
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 12817–12832
November 12-16, 2024 ©2024 Association for Computational Linguistics

SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation
Models

J. Pablo Muñoz 1*, Jinjie Yuan2*, Nilesh Jain1

1Intel Labs, 2Intel Corporation
{pablo.munoz, jinjie.yuan, nilesh.jain}@intel.com

Abstract

Large pre-trained models (LPMs), such as
large language models, have become ubiqui-
tous and are employed in many applications.
These models are often adapted to a desired
domain or downstream task through a fine-
tuning stage. This paper proposes SQFT, an
end-to-end solution for low-precision sparse
parameter-efficient fine-tuning of LPMs, al-
lowing for effective model manipulation in
resource-constrained environments. Addi-
tionally, an innovative strategy enables the
merging of sparse weights with low-rank
adapters without losing sparsity and accu-
racy, overcoming the limitations of previ-
ous approaches. SQFT also addresses the
challenge of having quantized weights and
adapters with different numerical precisions,
enabling merging in the desired numerical for-
mat without sacrificing accuracy. Multiple
adaptation scenarios, models, and comprehen-
sive sparsity levels demonstrate the effective-
ness of SQFT. Models and code are avail-
able at https://github.com/IntelLabs/Hardware-
Aware-Automated-Machine-Learning.

1 Introduction

Despite several limitations, such as hallucinations
and a significant computational footprint, large
pre-trained, foundation, or frontier models have
become integral to numerous applications, includ-
ing language understanding and code generation.
These models are trained with extensive corpora on
thousands of graphics processing units (GPUs), re-
sulting in outstanding zero-shot performance across
various tasks and datasets. However, it is frequently
the case that they must be adapted to improve their
performance on new tasks or data.

Low-rank adapters (LoRA) (Hu et al., 2022)
have demonstrated their effectiveness in model
adaptation. However, when LoRA is combined

*Co-first authors.

Sparsification

LoRA

Frozen Trainable

Unable to merge

(loss of sparsity)

Quantization

LoRA

Frozen

Unable to merge

(different numerical precision)

Sparsification

Sparse Full Tuning

Expensive

Trainable Trainable

Base Model Adapter
Sparse

Base Model

Quantized

Base Model

Figure 1: Limitations of existing approaches for fine-
tuning sparse and quantized models. Full fine-tuning is
expensive. Low-rank adapters (LoRA) for Parameter-
efficient Fine-tuning (PEFT) on sparse or quantized
models cannot easily merge with the compressed
weights due to loss of previously induced sparsity or
different numerical precision.

with model compression techniques, e.g., sparsity
or quantization, several challenges prevent merg-
ing these adapters into a single compressed and
fine-tuned model, as illustrated in Figure 1. These
challenges stem from two primary reasons: i) merg-
ing dense adapters causes the loss of sparsity in
the base model, and ii) adapter merging cannot be
achieved due to different numerical precisions.

This paper introduces SQFT, an end-to-end com-
pression and model adaptation solution for large
pre-trained models (LPMs) that alleviates the limi-
tations above. SQFT is designed to sparsify, quan-
tize, and fine-tune large models and can instan-
tiate efficient pipelines that streamline compres-
sion techniques. Within the SQFT framework, we
propose Sparse Parameter-Efficient Fine-Tuning
(SparsePEFT), a strategy to address the adapter
merging problem for sparse and quantized mod-
els, resulting in more effective high-performing
models. Furthermore, SQFT also benefits from
weight-sharing techniques applied to traditional
parameter-efficient fine-tuning (PEFT) techniques
and incorporates insights from state-of-the-art com-

12817

https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning
https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning

Sparsification SparsePEFT
(NLS Training)

Sparsification Quantization

Can merge!

NLS Training

Sparsification Quantization
Quantization-aware

SparsePEFT
(NLS training)

Zeros and Scales

Merge

Merge

Weights

SQFT with Sparse-aware Adapter Merging

SQFT

SQFT with Quantization and Sparse-aware Adapter Merging

Unmerged adapters for

scaling model serving

NLS Training

NLS Training

Can merge!

Base Model Adapter
Sparse

Base Model

Sparse-and-Quantized

Base Model

Figure 2: SQFT Overview. Several pipeline configurations can be utilized to efficiently fine-tune large models while
addressing several limitations of existing approaches.

pression techniques. Throughout this paper, we
discuss the following contributions:

1. An end-to-end model adaptation solution,
SQFT, designed for efficient low-cost config-
urable pipelines tailored for large pre-trained
models with low numerical precision and spar-
sity.

2. SparsePEFT, a component of SQFT, ad-
dresses several limitations in existing
parameter-efficient fine-tuning approaches
for sparse and quantized models, including
the reduction in the cost of fine-tuning, the
effective merging of adapters into the sparse
model without the loss of sparsity, and the
effective merging of components that operate
in different numerical precision.

3. Extensive experiments demonstrate the effec-
tiveness of SQFT across different foundation
models, sparsity levels, and adaptation scenar-
ios.

This paper is organized as follows: Section 2
describes the stages in the proposed end-to-end
solution, SQFT. Section 3 discusses SQFT’s eval-
uation, and we finalize with some concluding re-
marks in Section 4. Due to page limits, we include
a Related Work section and additional results in the
Appendix.

2 Methodology

SQFT fine-tunes large pre-trained models (LPMs)
in an efficient multi-stage approach that includes
(1) Sparsification, with an optional reduction in
the numerical precision, i.e., Quantization, (2)
Fine-tuning with Neural Low-rank Adapter Search
(NLS), (3) Sparse Parameter-Efficient Fine-Tuning
(SparsePEFT) with optional (4) Quantization-
awareness. Figure 2 illustrates the alternative
model compression and adaptation pipelines that
were explored. In the following sections, we dis-
cuss the details of each stage and the benefits of
accelerating inference and model serving.

2.1 Sparsification and Quantization Stage

As shown in Figure 2, at the beginning of all pos-
sible pipeline configurations, SQFT employs an
effective method to induce sparsity in the model.
For a given weight matrix W ∈ Rm×n, with en-
tries wi,j s.t. W = (wi,j), 1 ≤ i ≤ m, 1 ≤ j ≤ n,
an arbitrary scoring function, Ψ, is assigned to the
proposed solution. This function determines the
relative importance of wi,j compared to the other
weights in W . Ψ can be formulated in various
ways. For instance, Ψ(W) = |W | · ∥X∥2, where
X represents sampled feature input activations, as
proposed by Sun et al. (2023). However, it is im-
portant to highlight that the proposed end-to-end
model fine-tuning solution, SQFT, can utilize any
other scoring function. Leveraging the scores from
Ψ and a desired level of sparsity, s, we derive the

12818

sparsified weight, denoted as W p, with a sparsity
pattern S{W p} = {(i, j) | W p

i,j ̸= 0, 1 ≤ i ≤
m, 1 ≤ j ≤ n}, s.t. |S{W p}| ≤ |S{W }|.

