
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 13309–13328
November 12-16, 2024 ©2024 Association for Computational Linguistics

AliGATr: Graph-based layout generation for form understanding

Armineh Nourbakhsh1,2, Zhao Jin1, Siddharth Parekh1,
Sameena Shah2, Carolyn P. Rosé1

1Language Technologies Institute, Carnegie Mellon University
2J.P. Morgan, New York
anourbak@cs.cmu.edu

Abstract

Forms constitute a large portion of layout-rich
documents that convey information through
key-value pairs. Form understanding involves
two main tasks, namely, the identification of
keys and values (a.k.a Key Information Extrac-
tion or KIE) and the association of keys to cor-
responding values (a.k.a. Relation Extraction
or RE). State of the art models for form un-
derstanding often rely on training paradigms
that yield poorly calibrated output probabili-
ties and low performance on RE. In this paper,
we present AliGATr, a graph-based model that
uses a generative objective to represent com-
plex grid-like layouts that are often found in
forms. Using a grid-based graph topology, our
model learns to generate the layout of each
page token by token in a data efficient manner.
Despite using 30% fewer parameters than the
smallest SotA, AliGATr performs on par with
or better than SotA models on the KIE and RE
tasks against four datasets. We also show that
AliGATr’s output probabilities are better cal-
ibrated and do not exhibit the over-confident
distributions of other SotA models.

1 Introduction

Visually complex forms pose a multimodal chal-
lenge to the task of document-grounded reason-
ing. State of the art approaches have achieved
increasingly advanced performance, but their util-
ity in downstream applications remains restricted
by a few key challenges we face broadly as a re-
search area, as described in the recent position pa-
per by Nourbakhsh et al. (2024). In this paper,
we introduce AliGATr, a new form understand-
ing model that addresses these challenges in or-
der to improve the practical impact of research on
document-grounded reasoning for visually com-
plex forms, with potential impact on the broader
fields of information extraction and multimodal
document understanding.

The two common tasks in form understanding
that illustrate the challenges we address include
Key Information Extraction (KIE) and Relation
Extraction (RE), both of which rely on identifying
field names and field values, understanding tabular
structures, and distinguishing between headings,
main content, and other components, all of which
require joint reasoning over the spatial and textual
signal on each page.

With a few exceptions, most SotA researches
focus on the task of KIE, disregarding RE, whereas
in most applications KIE and RE need to be paired
in order to identify semantically valid key-value
pairs from forms. Without RE, key structural in-
formation about the document will not be captured
(Luo et al., 2023; Zhang et al., 2021), and open-
ended key-value extraction will be difficult (Luo
et al., 2023). Despite this, RE remains underex-
plored in the form understanding literature (Luo
et al., 2023; Hong et al., 2021; Li et al., 2021), pos-
ing major challenges to downstream applications
(Nourbakhsh et al., 2024).

Furthermore, most models require extensive pre-
training data and infrastructure to perform at the
SotA level. As an example, the most popular pre-
training dataset is the IIT-CDIP dataset (Lewis
et al., 2006), composed of 11 million images.
Lastly, the trade-off between grounding (i.e. provid-
ing bounding boxes for each output token such that
it can be traced back to the input) and calibration
(i.e. producing distributionally robust probabilities)
is difficult to balance. Small, efficient, robust, and
well-calibrated models remain difficult to obtain for
users with limited access to large-scale pre-training
data or compute.

In this paper, we introduce AliGATr, a new form
understanding model that addresses the above chal-
lenges by combining a graph-based representation
and a layout-generation objective. By focusing on
the generation of layout (as opposed to the joint
generation of text and layout), our approach leads

13309

(a) Original doc (b) KNN (c) LOS

(d) Aixs-aligned LOS (e) β-skeleton (f) AligNet

Figure 1: Different graph representations for a given form.

to a model that is more compact and converges us-
ing a smaller pre-training dataset. Our proposed
graph representation, which we name AligNet, en-
ables the model to cover both KIE and RE tasks,
leading to SotA performance on the former and
exceeding SotA performance on the latter. Even
though AliGATr has a generative objective, it sam-
ples its output from input tokens, leading to logits
that are well-grounded and well-calibrated.

Concretely, our study offers the following con-
tributions to the literature on visually rich form
understanding (VrFU):

• We propose AligNet, a graph representation
technique for form documents, inspired by
the four principles of layout design (Kimball,
2013). AligNet uses soft alignments between
tokens to capture short- and long-range spatial
dependencies. Its alignment-based structure
(compared to the proximity-based structures
often used in SotA models) allows it to propa-
gate information more effectively.

• We introduce AliGATr, a GNN-based method
inspired by GraphRNN (You et al., 2018),
which uses a generative objective to learn
layout-aware node representations. The gener-
ative objective combines next-node selection
with adjacency prediction, allowing the model
to recreate the layout of a page token by token.
To the best of our knowledge, AliGATr is the
first graph-based model to use a generative
objective for form understanding.

• With 30% fewer parameters compared to the
smallest SotA baseline, and using a small pre-
training dataset of 1 million documents, Ali-

GATr performs competitively on the KIE and
RE tasks. Furthermore, we show that our
model produces better-calibrated output dis-
tributions compared to baselines and is not
over-confident.

2 Related Work

Research in visually rich document understand-
ing has explored models in two architectural
paradigms, namely transformer-based models and
graph-based models.

2.1 Transformer-based models

Transformer-based models such as BROS (Hong
et al., 2021), Docformer (Appalaraju et al., 2021),
and the LayoutLM series (Xu et al., 2020, 2021;
Huang et al., 2022) are often inspired by encoder-
only architectures and use an adaptation of Masked
Language Modeling (MLM) (Devlin et al., 2019)
such as Masked Visual Language Modeling (Xu
et al., 2020, 2021; Li et al., 2021), Masked
Sequence Modeling (Gu et al., 2021), learning
to reconstruct (Appalaraju et al., 2021), word-
patch alignment (Huang et al., 2022), and vision-
language alignment (Gu et al., 2021). A drawback
of encoder-based models is that their output proba-
bilities aren’t well calibrated (Kumar and Sarawagi,
2019). This means that the output probabilities of
these models don’t reflect their performance, as the
models can be arbitrarily over- or under-confident
(Jiang et al., 2021).

In recent years, the adaptation of autoregressive
language models to the task of document under-
standing has produced models that favor a decoder-
based architecture and follow generative objectives

13310

Figure 2: Pre-training and fine-tuning steps in our proposed approach. (a) During pre-training, a form is fed into the
model as a set of tokens and bounding boxes. (b) The form is represented as an AligNet graph. (c) The serializer
orders the nodes and each node is represented using its text embedding. (d) At step t = 2, the graph convolution
produces representations h0 · · ·h3, where any edges adjacent to nodes x2 and x3 has been dropped, hence masking
their spatial information. (e) The next node predictor uses a pointer mechanism to correctly predict the next node
representation to be h2. (f) The model predicts the adjacency vector between x2 and the previous nodes as a
binary vector. (g) The model predicts a segmentation flag for x2. (h) During fine-tuning, AliGATr generates graph
representations for each node. (i) Using the model’s segmentation flags, the graph is split into segments, and an
RNN is used to create sequence representations for each segment. (j) For the KIE task, a classification head predicts
a class for each segment. (k) For the RE task, a link prediction head predicts the edges between segments.

such as next word prediction (Tang et al., 2023)
or block infilling (Wang et al., 2023). While often
better calibrated, these models sample their output
from the vocabulary (as opposed to the input) and
are therefore not guaranteed to produce outputs that
can be grounded within the input. This is important
for information extraction tasks, where the output
should be traceable back to the input (Nourbakhsh
et al., 2024).

Another challenge of transformer-based models
is their performance on associative tasks. Proper
understanding of a form relies on two tasks–the
extractive task of KIE, and the associative task of
RE. Transformer-based models have consistently
underperformed on RE compared to graph-based
models such as VisualFudge (Davis et al., 2021),
or hybrid graph-transformer models such as Geo-
LayoutLM (Luo et al., 2023) and RE2 (Ramu et al.,
2024).

