2
w/o. Reranking 34.7 53.4 60.0 64.5
w. Reranking 38.2 60.0 64.1 64.5

Table 12: DINOv2 comparison to CLIP in InfoSeek.

C Prompt Template

C.1 E-VQA
The prompt we use for LLM when testing E-
VQA (Mensink et al., 2023) is shown as follow:
USER: Context: <CONTEXT >
Question: <QUESTION >
The answer is:

C.2 InfoSeek
Due to the strict metrics of exact match are used by
InfoSeek (Chen et al., 2023), we have to consider
the format of the prompt so that the generated an-
swer is comparable with the ground truth. Thereby,
by using a one-shot example to keep the format
correct, our prompt we use for InfoSeek is:
SYSTEM: You always answer the question
the user asks. Do not answer anything
else.

USER:Context: The sounthern side of the
Alps is next to Lake Como.
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Question: Which body of water is this
mountain located in or next to?
Just answer the questions , no
explanations needed.
Short answer is: Lake Como

Context: <CONTEXT >
Question: <QUESTION >
Just answer the questions , no
explanations needed.
Short answer is:
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