It has been demonstrated that LPMs can tolerate
higher sparsity levels compared with the previous
generations of smaller transformer-based models
(Frantar and Alistarh, 2023). Our experiments con-
firm these observations (Section 3). SQFT’s eval-
uations use Wanda (Sun et al., 2023) to measure
the importance and replace the least important base
model’s weights with zeros. Once sparsity has
been induced in the pre-trained weights, W p, we
might enable an optional reduction in their numeri-
cal precision. Given the sparse weights, SQFT ap-
plies layer-wise one-shot quantization (Nagel et al.,
2020; Frantar et al., 2022a; Wang et al., 2020; Fran-
tar et al., 2022b). Utilizing a selection from state-
of-the-art post-training quantization approaches,
SQFT identifies the low-precision sparse weights,
denoted as Ŵ

p
, that given an input X , minimize

argmin
Ŵ

p ||W pX − Ŵ
p
X||22. In SQFT’s eval-

uation (Section 3), we use GPTQ (Frantar et al.,
2022a), but other similar approaches can be used
to obtain the quantized weights.

Reducing the numerical precision and inducing
sparsity on weights frequently decrease the model’s
accuracy, requiring fine-tuning to improve perfor-
mance.

2.2 Fine-tuning with Neural Low-rank
Adapter Search (NLS)

Given the sparse quantized weights, Ŵ
p
, SQFT

recovers any drops in accuracy induced by the com-
pression schema and fine-tunes these weights for
a specific downstream task. As shown in Figure 2,
SQFT employs Neural Low-rank Adapter Search
(NLS) (Munoz et al., 2024a) instead of vanilla Low-
rank Adapters (LoRA) (Hu et al., 2022), and fine-
tunes sparse and quantized models. To justify using
NLS, traditional LoRA adapters require assigning
the values for several hyperparameters, including
their rank r, and the subset of modules where these
adapters will be placed. Determining these hyper-
parameters can be a challenging endeavor. To alle-
viate this limitation, SQFT extends NLS’ weight-
sharing techniques to facilitate the discovery of op-
timal adapter configurations from a space of elastic
adapter configurations. In other words, instead of
having a fixed value for the rank, r, we enable elas-
tic configurations, C = [c1, . . . , cn], s.t., r ← ci
depending on the activation of the corresponding

5 2 1

8 2 6

2 3 6

W

Wp

BA

Lp

⊙

5 0 0

0 2 0

2 0 0

1 0 0

0 1 0

1 0 0

1 3 2

7 6 3

2 0 1

1 0 0

0 6 0

2 0 0

M

Sparsification

Mask

Figure 3: Sparse Parameter-efficient Fine-tuning
(SparsePEFT). A binary mask is obtained from the spar-
sified weights and applied to the adapters, allowing for
the later merge without loss of sparsity.

sub-adapter.

2.3 SparsePEFT
Fine-tuning the sparse quantized model with elastic
adapters effectively improves the model’s perfor-
mance on a downstream task. However, as illus-
trated in the middle and right part of Figure 1, a
challenge arises when dealing with sparse or quan-
tized weights and dense adapter weights: merg-
ing them will i) result in the loss of sparsity on
the model’s weights or ii) be unable to merge due
to different numerical precisions. Aiming to ad-
dress the first limitation, we propose an effective
strategy, Sparse Parameter-Efficient Fine-Tuning
(SparsePEFT), to make adapters sparsity-aware. As
depicted in Figure 3, SparsePEFT applies a binary
mask M derived from the initial sparsification of
W . This mask is used to sparsify the adapters ma-
trix (denoted as BA) into Lp. The process can be
formulated as:

Lp = (BA)⊙M , (1)

which is activated during the fine-tuning process for
sparsity awareness. SparsePEFT enables the merg-
ing of the sparsified weights W p and the adapter
weight Lp without sacrificing the sparsity induced
early in the compression pipeline as follows,

W p ←W p +Lp. (2)

In addition to preserving sparsity, SparsePEFT
demonstrates comparable (even better) accuracy
compared to fine-tuning with dense adapters. Ex-
tensive experimental findings substantiate the ad-
vantages of SparsePEFT, as detailed in Section 3.

Although SparsePEFT can effectively preserve
the model’s sparsity, it presents additional chal-
lenges when merging with quantized models, the

12819

second limitation we discussed before, which is
primarily attributed to the need for the adapter and
pre-trained weights to possess identical numerical
precision. In the following subsection, we explore
a pipeline variation for SQFT that facilitates the
integration of sparse quantized weights. This ap-
proach aims to address both challenges mentioned
above while improving the overall efficiency of the
resulting model.

2.4 Quantization-aware SparsePEFT

Building upon the concept of SparsePEFT, we
propose Quantization-aware SparsePEFT (QA-
SparsePEFT), an extension of SparsePEFT for
sparse quantized models. QA-SparsePEFT inte-
grates quantization awareness into SparsePEFT. In
most common quantization schemes, the zero point
and scales for the target quantized tensor are deter-
mined during the quantization process. Within the
QA-SparsePEFT stage, the zeros and scales of the
sparse quantized weights, Ŵ

p
, of the based model

are shared with the adapter. The elastic adapters
can then be quantized smoothly with the shared
fixed zeros and scales, enabling quantization-aware
fine-tuning. Formally, given the sparsified pre-
trained weight W p, sparsified adapter weight Lp

obtained from SparsePEFT, zeros z and scales s
from the quantization of W p, the quantization pro-
cess in the proposed QA-SparsePEFT can be for-
mulated as:

Ŵ
p

m = clamp
(

round
(
W p + Lp

s

)
+ z, 0, Qp

)
, (3)

where Ŵ
p

m denotes the sparse quantized (merged)
weight and Qp = 2n−1 − 1 (n represents the bit-
width of the quantized values). Dequantization is
the inverse as follows:

W̃
p
m = s

(
Ŵ

p

m − z
)
, (4)

which applies z and s to approximate W p
m.

Through QA-SparsePEFT, we can obtain the fine-
tuned, sparse, low-precision resulting model. More-
over, SQFT with QA-SparsePEFT can run the NLS
stage using this schema, which allows us to merge
the adapters as soon as an optimal configuration
has been discovered.

2.5 Model Serving and Inference Acceleration

Accelerating model serving and inference through
sparsification and quantization techniques has
shown significant efficacy across various hardware

platforms and kernels, demonstrating remarkable
speedups. However, adding adapter modules for
PEFT with a sparse or quantized model (as shown
in Figure 1) introduces computational overhead
during inference due to their non-mergeability.
SparsePEFT and QA-SparsePEFT allow adapters
to be merged into the sparse and quantized model,
which can reduce adapters’ redundancy and com-
putational overhead, leading to more streamlined
inference processes. Moreover, quantization tech-
niques further enhance acceleration by reducing
the model size and computational complexity, but
balancing the trade-off between acceleration and
maintaining competitive accuracy is essential.

In summary, SQFT and its SparsePEFT strategy
bring the benefits of adapter merging and maintain-
ing accuracy on sparse or quantization scenarios.
The choice between the sparsity level and whether
to apply quantization depends on the specific de-
ployment scenario (e.g., task requirements and re-
source constraints), including the trade-off between
model performance, inference speed, and memory
efficiency. In the next section, we will delve into
further empirical studies to fully understand the
strengths and weaknesses of each approach in dif-
ferent settings.