2.2 Graph-based models
Through their topology, graphs provide a natural
way to encode the grid structure of form documents

and allow more control over how information prop-
agates across the nodes. The graph representation
in SotA studies captures each token on the page as
a node, and the adjacency structure often follows
one of the below paradigms (Wang et al., 2022):

In KNN graphs, each node is connected to its
K closest neighbors on the page (see Figure 1(b)).
Due to the dependency on the parameter K, it is
difficult to guarantee optimal density (or optimal
sparsity) throughout the graph.

Line of Sight (LOS) graphs connect each node
to other nodes within its “line of sight” (see Figure
1(c)). This guarantees that nodes that are adjacent
on the page are connected, but LOS graphs can still
introduce edges that don’t carry meaningful infor-
mation., e.g. the connection between “SUPPLIER”
and “Pugh” in Figure 1(c).

The β-skeleton graph can be thought of as a
“ball-of-sight” approach (Wang et al., 2022) that
removes some of the edges from LOS by favoring
proximity (see Figure 1(e)). This approach has
been adopted in line and paragraph-detection mod-

13311

els (Wang et al., 2022; Liu et al., 2022) as well as
form extraction models (Lee et al., 2021, 2023).

As can be seen in Figure 1(e), even though the
β-skeleton graph captures more meaningful rela-
tionships compared to KNN and LOS graphs, it
can still produce unhelpful edges, e.g. the edge
between “PERSONNEL” and “Market”. This is
because, like KNN and LOS, β-skeleton graphs
favor proximity over alignment, whereas alignment
is not only one of the core principles of layout de-
sign, but is crucial to maintaining the grid structure
in forms (Kimball, 2013). An alternative to LOS,
namely Axis-aligned LOS (Figure 1(d)) has been
proposed to capture alignments, but as Davis et al.
(2021) argued, it is not effective for form under-
standing tasks due to its over-sparsity.

As shown by studies such as Liu et al. (2022), the
β-skeleton graph can be enhanced by the addition
of redundant (or “multi-hop”) edges. We adapt this
idea to the Axis-aligned LOS structure, and pro-
pose a new graph structure which we name AligNet
(see Figure 1(f)). AligNet captures short- and long-
range dependencies by adding multi-hop edges to
the Axis-aligned LOS structure, which helps the
graph honor alignment as well as proximity in
modeling the layout of a page. We demonstrate
AligNet’s ability to capture the global structure of
each page using a community detection method.
Additionally, when equipped with a graph convo-
lution network, the AligNet structure can route
messages between nodes that are meaningfully as-
sociated, such as field names and field values. Our
proposed graph learning approach, AliGATr, cou-
ples the AligNet representation with a layout gener-
ation objective, which leads to competitive perfor-
mance on VrFU tasks, including key information
extraction and relation extraction. To balance the
calibration and grounding tradeoff, AliGATr uses a
generative architecture, but uses a Pointer mecha-
nism (See et al., 2017) to strictly produce output to-
kens that are extracted from the input. Furthermore,
because of its generative objective, AliGATr’s log-
its are better calibrated than encoder-based models.

In summary, AliGATr addresses the previously
mentioned shortcomings of SotA approaches using
the below solutions: 1) Lack of attention to align-
ments is resolved using an alignment-based struc-
ture (i.e. AligNet). 2) Over-sparsity of alignment-
based structures is addressed by the introduction
of redundant edges in AligNet. 3) Poor calibration
is addressed by following a generative objective.
4) Poor grounding is addressed by using a Pointer

mechanism.
The following sections present our methodology

and experimental results.

3 Methodology

In this section, we describe our proposed graph
representation for documents (AligNet), as well as
our proposed model architecture (AliGATr). Figure
2 shows the overall flow of pre-training and fine-
tuning steps.

3.1 AligNet
We model each document as an undirected graph
G = (V,E), where each node xi represents a token
on the page, and two nodes xi and xj are adjacent if
their bounding boxes are horizontally or vertically
aligned. We define alignment between xi and xj as
∃c ∈ {left, center, right, top,middle, bottom} :
|bci − bcj | < D, where bci represents the coordinates
of the bounding box of xi, and D is a threshold that
is expressed as a percentage of page width/height
and can be tuned as a hyperparameter1. Figure
2(a) shows a small snippet of a form. In 2(b), the
form has been converted into an AligNet graph (see
Figure 7(b) for a more substantive example).

We represent each node xi by it embedding vec-
tor xi that is generated by a language model such as
RoBERTa (Liu et al., 2019). An edge between xi
and xj is represented by the below attribute vector:

ei,j = [−|blefti − bleftj |,−|brighti − brightj |,
−|btopi − btopj |,−|bbottomi − bbottomj |,

bheighti − bheightj ,
bwidth
i

numchars(xi)
− bwidth

j

numchars(xj)
]

Note that the first four elements show the negative
absolute distance (i.e. proximity) between the four
coordinates of the bounding boxes2. The fifth el-
ement shows the difference in the heights of the
two bounding boxes, and the last element shows
the difference in their average width per character.
In order to avoid the need to resample all images to
be of the same size, we normalize all coordinates
based on the width and height of each page.

In addition to edge attributes, we also assign
a label to each edge, which reflects one of the

1Alternatively, alignments can be found using more so-
phisticated clustering-based or convolutional methods, but
based on our experiments, the simple threshold-based ap-
proach yields comparable performance.

2Using the negative distance is a naive but effective way to
represent proximity. Our experiments demonstrated that other
methods such as using the reciprocal or log-order of distance
were not as effective. See Appendix E for more details.

13312

6 possible types of alignment between the adja-
cent nodes, namely: left, center, right, top, mid-
dle, or bottom-aligned. The label also reflects
whether the source node is located “before” the
target node in the reading order, i.e. whether the
source node is to the left or top of the target node.
This yield 12 possible classes. In Figure 2(b), the
edge between “Market” and “Facts” represents two
directed edges: a bottom-before edge from “Mar-
ket” to “Facts”, and a bottom-after edge from
“Facts” to “Market”. This means that “Market” and
“Facts” are bottom-aligned and “Market” comes
before “Facts”.

3.2 AliGATr

The AliGATr architecture is composed of three
modules, inspired by Lee et al. (2023): a serializer,
a GCN, and a decoder. During pre-training, the
serializer arranges the nodes into a sequence, and
the GCN generates node embeddings using gener-
ative objectives. During fine-tuning, the decoder
predicts node labels (KIE) or links (RE).

3.2.1 Serialization
The serializer uses a simple heuristic to order the
tokens in a sequence. Using the top-left coordi-
nates of each bounding box, the serializer orders
the tokens in a left-to-right and top-to-bottom se-
quence. For English-language documents, this is
meant to mimic reading order, even though it is a
noisy approximation.3 Figure 2(c) illustrates the
serialized graph for the example in 2(b). This se-
rialized sequence is used to traverse the AligNet
graph during pre-training, as described in the next
section.

3.2.2 Generative pre-training
After the serializer determines the ordering of
nodes, the AligNet graph is fed into a GCN. We
use a Relational Graph Attention Network (RGAT)
(Busbridge et al., 2019) as the GCN backbone. The
model follows an auto-regressive layout-generation
objective coupled with a segmentation objective.
We describe these objectives below.