3 Experimental Results

We evaluate SQFT on several state-of-the-art large
pre-trained models and datasets. Next, we discuss
the setup for our experiments.

3.1 Setup

Models SQFT is evaluated on three state-of-the-
art models, including Llama-3-8B1, Mistral-7B-
v0.32 and Phi-3-Mini-4K-Instruct3. To study it
more comprehensively, we aim to explore SQFT
across different models, scales, and settings.

Datasets and Downstream Tasks Aligned with
other works in the LPMs compression and fine-
tuning spaces, SQFT is validated on three ex-
perimental settings: 1) Grade School Math 8K
(GSM8K) (Cobbe et al., 2021), 2) Math rea-
soning with instruction tuning (following LLM-
Adapters (Hu et al., 2023)), including 3 math rea-
soning datasets: GSM8K, Math Word Problems
(MAWPS) (Koncel-Kedziorski et al., 2016), Sim-
ple Variations on Arithmetic Math word Problems

1https://huggingface.co/meta-llama/Meta-Llama-3-8B
2https://huggingface.co/mistralai/Mistral-7B-v0.3
3https://huggingface.co/microsoft/Phi-3-mini-4k-instruct

12820

Table 1: Results from adapting Llama-3-8B and Mistral-7B-v0.3 to GSM8K. The criterion for mergeable is that
there should be no loss in either accuracy or sparsity before and after merging. The evaluation used the default
configuration for lm-eval-harness (Gao et al., 2023) (5-shot).

Model Sparsity Method Mergeable Final Precision GSM8K Test
(Base + Adapter / Base) Accuracy(%)

Llama-3-8B

0% w/o tune - FP16 50.0

50%

w/o Quantization
w/o tune - FP16 12.5
LoRA ✗ FP16 + FP16 50.6
Shears ✗ FP16 + FP16 52.2
SQFT + SparsePEFT (Ours) ✓ FP16 52.5

Quantization
w/o tune - INT4 7.0
GPTQ + LoRA ✗ INT4 + FP16 48.9
SQFT (Ours) ✗ INT4 + FP16 50.0
SQFT + QA-SparsePEFT (Ours) ✓ INT4 50.2

Mistral-7B-v0.3

0% w/o tune - FP16 36.0

50%

w/o Quantization
w/o tune - FP16 17.2
LoRA ✗ FP16 + FP16 44.1
Shears ✗ FP16 + FP16 45.1
SQFT + SparsePEFT (Ours) ✓ FP16 50.1

Quantization
w/o tune - INT4 16.0
GPTQ + LoRA ✗ INT4 + FP16 44.0
SQFT (Ours) ✗ INT4 + FP16 44.5
SQFT + QA-SparsePEFT (Ours) ✓ INT4 44.0

(SVAMP) (Patel et al., 2021), and 3) Commonsense
reasoning datasets: Boolean Questions (BoolQ)
(Clark et al., 2019), Physical Interaction: Ques-
tion Answering (PIQA) (Bisk et al., 2020), Hel-
laSwag (Zellers et al., 2019), Large-scale Winograd
Schema Challenge (WinoGrande) (Sakaguchi et al.,
2021), AI2 Reasoning Challenges (Arc-e, Arc-c)
(Clark et al., 2018), and Open Book Question An-
swering (OBQA) (Mihaylov et al., 2018).

Evaluation Settings The evaluations of our ex-
periments are conducted utilizing lm-eval-harness
(Gao et al., 2023) in both setting 1 and 3 while
following the evaluation from LLM-Adapters in
setting 2. We present a comparative analysis of
the results obtained from our various pipelines and
also compare with vanilla LoRA (Hu et al., 2022),
Shears (Munoz et al., 2024a) (a parameter-efficient
fine-tuning method for sparse models), and GPTQ
+ LoRA. For fair comparison, all methods are run in
the same environment and with the same configura-
tion. SQFT employs the implementation of Wanda
(Sun et al., 2023) as default method for sparsifica-
tion, and GPTQ in Huggingface 4 for quantizing
the LPMs and adapters. The hyperparameters used
in our experiments are detailed in the Appendix.

4https://huggingface.co/blog/gptq-integration

Reference Configuration Unless stated in the re-
sults, we report a reference configuration for SQFT.
This configuration is obtained utilizing the heuristic
proposed in Munoz et al. (2024b). The heuristic is
intuitive and straightforward, activating the config-
uration with the median of each set of elastic values
per module. Spending additional cycles to search
the space of configurations might yield even more
competitive results, presented in Table 4. Next, we
discuss experimental results and studies conducted
using SQFT.

3.2 Main Results

3.2.1 Fine-tuning on GSM8K

We begin our evaluation with Llama-3-8B and
Mistral-7B-v0.3, assessing their accuracy in a
dense mode and after inducing 50% sparsity with-
out fine-tuning on the GSM8K dataset. Subse-
quently, we execute various pipelines of SQFT.
As described in Table 1, for Llama-3-8B at the
50% sparsity level, SQFT recovers the model’s ac-
curacy from 12.5% to 52.5% without employing
quantization, while allowing for the merging of
adapters without sacrificing sparsity (SparsePEFT)
and incorporating quantization into the pipeline re-
sults in a minor drop in accuracy to 50.2% when
enabling the adjustment to merge adapters (QA-
SparsePEFT).

12821

Table 2: Results from adapting Mistral-7B-v0.3 and Phi-3-Mini-4K-Instruct with math instruction tuning.
Mergeable means that merging the dense adapters with the sparse weights is possible without losing the induced
sparsity levels or affecting the desired low numerical precision.

Model Sparsity Method Mergeable Final Precision Datasets | Accuracy(%) Average
(Base + Adapter / Base) GSM8K MAWPS SVAMP

Mistral-7B-v0.3

0% w/o tune - FP16 - - - -

50%

w/o Quantization
w/o tune - FP16 - - - -
LoRA ✗ FP16 + FP16 53.8 85.7 58.2 65.9
Shears ✗ FP16 + FP16 53.0 87.4 61.7 67.4
SQFT + SparsePEFT (Ours) ✓ FP16 55.3 87.4 59.8 67.5

Quantization
w/o tune - INT4 - - - -
GPTQ + LoRA ✗ INT4 + FP16 51.4 87.4 60.3 66.4
SQFT (Ours) ✗ INT4 + FP16 51.3 87.0 62.8 67.0
SQFT + QA-SparsePEFT (Ours) ✓ INT4 54.1 88.2 59.1 67.2

Phi-3-Mini-4K-Instruct

0% w/o tune - FP16 64.7 84.5 85.4 78.2

50%

w/o Quantization
w/o tune - FP16 38.9 64.7 66.8 56.8
LoRA ✗ FP16 + FP16 62.5 90.3 77.8 76.9
Shears ✗ FP16 + FP16 62.3 90.8 76.1 76.4
SQFT + SparsePEFT (Ours) ✓ FP16 61.9 91.2 78.7 77.3

Quantization
w/o tune - INT4 33.4 56.7 64.2 51.4
GPTQ + LoRA ✗ INT4 + FP16 60.3 89.5 74.8 74.9
SQFT (Ours) ✗ INT4 + FP16 60.3 90.8 75.6 75.5
SQFT + QA-SparsePEFT (Ours) ✓ INT4 61.8 88.7 75.5 75.3

More importantly, SQFT with SparsePEFT and
QA-SparsePEFT exhibit comparable performance
to their corresponding non-mergeable approaches.
This behavior is particularly evident in the non-
quantized experimental setup for the Mistral-7B-
v0.3 model, where SQFT + SparsePEFT (50.1%)
significantly outperforms its two baselines, LoRA
(44.1%) and Shears (45.1%). These results suggest
that SQFT with SparsePEFT (QA-SparsePEFT) ef-
fectively addresses the limitation of the merging
problem encountered when fine-tuning adapters
into sparse models (or sparse and quantized mod-
els) without any degradation in accuracy. Further-
more, the comparison between LoRA and SQFT
with SparsePEFT (or Shears), and between GPTQ
+ LoRA and SQFT, highlights the superior per-
formance of NLS (elastic rank) compared with
LoRA (fixed rank). We explore the performance of
a broader range of sparsity levels and conduct more
detailed ablation experiments in this experimental
setting, which can be found in Sections 3.4 and 3.6,
respectively. The Appendix includes ablation ex-
periments without sparsity and only utilizing SQFT
to fine-tune quantized models.

3.2.2 Math Reasoning with Instruction
Tuning

In addition to fine-tuning on GSM8K, we also in-
vestigated the performance of SQFT with Mistral-

v0.3 and Phi-3. Since the Phi-3-series models re-
leased by Microsoft are the best-suited instruction
models for a chat prompt, we evaluate SQFT on
three math reasoning datasets for instruction tun-
ing. Table 2 presents the test accuracy for our
approaches and baselines. Interestingly, in the full-
precision mode (w/o Quantization), our proposed
SparsePEFT not only achieves the highest aver-
age accuracy (67.5% for Mistral-v0.3 and 77.3%
for Phi-3) compared to other approaches but also
uniquely allows for the merging of adapters and
sparse weights without any loss of sparsity. This
result is achieved without needing an expensive
search and by utilizing the heuristic detailed in Sec-
tion 3.1. In the quantization mode, the accuracy
of SQFT + QA-SparsePEFT (mergeable) is com-
parable to the non-mergeable approaches (67.2%
vs. 66.4%/67.0% and 75.3% vs. 74.9%/75.5%).
This result suggests a need to balance the trade-
off between accuracy and efficiency. Fortunately,
SQFT + QA-SparsePEFT results in a merged fine-
tuned quantized model, eliminating the overhead
associated with dense adapters.

3.2.3 Fine-tuning on Commonsense
Reasoning

Besides the mathematical domain of the first two
experimental settings, we also explore SQFT in
other areas, e.g., commonsense reasoning. We ap-

12822

Table 3: Results from adapting Phi-3-Mini-4K-Instruct with commonsense reasoning. SQFT obtains competitive
fine-tuned models with an additional benefit over Shears and LoRA applied to low-precision weights, i.e., SQFT’s
adapters can be efficiently merged into the weights without any loss of precision or accuracy. We are reporting a
reference submodel for SQFT obtained the heuristic detailed in 3.1, which means that, as shown in Table 4, with an
additional cost, SQFT can discover submodels with even higher performance.

Model SparsityMethod Mergeable
Final Precision Datasets | Accuracy(%)

Average
(Base + Adapter / Base)BoolQPIQAHellaSWinoGArc-eArc-cOBQA

Phi-3-Mini-4K-Instruct

0% w/o tune - FP16 86.1 80.3 78.5 73.7 83.2 57.5 46.8 72.3

50%

w/o Quantization

w/o tune - FP16 82.5 75.9 69.9 69.1 76.9 50.9 43.4 66.9

LoRA ✗ FP16 + FP16 85.6 79.1 75.8 71.5 79.6 53.2 49.4 70.6

Shears ✗ FP16 + FP16 85.2 78.9 75.7 72.6 80.1 53.3 50.4 70.9

SQFT + SparsePEFT (Ours) ✓ FP16 84.0 78.8 75.5 72.1 80.1 53.5 48.6 70.4

Quantization

w/o tune - INT4 81.4 75.2 68.5 68.2 75.9 50.3 40.2 65.7

GPTQ + LoRA ✗ INT4 + FP16 85.3 79.1 75.3 72.5 79.5 54.6 47.2 70.5

SQFT (Ours) ✗ INT4 + FP16 85.1 79.0 75.4 71.2 79.6 54.1 48.8 70.5

SQFT + QA-SparsePEFT (Ours) ✓ INT4 83.7 80.1 74.1 73.6 80.1 55.1 48.2 70.7

Table 4: Hill-climbing searching results for Phi-3-Mini-4K-Instruct with the commonsense reasoning dataset.

Model Sparsity Method Sub-Adapter
Validation Datasets | Accuracy(%) Test Datasets | Accuracy(%)
Arc-e Arc-c OBQA Average BoolQ PIQA HellaS WinoG Arc-e Arc-c OBQA Average

Phi-3-Mini-4K-Instruct 50%
SQFT + SparsePEFT

Heuristic 79.3 50.8 47.4 59.2 84.0 78.8 75.5 72.1 80.1 53.5 48.6 70.4
Hill-climbing 80.2 51.8 47.6 59.9 84.3 78.9 75.4 72.0 80.1 54.3 49.4 70.6

SQFT + QA-SparsePEFT
Heuristic 80.0 51.5 45.4 59.0 83.7 80.1 74.1 73.6 80.1 55.1 48.2 70.7
Hill-climbing 80.4 53.5 46.2 60.0 83.6 79.7 74.1 73.7 80.1 56.2 48.8 70.9

ply SQFT to fine-tuning the Phi-3 model on a set
of unified commonsense training datasets with 83K
samples for fine-tuning from BoolQ, PIQA, Hel-
laSwag, WinoGrande, Arc-e, Arc-c, and OBQA.
Table 3 compares the test accuracy of the evaluated
approaches. SQFT obtains a competitive config-
uration with Shears, LoRA, and GPTQ + LoRA.
However, SQFT has the additional benefit of al-
lowing for the merging without losing the previ-
ously induced sparsity, both in full-precision and
quantized modes. It is worth noting that SQFT
with QA-SparsePEFT shows super competitiveness
here, i.e., the most efficient model with high accu-
racy (among all full-precision and quantized cases).

3.3 Hill-climbing to Better Configurations

The results presented in the previous sections em-
ploy the simple heuristic (as detailed in Section
3.1) to obtain a reference configuration from the
NLS search space. However, superior configura-
tions can be discovered with an additional budget.
We apply a well-designed hill-climbing search al-
gorithm (Algorithm 1 in Appendix), which starts
from the configuration derived from the heuristic
and explores its neighboring configurations in a hill-

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
Layer

0

8

12

16

QK
V

Ad
ap

te
r R

an
k

SQFT + SparsePEFT

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
Layer

0

8

12

16

QK
V

Ad
ap

te
r R

an
k

SQFT + QA-SparsePEFT

Figure 4: The adapter rank distribution of the optimal
configurations obtained from the hill-climbing search
algorithm (Phi-3-Mini-4K-Instruct with commonsense
reasoning).