Layout generation objectives: First, we add a
dummy start node x0 to the graph that is not con-
nected to any other nodes. This node functions as
the <start> token for our generative task. At each

3There are many cases where this heuristic won’t work,
e.g. on multi-column pages. However, using a noisy heuristic
yields a more robust model, as it prevents the model from lever-
aging exact reading order information (Zhang et al., 2023).

timestamp t, the model masks the bounding box co-
ordinates of nodes xt, xt+1, · · · , xT as well as any
edges adjacent to them. The model then generates
representations for nodes x0, x1, · · · , xT , namely,
h0,h1 · · · ,hT ∈ Rd where d is the hidden dimen-
sion. Figure 2(d) shows the node representations at
t = 2 for the example graph. Nodes with dashed
borders have their bounding boxes masked and
edges removed. Using these representations, the
model optimizes two objectives: 1) Given h0:t−1,
the model “picks” the next node ht from the set of
remaining nodes ht:T , where the ordering is deter-
mined by the serializer, and all positional informa-
tion (i.e. bounding box coordinates) are masked
for ht:T . 2) Given the predicted next node ht̂, the
model predicts the edges between ht̂ and the sub-
graph composed of h0:t−1. This is akin to present-
ing the tokens in a random order to the model, and
encouraging the model to put the layout back to-
gether token by token, placing each new token in its
proper position with regards to previous tokens on
the page. Since the model has access to the token
identities, it is not performing text generation, but
layout generation. This allows the model to learn
layout-aware representations without having to ful-
fill the text generation objective, which is a data-
and parameter-intensive task. Below, we describe
the model’s two objectives:

First, given the node embeddings h0 · · ·ht−1,
we use a pointer mechanism (See et al., 2017) to se-
lect the next node from the set of remaining nodes.
The pointer is implemented as scaled dot-product
attention between the sequence embedding h0:t−1

and the remaining embeddings ht:T . The node
whose embedding has the highest attention score is
predicted as the next node:

h(0:t−1) = W (1)h⊤
0:t−1, h(t:T) = W (2)h⊤

t:T

αt̂ = softmax(
(
∑t−1

k=0 h
(0:t−1)
k)h(t:T)

√
d

)

j = argmaxi{αt̂,i; i ∈ {0, 1, · · · , T − t− 1}}
ht̂ = hj+t+1

where W (1) and W (2) ∈ Rd×d are weight matrices,
αt̂ are the attention weights, j + t+ 1 is the index
of the node with the highest attention weight, and
ht̂ is the representation of that node. In Figure 2(e),
the next node is correctly picked as h2.

To calculate the next node prediction loss, we
follow See et al. (2017) and use Negative Log Like-
lihood as pointer loss: LNODE

t = − logαt

log (T−t) , where

13313

αt is the attention weight of the correct next node
xt, and the 1/ log (T − t) factor is used to lower
the penalty for cases when the selection of the next
node has a higher degree of freedom and is there-
fore a more difficult task.

Once the next node ht̂ is determined, the model
predicts its adjacencies to the subgraph composed
of previous nodes. Inspired by You et al. (2018)
we model this task as predicting the adjacency vec-
tor at̂, which is a binary vector of size t where
at̂,k = 1 if xk and xt̂ are adjacent, and at̂,k = 0
otherwise. The model predicts at̂ based on the
attention between h0:t−1 and ht̂. The adjacency
loss is calculated using the binary cross entropy
between the predicted adjacency vector at̂ and the
true vector at:

h′(0:t−1)
= W (3)h⊤

0:t−1, at̂ =
h⊤
t̂
h′(0:t−1)

√
d

LADJ
t = BCE(at̂, at)

where W (3) ∈ Rd×d is a weight matrix. In Fig-
ure 2(f), the adjacency vector of x2 is predicted as
[0, 1] indicating that no edge exists between x0 and
x2, but an edge exists between x1 and x2. Note that
this adjacency vector only determines the existence
of an edge, without sensitivity to directionality. Di-
rectionality is only reflected in the attributes and
labels of the unmasked edges.

Segmentation objective: In addition to the node
and adjacency prediction objectives, the model pre-
dicts the boundaries of various segments on the
page. This is to encourage the model to find group-
ings of tokens that correspond to an entity. Most
OCR engines provide segment boundaries based
on the spacing between the tokens on the page. The
model uses this information to predict whether a
given token marks the beginning of a new segment4.
The loss is modeled as a simple binary cross en-
tropy: LSEG

t = −(st log st̂ + (1− st) log(1− st̂)),
where st̂ = w(4)h⊤

t̂
is the predicted binary seg-

mentation flag for xt̂, st is the true flag, and
w(4) ∈ R1×d is a weight vector. Figure 2(g) shows
that the segmentation flag for x2 has been predicted
as 1, indicating that it signals the start of a new seg-
ment.

The total pretraining loss at step t is calcu-
lated as the sum of node prediction, adjacency pre-
diction, and segment boundary prediction losses:

4Studies such as Huang et al. (2022) and Luo et al. (2023)
also use segment-level information. Note that AliGATr only
uses segment-level information at training time and does not
expect this information during inference.

Lt = LNODE
t +LADJ

t +LSEG
t . AliGATr uses these

objectives to learn layout-aware representations for
each node xt.

3.2.3 Fine-tuning
At fine-tuning time, we use the segmentation flags
learned by the model to identify the boundaries
of each entity. This reduces the complexity of the
downstream KIE and RE tasks since they both rely
on entity-grouping to produce accurate output. Fig-
ures 2 (h) and (i) show the pre-segmentation and
post-segmentation stages of the example graph, re-
spectively.

We implement two fine-tuning heads, each cor-
responding to one of the two target tasks, i.e. KIE
and RE. KIE from forms can be modeled as a node
classification problem, and RE can be modeled as
a link prediction problem.

The KIE node classification head uses the or-
dering created by the serializer to generate a se-
quence representation using an RNN (Hochreiter
and Schmidhuber, 1997) (Figure 2(i)). The se-
quence can then be used to predict I-O-B tags for
each token. Finally, the KIE classification loss,
LCLF, can be calculated as cross entropy loss be-
tween the predicted and true classes. The intro-
duction of the RNN is important as it models the
sequentiality of the input more effectively than the
graph. However, if its representations deviate too
much from the those created by the graph, they can
“unlearn” certain semantic information. Inspired
by Yao et al. (2024), we introduce an auxiliary co-
distillation loss that keeps the RNN representations
(hRNN) and the graph representations (hGNN) close
to each other:

LCoD =
N∑

i=1

CL(hGNN
i , h̃RNN

i) + CL(hRNN
i , h̃GNN

i)

LKIE = LCLF + LKIE + LSEC

where CL stands for the contrastive loss described
in Tian et al. (2020) and .̃ is the stop-gradient opera-
tor, which freezes the corresponding representation.
The model continues to learn segmentation during
fine-tuning via the segmentation loss LSEG. Figure
2(j) shows the final output of the KIE classification
head.

The RE link prediction head does not require
serialization, as it simply uses the dot product of
two node representations hGNN

i and hGNN
j to pre-

dict whether an edge exists between them. The RE
loss, LRE is calculated based on the binary cross

13314

Dataset # Train # Test Tasks # Classes
FUNSD (Jaume et al., 2019) 149 50 KIE, RE 4
SROIE (Huang et al., 2019) 626 347 KIE 4
CORD (Park et al., 2019) 800 100 KIE, RE 30
BuDDIE (Zmigrod et al., 2024) 1,172 332 KIE 69

Table 1: Statistics about four datasets that cover KIE and
RE tasks. Note that we only list the tasks that are used
in our experiments. “# Classes” indicates the number of
entity classes used in the KIE task.

entropy between predicted and true edges. Figure
2 (k) shows the output of the RE head. Note that
the RE head would be able to identify relations
between nodes and segments, even if they are not
aligned. The alignment edges are only used during
pre-training to create layout-aware node represen-
tations. See Figure 5 for a examples of unaligned
RE results.

4 Experiments

In this section we describe the datasets and base-
lines used in our experiments. Other experimental
settings are described in Appendix A.

4.1 Datasets
We use four multimodal form understanding
datasets that cover KIE and RE tasks. CORD and
SROIE are collections of retail receipts. FUNSD
includes research and advertising forms sampled
from the RVL-CDIP dataset (Harley et al., 2015),
and BuDDIE is a collection of business entity fil-
ings collected from various US states. Table 1
shows high-level statistics about each dataset.