12823

20 30 40 50 60 70
Sparsity (%)

25

30

35

40

45

50

55

60

G
SM

8K
 A

cc
ur

ac
y

(%
)

Baseline
(w/o sparse and tune)

w/o Quantization

Shears
SQFT + SparsePEFT

20 30 40 50 60 70
Sparsity (%)

Quantization

SQFT
SQFT + QA-SparsePEFT

Figure 5: Comparison of various sparsity levels for
Llama-3-8B with GSM8K. SQFT achieves similar per-
formance as Shears but with the added benefit of merg-
ing adapters with different numerical precision.

climbing matter based on their validation accuracy.
For this purpose, we employed the validation sets
from Arc-e, Arc-c, and OBQA, as other datasets
do not provide a validation set. As demonstrated
in Table 4, a more optimal configuration can be
discovered, outperforming the default adapter con-
figuration obtained from the heuristic. Exploring
further the search space of elastic adapter ranks
produces richer adapter distributions as depicted in
Figure 4. More importantly, the test set results re-
veal a significant improvement in the performance
of the Arc-c and OBQA datasets, which suggests
that an appropriate validation set can assist in iden-
tifying the optimal adapter configuration.

3.4 Exploring a Broader Range of Sparsity
Levels

All our previous experiments employ 50% sparsity
as it is moderate and mild. In this section, we ex-
plored the behavior of SQFT in a broader range of
sparsity levels. As shown in Figure 5, the model’s
accuracy experiences a significant drop between a
sparsity of 60% and 70%. We denote this range
as the critical sparsity threshold, representing the
boundary at which the model’s performance no-
tably degrades. Through our recovery downstream
fine-tuning strategy, models with up to 50% spar-
sity (even with quantization) can achieve compa-
rable performance with the original dense model
(represented by the baseline in the figure) on the
downstream task. This 50% sparsity can be de-
fined as the optimal sparsity level, as it represents
the point of balance where the model maintains
high performance while achieving computational
efficiency. Moreover, there is little difference in ac-
curacy between our mergeable and non-mergeable
approaches, which illustrates the effectiveness of
our proposed SparsePEFT.

3.5 Cost Analysis of Pipeline Configurations

The different versions of SQFT’s pipelines incur
various costs that allow users to choose based
on their fine-tuning budget. Table 6 details the
characteristics of each pipeline configuration, e.g.,
whether we can merge the adapters, the preci-
sion of the based model and the adapters, and the
cost of each configuration. Two assumptions are
made regarding model storage, inference speedup,
or memory: merging is better than unmerging
due to the overhead from the unmerged adapters,
and quantization mode is better than full-precision
mode. As for accuracy, the mergeable method
we propose is competitive with the previous non-
mergeable method. Regarding the fine-tuning time,
our mergeable method is slightly slower than the
non-mergeable method due to the additional mask
and adapter calculations. In summary, SQFT with
SparsePEFT is the best choice for full-precision
mode because it eliminates the adapter’s additional
path without sacrificing accuracy. Suppose mem-
ory usage during fine-tuning is a priority for the
quantization mode. In that case, vanilla SQFT (first
configuration in Figure 2) is the best choice because
it only requires the quantized model with little over-
head of different precision adapters. Otherwise,
SQFT with QA-SparsePEFT is better because it
can ultimately produce a most efficient model that
will be of great benefit at deployment time.

3.6 Ablation Studies - LoRA vs NLS

As shown in Table 5, the ablation studies across
30%, 50%, and 70% sparsity highlight the bene-
fits of elastic adapters and the Neural Low-rank
Adapter Search (NLS), which enhance the perfor-
mance of the models fine-tuned by SQFT. Com-
pared to vanilla LoRA, SQFT with SparsePEFT
and NLS further reduces the accuracy gap to the
dense or non-quantized models. We include more
results with additional sparsity levels in the Ap-
pendix, which show the benefits of using SQFT
with NLS for sparse and quantized models.

4 Conclusion

Large pre-trained models often require fine-tuning
to downstream target tasks and compression to uti-
lize them in resource-constrained environments.
This paper presents SQFT, a low-cost fine-tuning
solution for low precision and sparse foundation
models. SQFT solves challenges when merging
sparse (and quantized) base models and dense

12824

Table 5: Ablation studies for LoRA vs. NLS (Llama-3-8B with GSM8K). Compared to LoRA, NLS obtains
significantly better accuracy across all possible pipelines of SQFT and different sparsity levels.

Model Sparsity Method Mergeable Final Precision Fine-tune GSM8K Test
(Base + Adapter / Base) Approach Accuracy(%)

Llama-3-8B

30%

Shears ✗ FP16 + FP16
LoRA 58.2
NLS 59.8+1.6

SQFT + SparsePEFT (Ours) ✓ FP16
LoRA 60.0
NLS 61.2+1.2

SQFT (Ours) ✗ INT4 + FP16
LoRA 56.7
NLS 57.6+0.9

SQFT + QA-SparsePEFT (Ours) ✓ INT4
LoRA 54.8
NLS 56.0+1.2

50%

Shears ✗ FP16 + FP16
LoRA 50.6
NLS 52.2+1.6

SQFT + SparsePEFT (Ours) ✓ FP16
LoRA 50.6
NLS 52.5+1.9

SQFT (Ours) ✗ INT4 + FP16
LoRA 48.9
NLS 50.0+1.1

SQFT + QA-SparsePEFT (Ours) ✓ INT4
LoRA 48.2
NLS 50.2+2.0

70%

Shears ✗ FP16 + FP16
LoRA 25.5
NLS 27.9+2.4

SQFT + SparsePEFT (Ours) ✓ FP16
LoRA 22.1
NLS 24.9+2.8

SQFT (Ours) ✗ INT4 + FP16
LoRA 24.2
NLS 25.2+1.0

SQFT + QA-SparsePEFT (Ours) ✓ INT4
LoRA 22.6+0.2
NLS 22.4

Table 6: Cost analysis for different pipelines (rank).
ID 1, 2, 3, and 4 represent LoRA/Shears, SQFT, SQFT
+ SparsePEFT, and SQFT + QA-SparsePEFT, respec-
tively.

ID 1 2 3 4

Mergeable ✗ ✗ ✓ ✓

Final Precision FP16 + FP16 INT4 + FP16 FP16 INT4

Model Storage (↓) 1 > 3 ≫ 2 > 4

Fine-tuning Time (↓) 1 ≈ 2 < 3 ≈ 4

Fine-tuning Memory (↓) 2 < 1 ≈ 3 ≈ 4

Inference Speedup (↑) 4 > 2 > 3 > 1

Inference Memory (↓) 4 < 2 < 3 < 1

Accuracy (↑) 1 ≈ 3 > 2 ≈ 4

(with different numerical precision) adapters with-
out losing the induced sparsity in the base model
while delivering high-performing fine-tuned mod-
els. SQFT’s models and code are available
at https://github.com/IntelLabs/Hardware-Aware-
Automated-Machine-Learning.

Limitations and Ethical Considerations

Large pre-trained models have gained popularity
and are the base of many applications. However,
these models are often used indiscriminately with
little analysis of their potential failures and conse-
quences. SQFT solely focuses on these large mod-
els’ efficient fine-tuning and compression. How-
ever, users of SQFT should also consider the lim-
itations of these models before deployment in en-

Table 7: Cost analysis for different pipelines (value). ID
1, 2, 3, and 4 represent LoRA/Shears, SQFT, SQFT +
SparsePEFT, and SQFT + QA-SparsePEFT, respectively.
All numbers are tested on a single Tesla V100-SXM2-
32GB GPU. Both training and inference are conducted
on Llama-3-8B with GSM8K, with a batch size of 16
during training.

ID 1 2 3 4

Mergeable ✗ ✗ ✓ ✓

Final Precision FP16 + FP16 INT4 + FP16 FP16 INT4

Model Storage 16.33 GB 6.00 GB 16.07 GB 5.74 GB
Fine-tuning Speed

0.3 0.3 0.2 0.2
(steps per second)
Fine-tuning Memory 30 GiB 21 GiB 30 GiB 30 GiB

vironments where they can cause harm or conflict.
Although compressing and fine-tuning these mod-
els on a particular downstream task would make
them perform better, more studies are needed re-
garding the effects of this specialization.

We demonstrate SQFT on several pre-trained
models. The benefits obtained from the pro-
posed solution might transfer smoothly to other
transformer-based models. However, there might
also be models and datasets in which additional
considerations must be taken. For instance, in our
current experiments, we have noticed that in the
case of OpenELM-1.1B (Mehta et al., 2024), fine-
tuning on math reasoning datasets, e.g., GSM8K,
does not result in high accuracy, and more exper-

12825

https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning
https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning

imentation is needed. There is also the case in
which a pre-trained model might have been trained
on a particular benchmark, a form of data contam-
ination, which is difficult to confirm since often
the details of the training data are not shared pub-
licly (Zhang et al., 2024). In these cases, inducing
sparsity might result in a drop in accuracy on that
particular benchmark.

Due to the many unknowns and complexity of
current large models, it is essential to take measures
to prevent their use in sensitive applications. With
insights obtained by the research community in
the years to come, understanding the intricacies of
these models will help us use them beneficially and
safely.

Acknowledgments

We are grateful to Michael Beale from Intel Labs,
who helped us set up the infrastructure for sharing
our models during the review stage and the final
release and guided us through open-sourcing our
compressed models. We also thank the anonymous
reviewers for their insightful suggestions, which
helped us improve the paper.

References
Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng

Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. GPT3.int8(): 8-bit matrix mul-
tiplication for transformers at scale. In Advances in
Neural Information Processing Systems.

Tim Dettmers and Luke Zettlemoyer. 2023. The case
for 4-bit precision: k-bit inference scaling laws. In
Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org.

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas-
sive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022a. GPTQ: Accurate post-training
compression for generative pretrained transformers.
arXiv preprint arXiv:2210.17323.

Elias Frantar, Sidak Pal Singh, and Dan Alistarh. 2022b.
Optimal Brain Compression: a framework for ac-
curate post-training quantization and pruning. Ad-
vances in Neural Information Processing Systems,
36.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Masafumi Hagiwara. 1994. A simple and effective
method for removal of hidden units and weights. Neu-
rocomputing, 6(2):207–218. Backpropagation, Part
IV.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli
Dryden, and Alexandra Peste. 2021. Sparsity in deep
learning: pruning and growth for efficient inference
and training in neural networks. J. Mach. Learn. Res.,
22(1).

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-
Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Sou-
janya Poria. 2023. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152–1157, San
Diego, California. Association for Computational
Linguistics.

Yann LeCun, John Denker, and Sara Solla. 1989. Op-
timal brain damage. In Advances in Neural In-
formation Processing Systems, volume 2. Morgan-
Kaufmann.

Sachin Mehta, Mohammad Sekhavat, Qingqing Cao,
Max Horton, Yanzi Jin, Frank Sun, Iman Mirzadeh,
Mahyar Najibikohnehshahri, Dmitry Belenko, Pe-
ter Zatloukal, and Mohammad Rastegari. 2024.

12826

https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.1016/0925-2312(94)90055-8
https://doi.org/10.1016/0925-2312(94)90055-8
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

Openelm: An efficient language model family with
open training and inference framework.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

J. Pablo Munoz, Jinjie Yuan, and Nilesh Jain. 2024a.
Shears: Unstructured sparsity with neural low-rank
adapter search. In Proceedings of the 2024 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies (Volume 6: Industry Track),
pages 395–405, Mexico City, Mexico. Association
for Computational Linguistics.

J. Pablo Munoz, Jinjie Yuan, Yi Zheng, and Nilesh Jain.
2024b. LoNAS: Elastic low-rank adapters for effi-
cient large language models. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 10760–10776,
Torino, Italia. ELRA and ICCL.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen,
Christos Louizos, and Tijmen Blankevoort. 2020. Up
or down? adaptive rounding for post-training quanti-
zation. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML’20. JMLR.org.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99–106.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Peisong Wang, Qiang Chen, Xiangyu He, and Jian
Cheng. 2020. Towards accurate post-training net-
work quantization via bit-split and stitching. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 9847–9856. PMLR.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. SmoothQuant:
Accurate and efficient post-training quantization for

large language models. In Proceedings of the 40th
International Conference on Machine Learning.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang,
Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao,
and Ping Luo. 2024. Besa: Pruning large language
models with blockwise parameter-efficient sparsity
allocation. Preprint, arXiv:2402.16880.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 27168–27183. Curran Associates,
Inc.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson,
Catherine Wu, Will Song, Tiffany Zhao, Pranav Raja,
Dylan Slack, Qin Lyu, Sean Hendryx, Russell Ka-
plan, Michele Lunati, and Summer Yue. 2024. A
careful examination of large language model per-
formance on grade school arithmetic. Preprint,
arXiv:2405.00332.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen
Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
2023. Loraprune: Pruning meets low-rank parameter-
efficient fine-tuning. Preprint, arXiv:2305.18403.

12827

https://arxiv.org/abs/2404.14619
https://arxiv.org/abs/2404.14619
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://doi.org/10.18653/v1/2024.naacl-industry.34
https://doi.org/10.18653/v1/2024.naacl-industry.34
https://aclanthology.org/2024.lrec-main.940
https://aclanthology.org/2024.lrec-main.940
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v119/wang20c.html
https://proceedings.mlr.press/v119/wang20c.html
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2305.18403
https://arxiv.org/abs/2305.18403

Appendix

A Related Work

Generative pre-trained models, often based on the
Transformer architecture (Vaswani et al., 2017), re-
quire the application of compression techniques to
reduce their significant computational cost and to
address challenges, e.g., related to memory band-
width. Classic compression techniques like pruning
and quantization have been adapted for the age of
LPMs, removing inefficiencies that cannot be toler-
ated when dealing with billions of parameters. We
discuss them in more detail next.