4.2 Baselines
We use four SotA baselines in multimodal form un-
derstanding. LayoutLMv3 (Huang et al., 2022) is
a transformer-based model that uses vision, spatial,
and text signal to model multimodal documents. By
abandoning a complex Region-Proposal Network
in favor of a simple patch-based vision encoder,
LayoutLMv3 reduces the number of parameters
compared to LayoutLMv2 (Xu et al., 2021), while
achieving superior performance on the KIE task5.
GraphLayoutLM (Li et al., 2023) enhances Lay-
outLMv3 with a graph component that maps the
relative positioning of various nodes with regards
to each other, improving performance on KIE. Ge-
oLayoutLM (Luo et al., 2023) adds geometric con-
straints to LayoutLMv3 and demonstrates SotA

5We do not cover the performance on tasks that are out of
scope for AliGATr, such as document classification and visual
question answering

performance on both the KIE and RE tasks. Lastly,
FormNetv26 (Lee et al., 2023) uses a β-skeleton
graph and a Graph Convolution Network to model
visually rich forms. In contrast to previous models,
FormNetv2 does not rely on segment-level bound-
ing boxes, and relies entirely on token-level presen-
tations. The model outperforms LayoutLMv3 on
KIE despite a 44% reduction in model size.

5 Results and discussion

5.1 Performance on KIE and RE tasks

Table 2 shows the performance of AliGATr and four
baselines on the multimodal form datasets. As men-
tioned in Section 4.2 three of the four baseline mod-
els rely on segment-level bounding boxes, while
FormNetv2 and AliGATr do not rely on segment-
level bounding boxes during inference, and only
use token-level bounding boxes. To make the com-
parisons consistent across all models, we have re-
ported the performances using token as well as
segment bounding boxes (see caption for more de-
tail). Despite a 30% reduction in size compared to
the smallest baseline (FormNetv2), AliGATr per-
forms on par with or better than the SotA models
on the KIE task. The model falls short of SotA on
BuDDIE, which has the largest number of classes
and is composed of denser documents (business
entity filings).

Table 3 shows the performance of AliGATr and
two other baselines on the RE task. Once again,
AliGATr matches or outperforms SotA models de-
spite having 60% fewer parameters than the smaller
baseline (LayoutLMv3LARGE).

5.2 Calibration

There are two aspects of calibration that facilitate
straight-through-processing of documents in down-
stream applications. The first is the confidence
of the model with regards to the output. Under-
confidence and over-confidence are both problem-

6Note that we do not include Multimodal LLMs such as
UReader (Ye et al., 2023) or DocLLM (Wang et al., 2023)
because they have not yet achieved SotA performance on form
processing tasks. OCR-free models such as UDOP (Tang et al.,
2023) and mPLUG-DocOwl1.5 (Hu et al., 2024) are excluded
for the same reason.

7The BuDDIE dataset does not provide segment level
bboxes. Therefore only token-level results are reported.

8Some experimental results are missing for GraphLay-
outLM because the authors were not able to recreate the base-
lines reported by Li et al. (2023), and are therefore only re-
porting the numbers disclosed in the original paper.

9FormNetv2 is not Open Source. Therefore only the results
reported in Lee et al. (2023) are included.

13315

Model Modalities # Params Pre-training
dataset size FUNSD CORD SROIE BuDDIE7

LayoutLMv3LARGE T+L+I 357M 11M 82.53/92.08 95.92/97.46 94.96/98.63 83.42
GraphLayoutLMLARGE8 T+L+I 372M 11M -/94.39 -/97.75 -/- -
GeoLayoutLM T+L+I 399M 11M 84.40/92.86 96.57/97.71 95.04/98.70 84.86
FormNetv29 T+L+I 204M 11M 86.35/92.51 97.37/97.70 98.31/- -
AliGATr T+L 145M 1M 86.31/92.95 97.48/97.83 98.57/98.78 81.85

Table 2: Performance on the KIE task. “T”, “L”, and “I” stand for text, layout, and image. The performance
is reported as token/segment, where segment indicates performance when segment-level bounding boxes are
available at test time, and token indicates performance when only token-level bounding boxes are available.

Model Modalities # Params FUNSD CORD
LayoutLMv3LARGE T+L+I 357M 80.35 99.64
GeoLayoutLM T+L+I 399M 89.45 100.00
AliGATr T+L 145M 89.50 100.00

Table 3: Performance on the RE task. The numbers re-
ported for the CORD dataset correspond to the “REaKV”
task mentioned in Luo et al. (2023).

atic as they do not reflect the model’s true perfor-
mance. The second, and arguably more important
aspect is the consistency of the confidence gap. If a
model is consistently over or under-confident, it is
much easier to set a fixed threshold beyond which
the model’s outputs can be trusted.

Figure 3 shows the confidence versus perfor-
mance plot for LayoutLMv3LARGE, GeoLay-
outLM, and AliGATr, when finetuned on the
FUNSD dataset. As the Figure shows, AliGATr’s
output probabilities are better calibrated, and do
not exhibit the over-confident trend that is observed
in the baselines. As indicated by the lower ECE,
AliGATr is also more consistent in its confidence
gap, and a confidence threshold of 0.8 and above
yields near perfect performance.

(a) LayoutLMv3 (b) GeoLayoutLM (c) AliGATr

Figure 3: Calibration plots and ECE measures for Ali-
GATr versus two baselines. All models have been fine-
tuned for the KIE task on the FUNSD dataset.

6 Ablation and sensitivity studies

In this section, we investigate how three compo-
nents of our proposed pipeline contribute to down-
stream performance. Due to infrastructure limita-
tions, all of the studies reported here are based on

a toy pre-training dataset of 30K examples sam-
pled from OCR-IDL (Biten et al., 2022). The
gains/drops in performance are statistically signif-
icant at p < 0.005, based on the paired-bootstrap
test proposed by Berg-Kirkpatrick et al. (2012),
with b = 102. Therefore we expect the trends to
hold for larger pre-training datasets.

Approach KIE RE
Graph
Structure

β-Skeleton 50.89 64.52
AligNet 51.30 73.12

Serialization

No node prediction 50.44 70.01
No edge labels 49.29 68.43
Order-invariant labels 51.03 71.26
Order-sensitive labels 51.30 73.12

Full Gen. N = 1 51.30 73.12

Skip Gen.
N = 5 50.94 65.14
N = 10 50.39 64.97
N = 20 50.50 64.09

Chunk Gen.
M = 20 51.28 73.07
M = 50 51.31 72.98
M = 100 51.29 73.01

Table 4: The impact of graph representation, edge rep-
resentation, and generation methods on the KIE and RE
tasks (F1 performance on the FUNSD dataset).

6.1 Graph structure

As mentioned in Section 2.2, β-skeleton graphs are
a common choice in graph-based models. The top
segment of Table 4 shows the performance of the β-
skeleton graph against the AligNet structure. The
β-skeleton graph slightly underperforms AligNet
on the KIE task, but has an even larger gap on
the RE task. The latter is expected, as alignments
often play a major role in indicating semantic cor-
respondence between field names and values. This
demonstrates the effectiveness of the AligNet struc-
ture in modeling form understanding tasks. For
further analysis on this topic, see Appendix C.

6.2 Serialization

As discussed in Section 3.2.1, the serializer orders
the nodes in left-to-right and top-to-bottom fash-
ion. This has an impact on two components of

13316

AliGATr, namely the next node predictor (which is
designed to predict the next node in the sequence
according to the serializer’s ordering), and the edge
labels (which are determined based on the relative
position of two nodes on the page).

The second segment of Table 4 shows the impact
of ablating these components. Without node predic-
tion, both KIE and RE tasks suffer. Removing edge
labels has an even bigger impact on performance,
even though order-invariant labels recover some of
the performance. The best performance belongs to
a model that has order-sensitive edge labels (i.e. 12
classes, as described in Section 3.1), which is there-
fore the model used in our final experiments. For
a deeper analysis on how edge representations can
impact downstream performance, see Appendix E.