Pruning Inducing sparsity, either by zeroing out
weights or activations or removing network ele-
ments, can improve the efficiency of LPMs during
inference, provided that they are executed on a run-
time that can exploit sparse patterns. Pruning has
a long history (LeCun et al., 1989), but with the
advent of LPMs, traditional methods(Hoefler et al.,
2021), e.g., Magnitude Pruning (Hagiwara, 1994),
have been replaced by new approaches that are
suited for the challenges of these models with their
large number of parameters. SparseGPT (Frantar
and Alistarh, 2023) proposes a one-shot pruning
method for transformer-based models that trade
minimal accuracy drop for increasing sparsity lev-
els. The method approaches LPMs’ pruning layer-
wise with an efficient weight reconstruction algo-
rithm that incrementally prunes the weight matrix
elements. Wanda (Sun et al., 2023) proposes a
more straightforward approach that does not re-
quire weight updates, computing a score using the
weight magnitude and the norm of input activa-
tions. This approach obtains better results than
SparseGPT. Recently, BESA (Xu et al., 2024) has
improved over SparseGPT and Wanda by target-
ing individual transformer blocks and allocating
sparsity per layer using a differentiable method.
These approaches induce sparsity on pre-trained
models and are evaluated on zero-shot benchmarks.
Our end-to-end solution, SQFT, focuses on fur-
ther adapting the sparsified models to new tasks or
datasets.

Quantization With the advent of large pre-
trained foundation/frontier models (LPMs), quan-
tization approaches have evolved to address the
challenges of scale and memory bandwidth. Due to
the high cost of retraining these models to recover
accuracy degradation, special consideration has

to be taken when incorporating compression tech-
niques, like quantization-aware training in foun-
dation models. Post-training, one-shot quantiza-
tion methods have prevailed, obtaining quantized
versions of large models in hours. LLM.Int8()
was among the first Int8 quantization procedures
for large-scale transformer-based PLMs (Dettmers
et al., 2022). Using vector-wise quantization
and mixed-precision decomposition, LLM.Int8()
demonstrated that it can effectively confront the
outliers that emerge in activations, which makes tra-
ditional quantization methods fail in models with
more than 6.7B parameters. In a contemporary
work, after running thousands of experiments with
various large pre-trained models, it was demon-
strated that 4-bit parameters can reach optimal
performance compared to other bit-precisions in
the 3 to 16-bit range (Dettmers and Zettlemoyer,
2023). ZeroQuant (Yao et al., 2022) quantizes
GPT-3 models, obtaining a reduction in latency
up to 4.16x by utilizing group-wise quantization
for weights, token-wise quantization for activa-
tions, and layer-by-layer knowledge distillation.
SmoothQuant (Xiao et al., 2023) makes activations
easier to quantize by smoothing them and compen-
sating this operation with a transformation of the
weights, resulting in improved results over Zero-
Quant and LLM.Int8(). GPTQ is another good rep-
resentative of one-shot quantization approaches de-
signed especially for LPMs (Frantar et al., 2022a).
GPTQ builds on the learnings from Optimal Brain
Quantization (OBQ) (Frantar et al., 2022b) and ap-
plies layer-wise quantization to the full-precision
weights of a base LPM. We incorporate GPTQ as
the default quantization method in SQFT’s pre-fine-
tuning stage.

Parameter-efficient Fine-tuning (PEFT) Due
to their large number of parameters, it is too costly
to fine-tune pre-trained large models. Updating all
their weights to improve their performance in a
downstream task might require devices with large
memory capacity. PEFT techniques attempt to ad-
dress this challenge by avoiding the update of all
weights in the pre-trained model. For instance,
low-rank (LoRA) adapters (Hu et al., 2022) use a
fraction (often less than 1%) of additional weights
to adapt the model to a new task. LoRA adapters,
B and A, are utilized to reparameterize a linear
projection, Y = WX , keeping the weights, W ,
frozen and updating only the low-rank adapter ma-
trices, A and B, i.e., Y = WX +BAX .

12828

Algorithm 1 Hill-climbing Subnetwork Search
Input: Number of turns T , Number of neighbors N , Neighbor step size S, Number of evaluation samples M , Heuristic

configuration ch, Validation dataset D
Output: Optimal configuration c∗

1: ca ← ch ▷ Initialize anchor with the heuristic configuration
2: V ← {ch} ▷ Initialize the set of visited configurations
3: DM ← Sample(D, M) ▷ Create a proxy dataset by randomly sampling M samples from D
4: for t← 1 to T do
5: C ← Neighbor-sample(ca, N , S) - V ▷ Sample N unvisited S-step neighbor configs
6: V ← V ∪ C ▷ Add the sampled configurations to the set of visited configurations
7: cm ←MaxAcc(Eval(DM , C)) ▷ The config with the maximum accuracy on proxy data
8: if Acc(cm) > Acc(c∗) then
9: ca ← cm ▷ Update anchor configuration if the new configuration has higher accuracy

10: end if
11: end for
12: c∗ ← ca ▷ The optimal configuration is the final anchor configuration
13: return c∗

Recently, Shears proposed Neural Low-rank
Adapter Search (Munoz et al., 2024a) and demon-
strated that LoRA adapters can be made elastic to
allow for the application of weight-sharing schemes
and keeping the original weights of the model
frozen and compressed, e.g., inducing sparsity be-
fore the fine-tuning stage. However, a challenge
that emerges is that merging the dense adapters
with the sparse weights results in the overall loss of
sparsity. LoRAPrune has attempted to address this
challenge by using the weights and gradients of the
LoRA adapters to remove elements in the model’s
weights (Zhang et al., 2023). As demonstrated in
the main sections of the paper, SQFT proposes an
alternative method for merging the dense adapters
with a minimal drop in accuracy.

B Hyperparameters

The hyperparameters used in our main experiments
are shown in Table 8.

C Hill-climbing search algorithm

We propose Algorithm 1 to start from the refer-
ence configuration (Section 3.1) and systematically
explore its neighbors. Table 4 in the main pa-
per shows the benefits of using any available bud-
get to execute this algorithm and discover better-
performing models.

D Additional Sparsity Levels and
Ablation Studies for Llama-3 on
GSM8K

We conducted additional experiments and ablations
studies with different sparsity levels and compared
the underlying NLS approach to LoRA. Table 9

shows that up to high sparsity levels, SQFT delivers
high-performing models.

E How does SQFT perform without
sparsity?

In the main paper, we explored SQFT with both
sparse + non-quantized and sparse + quantized set-
tings. However, we are also interested in what
happens to SQFT if there is no sparsity. Here, we
investigate SQFT’s performance with quantization
alone. As shown in Table 10, without sparsity, the
quantized model reduces the accuracy from 50%
to 36.6%. With the help of fine-tuning, the base-
line GPTQ + LoRA improves accuracy to 58.8%.
At the same time, our SQFT method further en-
hances performance, achieving 61.0% accuracy
with NLS fine-tuning, demonstrating that NLS out-
performs LoRA in the non-sparse setting. However,
for SQFT + QA-SparsePEFT, while NLS outper-
forms LoRA, the accuracy is slightly lower com-
pared to SQFT. The advantage is that it results in an
INT4 model. In summary, users must balance ac-
curacy and efficiency based on their requirements
to choose the optimal approach.

12829

Table 8: Hyperparameters used in our experiments. For all approaches with NLS, we explored several manually
designed search spaces and identified the optimal configuration for each pipeline. Note that in our experiments
involving GSM8K and math instruction tuning, we conducted trials over 3 or 4 epochs and reported the best results
achieved. Interestingly, SQFT with QA-SparsePEFT often necessitates extended training periods to exploit its
quantization-aware capabilities fully.

Model Task Sparsity Method Epoch Batch Learning Adapter rank Adapter Adapter
size rate alpha target modules

Llama-3-8B GSM8K 50%

LoRA 3 16 3e-4 32 64 Q, K, V, Up, Down
Shears 3 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down
SQFT + SparsePEFT 3 16 3e-4 48,32,16 64 Q, K, V, Up, Down
GPTQ + LoRA 3 16 3e-4 32 64 Q, K, V, Up, Down
SQFT 3 16 3e-4 40,32,24 64 Q, K, V, Up, Down
SQFT + QA-SparsePEFT 4 16 3e-4 48,32,16 64 Q, K, V, Up, Down

Mistral-7B-v0.3 GSM8K 50%

LoRA 3 16 3e-4 32 64 Q, K, V, Up, Down
Shears 3 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down
SQFT + SparsePEFT 3 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down
GPTQ + LoRA 3 16 3e-4 32 64 Q, K, V, Up, Down
SQFT 3 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down
SQFT + QA-SparsePEFT 4 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down

Mistral-7B-v0.3 Math 50%

LoRA 3 16 3e-4 32 64 Q, K, V, Up, Down
Shears 3 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down
SQFT + SparsePEFT 3 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down
GPTQ + LoRA 3 16 3e-4 32 64 Q, K, V, Up, Down
SQFT 3 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down
SQFT + QA-SparsePEFT 4 16 3e-4 32,28,24,20,16 64 Q, K, V, Up, Down

Phi-3-Mini-4K-Instruct Math 50%

LoRA 3 16 3e-4 32 64 Qkv
Shears 3 16 3e-4 48,40,32,24,16 64 Qkv
SQFT + SparsePEFT 3 16 3e-4 48,32,16 64 Qkv
GPTQ + LoRA 3 16 3e-4 32 64 Qkv
SQFT 3 16 3e-4 32,28,24,20,16 64 Qkv
SQFT + QA-SparsePEFT 3 16 3e-4 48,32,16 64 Qkv

Phi-3-Mini-4K-Instruct CS 50%

LoRA 3 16 1e-4 16 32 Qkv
Shears 3 16 1e-4 16,12,8 32 Qkv
SQFT + SparsePEFT 3 16 1e-4 16,12,8 32 Qkv
GPTQ + LoRA 3 16 1e-4 16 32 Qkv
SQFT 3 16 1e-4 16,12,8 32 Qkv
SQFT + QA-SparsePEFT 3 16 1e-4 16,12,8 32 Qkv

12830

Table 9: Ablation studies for various sparsity levels (Llama-3-8B with GSM8K).

Model Sparsity Method Mergeable Final Precision Fine-tune GSM8K Test
(Base + Adapter / Base) Approach Accuracy(%)

Llama-3-8B

0% w/o tune - FP16 - 50.0

20%

w/o Quantization
w/o tune - FP16 - 47.5

Shears ✗ FP16 + FP16 LoRA 58.7
NLS 61.2+2.5

SQFT + SparsePEFT ✓ FP16 LoRA 60.3
NLS 62.0+1.7

Quantization
w/o tune - INT4 - 36.6

SQFT ✗ INT4 + FP16 LoRA 57.8
NLS 60.0+2.2

SQFT + QA-SparsePEFT ✓ INT4 LoRA 54.7
NLS 55.6+0.9

30%

w/o Quantization
w/o tune - FP16 - 40.9

Shears ✗ FP16 + FP16 LoRA 58.2
NLS 59.8+1.6

SQFT + SparsePEFT ✓ FP16 LoRA 60.0
NLS 61.2+1.2

Quantization
w/o tune - INT4 - 30.3

SQFT ✗ INT4 + FP16 LoRA 56.7
NLS 57.6+0.9

SQFT + QA-SparsePEFT ✓ INT4 LoRA 54.8
NLS 56.0+1.2

40%

w/o Quantization
w/o tune - FP16 - 31.6

Shears ✗ FP16 + FP16 LoRA 56.9
NLS 56.9

SQFT + SparsePEFT ✓ FP16 LoRA 57.9+1.5
NLS 56.4

Quantization
w/o tune - INT4 - 20.1

SQFT ✗ INT4 + FP16 LoRA 54.9
NLS 54.9

SQFT + QA-SparsePEFT ✓ INT4 LoRA 53.4
NLS 53.7+0.3

50%

w/o Quantization
w/o tune - FP16 - 12.5

Shears ✗ FP16 + FP16 LoRA 50.6
NLS 52.2+1.6

SQFT + SparsePEFT ✓ FP16 LoRA 50.6
NLS 52.5+1.9

Quantization
w/o tune - INT4 - 7.0

SQFT ✗ INT4 + FP16 LoRA 48.9
NLS 50.0+1.1

SQFT + QA-SparsePEFT ✓ INT4 LoRA 48.2
NLS 50.2+2.0

60%

w/o Quantization
w/o tune - FP16 - -

Shears ✗ FP16 + FP16 LoRA 39.9
NLS 45.3+5.4

SQFT + SparsePEFT ✓ FP16 LoRA 40.7
NLS 42.5+1.8

Quantization
w/o tune - INT4 - -

SQFT ✗ INT4 + FP16 LoRA 40.1
NLS 42.0+1.9

SQFT + QA-SparsePEFT ✓ INT4 LoRA 37.6
NLS 40.9+3.3

70%

w/o Quantization
w/o tune - FP16 - -

Shears ✗ FP16 + FP16 LoRA 25.5
NLS 27.9+2.4

SQFT + SparsePEFT ✓ FP16 LoRA 22.1
NLS 24.9+2.8

Quantization
w/o tune - INT4 - -

SQFT ✗ INT4 + FP16 LoRA 24.2
NLS 25.2+1.0

SQFT + QA-SparsePEFT ✓ INT4 LoRA 22.6+0.2
NLS 22.4

12831

Table 10: Results from adapting Llama-3-8B to GSM8K without introducing sparsity.

Model Method Mergeable Final Precision Fine-tune GSM8K Test
(Base + Adapter / Base) Approach Accuracy(%)

Llama-3-8B

w/o tune - FP16 - 50.0
Quantization

w/o tune - INT4 - 36.6
GPTQ + LoRA ✗ INT4 + FP16 LoRA 58.8
SQFT (Ours) ✗ INT4 + FP16 NLS 61.0

SQFT + QA-SparsePEFT (Ours) ✓ INT4 LoRA 55.8
NLS 57.2

12832