6.3 Generation regime
Lastly, we analyze the impact of the generation
regime on downstream performance. In the default
auto-regressive setting, every token is generated
one by one. This can be costly if the number of
tokens on a page is large. SotA models such as
LayoutLMv3LARGE cap the sequence length at
512 tokens which poses a risk for text-heavy pages.
Furthermore during pre-training the model might
not be exposed to sections that usually appear at the
bottom of the page, e.g. footers or page numbers.
Instead of truncating the input during pre-training,
we experiment with two alternatives. In Skip Gen-
eration, the model generates every N tokens. In
Chunk Generation, the model generates a ran-
domly sampled subsequence of length M from
each page. The last segment of Table 4 shows the
model’s performance in these settings. In the de-
fault setting (titled “Full Gen.”), the model has the
highest performance on RE and close to highest per-
formance on KIE. The performance suffers when
switching to Skip Generation, especially for RE.
This may be attributed to the disjointedness of gen-
erations, because skipping over N − 1 tokens can
obscure the relationship between neighboring to-
kens. This problem is largely addressed by Chunk
Generation, as is evident from the model’s perfor-
mance, even when M is small. Given the com-
petitive performance of Chunk Generation with
M = 20, we selected this setting to perform pre-
training. A possible risk of Chunk Generation is
that the robustness of output probabilities might
be undermined, but, as presented in Section 5.2,
the model has better calibrated output than base-
lines. The effectiveness of Chunk Generation fur-

ther demonstrates the robustness and efficiency of
AliGATr’s learning objectives.

7 Conclusion and future work

In this paper, we presented AliGATr, a layout gen-
eration technique for form understanding that is
competitive with SotA on Key Information Ex-
traction and Relation Extraction tasks, using 30%
fewer parameters and 11x fewer training examples.
We showed how, despite using the spatial and tex-
tual modalities alone, and relying on subsequence
generation, the model produces better-calibrated
probabilities. In future studies, we hope to inves-
tigate AliGATr’s effectiveness in other adjacent
tasks that lend themselves to graph-based repre-
sentations, such as document classification, page
segmentation, and structure extraction.

8 Limitations

Any methodology that relies on alignment-based
signal, such as the AligNet structure, is at risk
of failing to recognize noisy alignments, e.g. on
skewed or tilted pages. We rely on the accuracy of
OCR software to recognize the angle at which the
document is presented, which may not always be
reliable. However, as with segment/line detection,
the rotation detection capability of modern OCR
software has substantially improved.

As mentioned in Section 3.2.1, we use a serial-
izer that orders the nodes in a left-to-right and top-
to-bottom fashion to mimic reading order. The or-
dering might not work for documents with complex
layouts (such as multi-column pages), but since the
ordering is only needed for pre-training, the risk
is minimal at inference time. More consequen-
tially, the ordering might not generalize to many
non-English languages.

Lastly, the pre-training dataset is sampled from
the IDL collection10, which covers enterprise docu-
ments from a limited set of industries. As discussed
in Nourbakhsh et al. (2024), this can lead to poor
OOD performance without further fine-tuning or
continued pre-training.

9 Acknowledgements

The authors would like to thank Ivan Brugere, Hao-
Ren Yao, Pranav Shetty, Natraj Raman, and Jill
Fain Lehman for their insightful feedback.

Armineh Nourbakhsh’s work is supported by JP-
Morgan Chase & Co. This paper was prepared

10https://www.industrydocuments.ucsf.edu

13317

https://www.industrydocuments.ucsf.edu

for informational purposes by the Artificial Intel-
ligence Research group of JPMorgan Chase & Co
and its affiliates (“JP Morgan”), and is not a product
of the Research Department of JP Morgan. JP Mor-
gan makes no representation and warranty whatso-
ever and disclaims all liability, for the complete-
ness, accuracy or reliability of the information con-
tained herein. This document is not intended as
investment research or investment advice, or a rec-
ommendation, offer or solicitation for the purchase
or sale of any security, financial instrument, finan-
cial product or service, or to be used in any way
for evaluating the merits of participating in any
transaction, and shall not constitute a solicitation
under any jurisdiction or to any person, if such so-
licitation under such jurisdiction or to such person
would be unlawful. © 2024 JP Morgan Chase &
Co. All rights reserved.

References

Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota,
Yusheng Xie, and R. Manmatha. 2021. Docformer:
End-to-end transformer for document understand-
ing. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 993–
1003.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical sig-
nificance in NLP. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 995–1005, Jeju Island, Korea.
Association for Computational Linguistics.

Ali Furkan Biten, Rubèn Tito, Lluis Gomez, Ernest Val-
veny, and Dimosthenis Karatzas. 2022. Ocr-idl: Ocr
annotations for industry document library dataset.

Shaked Brody, Uri Alon, and Eran Yahav. 2022. How
attentive are graph attention networks? In Interna-
tional Conference on Learning Representations.

Dan Busbridge, Dane Sherburn, Pietro Cavallo, and
Nils Y Hammerla. 2019. Relational graph attention
networks. arXiv preprint arXiv:1904.05811.

Brian L. Davis, B. Morse, Brian L. Price, Chris Tens-
meyer, and Curtis Wigington. 2021. Visual fudge:
Form understanding via dynamic graph editing. In
IEEE International Conference on Document Analy-
sis and Recognition.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Jiuxiang Gu, Jason Kuen, Vlad I Morariu, Handong
Zhao, Rajiv Jain, Nikolaos Barmpalios, Ani Nenkova,
and Tong Sun. 2021. Unidoc: Unified pretraining
framework for document understanding. In Advances
in Neural Information Processing Systems.

Adam W Harley, Alex Ufkes, and Konstantinos G Der-
panis. 2015. Evaluation of deep convolutional nets
for document image classification and retrieval. In
International Conference on Document Analysis and
Recognition (ICDAR).

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Teakgyu Hong, Donghyun Kim, Mingi Ji, Won-
seok Hwang, Daehyun Nam, and Sungrae Park.
2021. BROS: A layout-aware pre-trained lan-
guage model for understanding documents. CoRR,
abs/2108.04539.

Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang
Zhang, Bo Zhang, Chen Li, Ji Zhang, Qin Jin, Fei
Huang, et al. 2024. mplug-docowl 1.5: Unified struc-
ture learning for ocr-free document understanding.
arXiv preprint arXiv:2403.12895.

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and
Furu Wei. 2022. Layoutlmv3: Pre-training for doc-
ument ai with unified text and image masking. In
Proceedings of the 30th ACM International Confer-
ence on Multimedia, pages 4083–4091.

Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Di-
mosthenis Karatzas, Shijian Lu, and CV Jawahar.
2019. Icdar2019 competition on scanned receipt ocr
and information extraction. In 2019 International
Conference on Document Analysis and Recognition
(ICDAR), pages 1516–1520. IEEE.

Guillaume Jaume, Hazim Kemal Ekenel, and Jean-
Philippe Thiran. 2019. Funsd: A dataset for form
understanding in noisy scanned documents. In 2019
International Conference on Document Analysis and
Recognition Workshops (ICDARW), volume 2, pages
1–6. IEEE.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962–977.

Miles A Kimball. 2013. Visual design principles: An
empirical study of design lore. Journal of Technical
Writing and Communication, 43(1):3–41.

David G. Kirkpatrick and John D. Radke. 1985. A
framework for computational morphology. Machine
Intelligence and Pattern Recognition, 2:217–248.

Aviral Kumar and Sunita Sarawagi. 2019. Calibration
of encoder decoder models for neural machine trans-
lation. arXiv preprint arXiv:1903.00802.

13318

https://aclanthology.org/D12-1091
https://aclanthology.org/D12-1091
http://arxiv.org/abs/2202.12985
http://arxiv.org/abs/2202.12985
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://api.semanticscholar.org/CorpusID:234763397
https://api.semanticscholar.org/CorpusID:234763397
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=UMcd6l1msUK
https://openreview.net/forum?id=UMcd6l1msUK
http://arxiv.org/abs/2108.04539
http://arxiv.org/abs/2108.04539
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://api.semanticscholar.org/CorpusID:118719120
https://api.semanticscholar.org/CorpusID:118719120

Andrea Lancichinetti and Santo Fortunato. 2009. Com-
munity detection algorithms: A comparative analysis.
Physical Review E, 80(5).

Chen-Yu Lee, Chun-Liang Li, Chu Wang, Renshen
Wang, Yasuhisa Fujii, Siyang Qin, Ashok Popat, and
Tomas Pfister. 2021. ROPE: Reading order equivari-
ant positional encoding for graph-based document
information extraction. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 314–321, Online. Association
for Computational Linguistics.

Chen-Yu Lee, Chun-Liang Li, Hao Zhang, Timothy
Dozat, Vincent Perot, Guolong Su, Xiang Zhang,
Kihyuk Sohn, Nikolay Glushnev, Renshen Wang,
Joshua Ainslie, Shangbang Long, Siyang Qin, Ya-
suhisa Fujii, Nan Hua, and Tomas Pfister. 2023.
FormNetV2: Multimodal graph contrastive learn-
ing for form document information extraction. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 9011–9026, Toronto, Canada.
Association for Computational Linguistics.

David Lewis, Gady Agam, Shlomo Argamon, Ophir
Frieder, David Grossman, and Jefferson Heard. 2006.
Building a test collection for complex document in-
formation processing. In Proceedings of the 29th
annual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 665–666.

Qiwei Li, Zuchao Li, Xiantao Cai, Bo Du, and Hai Zhao.
2023. Enhancing visually-rich document understand-
ing via layout structure modeling. In Proceedings
of the 5th ACM International Conference on Multi-
media in Asia Workshops, MMAsia ’23 Workshops,
New York, NY, USA. Association for Computing
Machinery.

Yulin Li, Yuxi Qian, Yuechen Yu, Xiameng Qin,
Chengquan Zhang, Yan Liu, Kun Yao, Junyu Han,
Jingtuo Liu, and Errui Ding. 2021. Structext: Struc-
tured text understanding with multi-modal trans-
formers. In Proceedings of the 29th ACM Interna-
tional Conference on Multimedia, MM ’21, page
1912–1920, New York, NY, USA. Association for
Computing Machinery.

Shuang Liu, Renshen Wang, Michalis Raptis, and Ya-
suhisa Fujii. 2022. Unified line and paragraph detec-
tion by graph convolutional networks. In Document
Analysis Systems, pages 33–47, Cham. Springer In-
ternational Publishing.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Chuwei Luo, Changxu Cheng, Qi Zheng, and Cong
Yao. 2023. Geolayoutlm: Geometric pre-training for
visual information extraction. 2023 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Armineh Nourbakhsh, Sameena Shah, and Carolyn
Rose. 2024. Towards a new research agenda for mul-
timodal enterprise document understanding: What
are we missing? In Proceedings of the Findings
of the 62nd Annual Meeting of the Association for
Computational Linguistics, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee,
Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee. 2019.
Cord: a consolidated receipt dataset for post-ocr
parsing. In Workshop on Document Intelligence at
NeurIPS 2019.

Pritika Ramu, Sijia Wang, Lalla Mouatadid, Joy Rim-
chala, and Lifu Huang. 2024. re2: Region-aware
relation extraction from visually rich documents. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 8731–8747, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang,
Yang Liu, Chenguang Zhu, Michael Zeng, Cha
Zhang, and Mohit Bansal. 2023. Unifying vision,
text, and layout for universal document processing.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 19254–
19264.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020.
Contrastive representation distillation. In Interna-
tional Conference on Learning Representations.

Vincent A Traag, Ludo Waltman, and Nees Jan
Van Eck. 2019. From louvain to leiden: guarantee-
ing well-connected communities. Scientific reports,
9(1):5233.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Dongsheng Wang, Natraj Raman, Mathieu Sibue,
Zhiqiang Ma, Petr Babkin, Simerjot Kaur, Yulong

13319

https://doi.org/10.1103/physreve.80.056117
https://doi.org/10.1103/physreve.80.056117
https://doi.org/10.18653/v1/2021.acl-short.41
https://doi.org/10.18653/v1/2021.acl-short.41
https://doi.org/10.18653/v1/2021.acl-short.41
https://doi.org/10.18653/v1/2023.acl-long.501
https://doi.org/10.18653/v1/2023.acl-long.501
https://doi.org/10.1145/3611380.3628554
https://doi.org/10.1145/3611380.3628554
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2024.naacl-long.484
https://doi.org/10.18653/v1/2024.naacl-long.484
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://openreview.net/forum?id=rJXMpikCZ

Pei, Armineh Nourbakhsh, and Xiaomo Liu. 2023.
Docllm: A layout-aware generative language model
for multimodal document understanding. arXiv
preprint arXiv:2401.00908.

R. Wang, Y. Fujii, and A. C. Popat. 2022. Post-ocr para-
graph recognition by graph convolutional networks.
In 2022 IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), pages 2533–2542,
Los Alamitos, CA, USA. IEEE Computer Society.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou.
2021. LayoutLMv2: Multi-modal pre-training for
visually-rich document understanding. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2579–2591, Online.
Association for Computational Linguistics.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. 2020. Layoutlm: Pre-training
of text and layout for document image understanding.
In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, KDD ’20, page 1192–1200, New York, NY,
USA. Association for Computing Machinery.

Hao-Ren Yao, Luke Breitfeller, Aakanksha Naik,
Chunxiao Zhou, and Carolyn Rose. 2024. Multi-
scale contrastive knowledge co-distillation for event
temporal relation extraction.

Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye,
Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,
Qi Qian, Ji Zhang, et al. 2023. Ureader: Univer-
sal ocr-free visually-situated language understand-
ing with multimodal large language model. arXiv
preprint arXiv:2310.05126.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton,
and Jure Leskovec. 2018. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In
International conference on machine learning, pages
5708–5717. PMLR.

Chong Zhang, Ya Guo, Yi Tu, Huan Chen, Jinyang Tang,
Huijia Zhu, Qi Zhang, and Tao Gui. 2023. Reading
order matters: Information extraction from visually-
rich documents by token path prediction. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 13716–13730,
Singapore. Association for Computational Linguis-
tics.

Yue Zhang, Zhang Bo, Rui Wang, Junjie Cao, Chen
Li, and Zuyi Bao. 2021. Entity relation extraction
as dependency parsing in visually rich documents.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2759–2768, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Ran Zmigrod, Dongsheng Wang, Mathieu Sibue, Yu-
long Pei, Petr Babkin, Ivan Brugere, Xiaomo Liu, Na-
cho Navarro, Antony Papadimitriou, William Watson,
Zhiqiang Ma, Armineh Nourbakhsh, and Sameena
Shah. 2024. Buddie: A business document dataset
for multi-task information extraction.

A Experimental settings

For AligNet, we set the alignment parameter D =
0.01. This means that if the horizontal or vertical
distance between a pair of nodes is smaller than 1%
of the width or height of the page, the two nodes
are considered aligned (and thus adjacent).

Our GCN backbone is a 2-layer RGAT, imple-
mented by the Pytorch Geometric library.11 We
use a 2-layer unidirectional LSTM (Hochreiter and
Schmidhuber, 1997) as the RNN module.

We use a sample of 1 million documents from
the OCR-IDL dataset (Biten et al., 2022) to pre-
train the model. During pre-training, we initialize
the token embeddings using RoBERTaBASE(Liu
et al., 2019). We use a batch size of 1, a learning
rate of 5e−6, the AdamW optimizer (Loshchilov
and Hutter, 2019) with (β1, β2) = (0.9, 0.999),
and train the model for 1 epoch. During fine-tuning
for the KIE and RE tasks, we use a batch size of
16, learning rate of 1e−5, the AdamW optimizer
with (β1, β2) = (0.9, 0.999), and train the model
for 1000 epochs. We set the negative sampling rate
for the co-distillation loss as 5.

B Qualitative examples

Figure 4 shows the performance of AliGATr on the
KIE task on two samples from the FUNSD dataset.
As the figure shows, AliGATr struggles with to-
kens that do not have a clear alignment with other
elements of a similar class. This can be attributed
to AliGATr’s weaker text backbone compared to
other SotA models.

Figure 5 shows the performance of AliGATr on
the RE task on two samples from the FUNSD
dataset. AliGATr recovers all edges that corre-
spond to aligned elements. The performance is
lower for elements that are not horizontally or ver-
tically aligned. Notably, the rate of false negatives
is higher than false positives.

C Constructing β-skeleton graphs

As mentioned in Section 2.2, the β-skeleton graph
is favored in many graph-based form understand-

11https://pytorch-geometric.readthedocs.io/
en/latest/generated/torch_geometric.nn.conv.
RGATConv.html

13320

https://doi.org/10.1109/WACV51458.2022.00259
https://doi.org/10.1109/WACV51458.2022.00259
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
http://arxiv.org/abs/2209.00568
http://arxiv.org/abs/2209.00568
http://arxiv.org/abs/2209.00568
https://doi.org/10.18653/v1/2023.emnlp-main.846
https://doi.org/10.18653/v1/2023.emnlp-main.846
https://doi.org/10.18653/v1/2023.emnlp-main.846
https://doi.org/10.18653/v1/2021.emnlp-main.218
https://doi.org/10.18653/v1/2021.emnlp-main.218
http://arxiv.org/abs/2404.04003
http://arxiv.org/abs/2404.04003
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGATConv.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGATConv.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.RGATConv.html

(a) KIE results on form with tabular segments (b) KIE results on sparse form

Figure 4: KIE results on two samples from the FUNSD dataset. Green boxes show correct predictions and red boxes
show incorrect predictions.

ing models. Consistent with Lee et al. (2023), we
set β = 1, making our graph a Gabriel graph-
—a subset of Delaunay triangulation (Kirkpatrick
and Radke, 1985). Unlike typical point-based
β-skeleton graphs, our approach involves bound-
ing box β-skeleton graphs. We use each token’s
four coordinates (top-left, top-right, bottom-left,
bottom-right) as vertices and employ Delaunay
triangulation from scipy.spatial12 to construct
the graph, as shown in figure 6(a). We then re-
move all internal connections within a bounding
box. While a strict β-skeleton graph would exclude
any edges with vertices inside the circle formed by
those edges, this results in excessive sparsity due to
token proximity. To address this, we maintain all
edges but simplify by collapsing the four corners to
the center of each bounding box, as demonstrated
in figure 6(b).

D Community based self-supervision

D.1 Community detection

The AligNet representation can be used to seg-
ment the page based on alignments, using a graph

12https://docs.scipy.org/doc/scipy/reference/
generated/scipy.spatial.Delaunay.html

segmentation algorithm. These algorithms are de-
signed to find cliques, partitions, or communities
(i.e. locally dense segments) within the graph.
Among such algorithms, the Leiden community de-
tection method (Traag et al., 2019) is a particularly
useful approach, because: 1) It focuses on maximiz-
ing the modularity of a network, which is defined
as the density of intra-community edges compared
to inter-community edges. This is congruent with
the segmentation objective in AligNet, since high-
density areas of a page can indicate a segment (see
Figure 7(c)). 2) The greedy implementation of the
Leiden method leads to log-linear complexity in
most experimental settings (Lancichinetti and For-
tunato, 2009), which offers a runtime advantage.
3) The recursive nature of the Leiden method ex-
empts it from requiring a pre-determined number
of communities. The algorithm stops when the
overall modularity of the network can no longer be
improved beyond a minimum threshold.

We use the implementation of the algorithm of-
fered by the NetworkX python library13. Edges

13https://networkx.org/documentation/
networkx-3.1/reference/algorithms/generated/
networkx.algorithms.community.louvain.louvain_
communities.html

13321

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html
https://networkx.org/documentation/networkx-3.1/reference/algorithms/generated/networkx.algorithms.community.louvain.louvain_communities.html
https://networkx.org/documentation/networkx-3.1/reference/algorithms/generated/networkx.algorithms.community.louvain.louvain_communities.html
https://networkx.org/documentation/networkx-3.1/reference/algorithms/generated/networkx.algorithms.community.louvain.louvain_communities.html
https://networkx.org/documentation/networkx-3.1/reference/algorithms/generated/networkx.algorithms.community.louvain.louvain_communities.html

(a) RE results on form with tabular segments (b) RE results on sparse form

Figure 5: RE results on two samples from the FUNSD dataset. Green links show correct predictions. Red links
show false negatives. Blue links show false positives.

are weighted according to the following distance
calculation:

weij =
W(eij)√

(bcenteri −bcenterj)2+(bmiddle
i −bmiddle

j)2
(1)

where W(eij) is a weighing hyperparameter. This
weighing scheme allows the Leiden algorithm to
consider distance and proximity when identifying
the segments. Once the algorithm converges, each
node in the AligNet graph vi is assigned a commu-
nity label ci.

D.2 Community-aware GAT
The classic GAT model (Veličković et al., 2018)
learns the representation of each node by convolv-
ing its original representation with those of its
neighbors. In the GATv2 convolution (Brody et al.,
2022), this is designed as:

h′
i = αi,iΘshi +

∑

j∈N (i)

αi,jΘthj (2)

The attention score αi,j is calculated as:

αi,j = (3)
exp(f⊤LeakyReLU(Θshi+Θthj+Θeei,j))∑

k∈N (i)∪{i} exp(f
⊤LeakyReLU(Θshi+Θthk+Θeei,k)

(4)

where f is an affine parameter, N (i) represents
the set of nodes adjacent to xi and Θs, Θt, and
Θe are weight parameters corresponding to source,
target, and edge representations, respectively.

For Leiden community detection, we set W(eij)
to 1 for horizontal edges and to 1

16 for vertical
edges. This encourages the algorithm to prioritize
the merging of nodes along horizontal edges, which
leads to the creation of horizontally-aligned seg-
ments. This is consistent with the general reading
order of English-language documents (left-to-right,
then top-to-bottom), but can be adjusted for other
languages.

In a similar fashion, a community detection algo-
rithm can be used to segment the β-skeleton graph
(see Figures 10 and 11).

D.3 Graph Representations and Number of
Communities

In this section, we investigate the effect of splitting
each page into a predetermined set of communities.
Our ablation experiments aim to compare differ-
ent graph representations, focusing on β-skeleton
graphs and AligNet graphs. All experiments use
β = 1 (Gabriel graph) and a very small pre-training
dataset of 149 documents from FUNSD (Jaume

13322

(a) Point-based β-skeleton graph on bbox coordinates (b) β-skeleton graph merging internal bbox connections

Figure 6: Construction of a β-skeleton graph on a sample form. First, create a point-based β-skeleton graph with
the 4 corners of each bounding box as vertices (a). Next, remove internal connections within each bounding box
and merge the 4 vertices into the centroid (b). The width of the edges in (b) indicates the edge weight: shorter edges
have higher weights.

Graph Structure
of communites β-skeleton AligNet
baseline 16.56 19.53
1 0.0 11.10
2 20.50 13.45
4 16.68 17.03
8 15.48 -
16 16.24 -

Table 5: Ablation results on graph representations and
community numbers. For the β-skeleton graph, 2 com-
munities per document yield the best results. For the
AligNet graph, the baseline with the Louvian algo-
rithm’s optimal community number performs best. All
numbers reflect F1 performance on the FUNSD dataset.

et al., 2019). We also explored the effects of dif-
ferent community detection configurations using
the Leiden method, focusing on variations in the
resolution parameter γ and explicitly setting com-
munity sizes.

Adjusting the resolution parameter γ allowed
us to control community detection granularity, im-
pacting both community count and size. Higher γ

values led to more but smaller communities. How-
ever, γ adjustments did not yield consistent results
across different graph structures. Therefore, we
predetermined the number of communities by ini-
tially assigning nodes to a set number of groups,
allowing the algorithm to refine these into fixed
community counts without exceeding the prede-
fined limits.

For the β-skeleton graph, setting all nodes into a
single community prevented the model from con-
verging. As shown in Figure 8, models with two
communities achieved higher and more stable F1
scores throughout the epochs. Conversely, increas-
ing the number of communities to 4, 8, or 16 gener-
ally decreased performance. Notably, models with
4 or 8 communities showed slower convergence
rates, whereas configurations with 16 communities
unexpectedly improved convergence compared to
the previous two. Further analysis of community
size distributions, shown in Figure 9, reveals that
setting the community number to 16 aligns the dis-
tribution closely with the baseline model, resulting
in similar performance trends. Moreover, Figure 9
also indicates that the maximum viable number of
communities for the β-skeleton graph is 12, high-

13323

(a) Raw form (b) AligNet graph (c) Leiden communities

Figure 7: Visual illustration of how the AligNet representation can enable page segmentation. The example
document is excerpted from FUNSD (Jaume et al., 2019).

Figure 8: Training curves for β-skeleton with different
community sizes. The number after "beta" in the leg-
end indicates the number of communities per document.
β-skeleton with 2 communities yields the best results.
Graphs with 4 and 8 communities have lower conver-
gence rates compared to the baseline and the graph with
16 communities, despite similar F1.

lighting the graph’s limitations due to sparsity.

For AligNet, the results in Table 5 show a dif-
ferent pattern compared to the β-skeleton graph.
The baseline model, which uses the Leiden algo-
rithm to determine the optimal community num-
bers, achieves the best F1 scores. However, explic-
itly setting a lower number of communities results
in lower F1 scores. The lowest F1 score is observed
when all nodes are grouped into a single commu-
nity. These findings suggest that AligNet performs
optimally with multiple, smaller-sized communi-

ties.

Our findings indicate that community informa-
tion enhances modeling for both AligNet and β-
skeleton graphs, each benefiting from different
community configurations. The β-skeleton graph
performs optimally with larger communities, ef-
fectively utilizing extensive neighboring informa-
tion, while the AligNet graph is more effective with
finer community granularity. For the β-skeleton
graph, smaller communities do not ensure accu-
rate separation into distinct blocks in uniformly
dense documents, as shown in Figure 10(a). Con-
versely, utilizing larger communities reduces the fo-
cus on smaller clusters and enhances the separation
of specific tokens like “questions” and “answers”,
thereby improving the task performance as shown
in Figure 11.

E Order Sensitive Edge Representations

Building on the findings of Lee et al. (2021), we
explored the impact of reading order on graph struc-
tures in our ablation experiments. All experiments
in this section are base on a small pre-training
dataset of 149 documents from FUNSD (Jaume
et al., 2019).
Raw Distance: We modified our approach by us-
ing raw distances instead of the original edge defi-
nition shown in the edge representation described
in Section 3.1. The distance between nodes xi and

13324

(a) β-skeleton community distribution, baseline (b) β-skeleton community distribution, # of comm = 16

Figure 9: Cumulative counts for community size for β-skeleton graphs. In (a), for graphs with 5 communities
(left-most column), approximately half of them have less than 10 nodes (blue segment at the bottom), while the
other half have 10-25 nodes (green segment). The typical community size for β-skeleton graphs is 10-25 nodes. In
(b), when explicitly setting the maximum community size to 16, the distribution trend is similar to (a).

xj is represented as:

ei,j =

[blefti − bleftj , brighti − brightj ,

btopi − btopj , bbottomi − bbottomj] (5)

We hypothesize that this raw distance can implicitly
convey reading order, with negative values suggest-
ing xi precedes xj , and positive values indicating
the reverse.
Order-Sensitive Edge Label: We initially defined
alignment edge labels as

∃c ∈ {left, center, right, top,middle, bottom}

as described in Section 3.1. For our ablation exper-
iments, we expanded these into twelve labels:

∃c ∈
{leftpre, centerpre, rightpre,
toppre,middlepre, bottompre,

leftpost, centerpost, rightpost,

toppost,middlepost,bottompost}

The label is determined by the summation of vec-
tors in 5: negative sums result in one of the first six
labels (which xi precedes xj), while positive sums
assign one of the latter six, indicating xi follows xj .
This adjustment aims to further encode the reading
order into the graph.

w/ Raw Distance w/o Raw Distance
Order-invariant labels 16.49 15.08
Order-sensitive labels 18.29 12.82

Table 6: Ablation study results for edge represen-
tations in AligNet, showing F1 performance on the
FUNSD dataset. Utilizing raw distance and explicit
order-sensitive labels improves model performance.

Incorporating raw distance as implicit order-
sensitive edge representations improves model per-
formance, as shown in Table 6 and Figure 12. How-
ever, adding explicit order-sensitive edge labels did
not consistently enhance performance. The edge
labels did improve convergence when combined
with raw distance, but using them alone resulted in
slower convergence.

F Edge Types

Of the two graph structures, we also perform ab-
lation studies to determine which edge types are
useful for the task. In this section, all experiments
use segment loss instead of community loss, and
are based on a small pre-training dataset consist-
ing of 149 documents from FUNSD (Jaume et al.,
2019). In AligNet, we classified edges into four cat-
egories: horizontal-long, horizontal-short, vertical-
long, and vertical-short. We set a threshold λ = 0.3
for short edges, including those shorter than 30%
of the page width or height, and λ = 0.5 for long
edges, which are longer than 50% of the page di-
mensions. Edges not meeting these criteria were
excluded. For the β-skeleton graph, which primar-

13325

(a) β-skeleton communities for a form with tabular
segments

(b) β-skeleton communities for form with nested
segments

Figure 10: β-skeleton communities baseline. In uniformly dense documents, communities are not properly separated
(a), whereas distinct communities are formed in less dense and more structured documents (b).

ily comprises short edges, we categorized edges
into three groups: horizontal, vertical, and others,
using the same threshold criteria as AligNet for
orientation determination.

In our analysis, we used the AligNet graph as the
baseline for comparison. The results, depicted in
Table 7 (Experiment 1-7), indicate that horizontal
short edges significantly outperform all other types.
Vertical short edges from AligNet notably reduced
performance relative to the baseline, while verti-
cal long edges and horizontal long edges showed
performance similar to the baseline. For the β-
skeleton graph, horizontal edges provided a slight
improvement over the baseline.

We further tested combinations of edge types,
maintaining the same experimental settings and
considering the union of overlapping edge types.
As also shown in Table 7 (Experiment 8-11), the
best results within the AligNet graph were achieved
by combining horizontal short and horizontal long
edges, with performance trends similar to those of
horizontal short edges alone. Conversely, combi-
nations of horizontal long and vertical short edges
yielded the poorest results, indicating their lim-
ited utility. In the β-skeleton graph (Experiment
12-14), adding horizontal short edges enhanced
performance. Those results show the importance
of horizontal short edges in effectively connecting

segment information in this task.

13326

(a) β-skeleton communities with #comms = 2 for a
form with tabular segments

(b) β-skeleton communities with #comms = 2 for a
form with nested segments

Figure 11: β-skeleton communities with number of communities = 2. The visualizations show the communities
generally separating out the "question" type token on the left and the "answer" type tokens in the middle.

Figure 12: Training curves comparing different edge
representations show that incorporating raw distance
improves model performance and accelerates conver-
gence compared to the baseline. Additionally, utilizing
order-sensitive labels along with raw distance leads to
even faster convergence. However, using order-sensitive
labels alone results in slower convergence.

13327

Edge Types
horizontal short horizontal long vertical short vertical long beta horizontal beta vertical beta other F1
1 ✓ 42.99
2 ✓ 38.21
3 ✓ 30.05
4 ✓ 36.82
5 ✓ 39.17
6 ✓ 37.74
7 ✓ 35.99
8 ✓ ✓ 41.24
9 ✓ ✓ 34.53
10 ✓ ✓ 29.38
11 ✓ ✓ 35.46
12 ✓ ✓ 36.92
13 ✓ ✓ ✓ ✓ 37.92
14 ✓ ✓ ✓ 35.51

Table 7: Ablation results on edge types. The baseline F1 score is 35.81, using all edges in AligNet. Experiments 1-7
use single edge types, with horizontal short edges performing best. Experiments 8-11 test combinations of edge
types for AligNet. Experiments 12-14 evaluate the effect of adding horizontal short edges to the β-skeleton graph.

13328

