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Abstract
Despite their promising performance across
various tasks, recent studies reveal that Large
language models (LLMs) still exhibit signifi-
cant deficiencies in handling several word-level
and character-level tasks, e.g., word unscram-
bling and sentence editing, indicating urgent
needs for substantial improvements in basic
language understanding and manipulation. To
address these challenges, it is crucial to develop
large-scale benchmarks that can comprehen-
sively assess the performance of LLMs in basic
language tasks. In this paper, we introduce a
bilingual benchmark, CWUM, to investigate
the capabilities and limitations of LLMs in un-
derstanding and manipulating natural language
at both character and word levels. CWUM con-
sists of 15 simple text editing tasks, e.g., letter
counting, word reversing, Chinese character in-
serting, etc. We conduct extensive experiments
on eight advanced LLMs, including base mod-
els and instruction-tuned (chat) variants. The
experimental results highlight significant fail-
ures of existing LLMs on CWUM tasks that hu-
mans can solve perfectly with 100% accuracy.
On English tasks of CWUM, the average accu-
racy of GPT-4, LLaMA-3-70B, and Qwen-72B
is 66.64%, 39.32%, and 33.16%, respectively,
which lags far behind human performance.
Instruction-tuning the base model does not lead
to a distinct performance improvement, as the
average accuracy of LLaMA-3-70B-Instruct on
English tasks is only 1.44% higher than that of
the base LLaMA-3-70B. Ultimately, we show
that supervised fine-tuning (SFT) can enhance
model performance on CWUM without com-
promising its ability to generalize across gen-
eral tasks.

1 Introduction

Recently, large language models (LLMs) have
demonstrated significant capabilities across a wide
range of applications, including general natural lan-
guage processing (NLP) and domain-specific tasks

∗ Corresponding author.

(Bommasani et al., 2021; Wei et al., 2022a; Zhao
et al., 2023). Reports indicate that LLMs have
matched or even surpassed human performance
in several areas. For example, LLMs outperform
humans in specific language translation tasks, stan-
dardized reading comprehension tests, and logical
reasoning assessments. Additionally, LLMs ex-
cel at solving complex algebra and calculus prob-
lems in standardized mathematics tests and compe-
titions.

Despite the promising performance across var-
ious tasks, recent studies propose that LLMs still
exhibit significant deficiencies in handling several
word-level and character-level tasks, e.g., word un-
scrambling and sentence editing (Srivastava et al.,
2022). In simple tasks such as writing a sentence
containing a specific word or choosing which of
two words is longer, model performance is worse
than that of elementary school students (Efrat et al.,
2023). This disparity indicates that while LLMs
have made breakthroughs in higher-level language
understanding and generation, substantial improve-
ments are still needed for basic language under-
standing and manipulation.

To address these challenges, it is crucial to de-
velop large-scale benchmarks that can comprehen-
sively assess the performance of LLMs in basic lan-
guage tasks. A bilingual benchmark is particularly
important as it allows for the evaluation of LLMs
across different languages, revealing language-
specific deficiencies and providing a more com-
prehensive understanding of their capabilities and
limitations. To this end, we propose a bilingual
benchmark CWUM, to evaluate the capacities and
limitations of LLMs in understanding natural lan-
guage at both character and word levels. Specifi-
cally, CWUM comprises 15 tasks focusing on text
edition, including identification, insertion, rever-
sal, and counting. In addition to evaluating model
performance on each task of CWUM, we investi-
gate how model performance varies with increasing
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Figure 1: This figure shows the accuracy comparison between base LLMs (left), and the accuracy comparison
between chat LLMs (right), on CWUM. GPT-4 performance for each task is computed on 100 uniformly distributed
test examples owing to its cost and usage limit. Other model performance is calculated on the full test examples.

model size and shots. We also examine the impact
of instruction tuning on model performance. To
boost the confidence of model predictions, we em-
ploy a few-shot Chain-of-Thought (CoT) prompt
(Wei et al., 2022b), which encourages the model
to follow demonstrations that provide intermediate
steps, such as identifying the letters constituting
the input word or the words constituting the input
sentence, before generating the final output.

We evaluate the performance of eight advanced
LLMs including both base models and instruction-
tuned (chat) variants, on the CWUM benchmark.
These models include LLaMA-2 and LLaMA-3
(Touvron et al., 2023), Qwen (Bai et al., 2023),
Mistral (Jiang et al., 2023), Baichuan2 (Baichuan,
2023), ChatGLM3 (Zeng et al., 2023), Yi (AI et al.,
2024), DeepSeek (DeepSeek-AI, 2024), and GPT-4
(OpenAI, 2023). Overall, we observe the follow-
ing phenomena by comparing the testing accuracy
of different models. (1) The tasks in the CWUM
benchmark pose a huge challenge to all evaluated
models, resulting in a significant performance gap
compared to human performance. As illustrated
in Figure 1, human performance on the CWUM
benchmark is perfect (measured at 100%). Even
the best-performing model, GPT-4, achieves only
66.64% accuracy on English tasks and 78.20% on
Chinese tasks, respectively. The performance of
representative open-source LLaMA-3-70B on the

English and Chinese tasks is 39.92% and 30.02%,
respectively, significantly lower than human per-
formance. (2) Instruction tuning does not lead to
substantial performance improvement, e.g., the av-
erage accuracy of LLaMA-3-70B-Instruct and the
base LLaMA-3-70B on English tasks is 40.76%
and 39.92%, respectively. (3) While model perfor-
mance improves with increasing size, it remains
unsatisfactory compared to human performance.
Additionally, by analyzing model predictions, we
attribute the failures of LLMs on CWUM to the
following reasons.

• The primary factor contributing to the fail-
ure of LLMs in character-level tasks is the
widespread utilization of the Byte-Pair En-
coding (BPE) algorithm to construct vocabu-
lary, which results in the model having never
seen individual characters but rather opaque
word fragments. These fragments change
chaotically based on specific words or the sur-
rounding context, causing the model to strug-
gle with tasks that require precise manipu-
lation of individual characters within words.
This is consistent with the study in GPT-
3 Creative Fiction 1, which proposes that
the BPE encodings result in models bad at
phonetic/character-level tasks.

1https://gwern.net/gpt-3#bpes
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• In addition to the defects of Byte-Pair Encod-
ing (BPE), we suggest that the factors con-
tributing to the failure of LLMs in word-level
tasks include: 1) limited capacity to under-
stand and process absolute positions, 2) profi-
ciency in handling continuous linguistic infor-
mation but lacking specialized mechanisms
for dealing with discrete data, such as precise
numbers and positions, 3) misinterpretation
of complex structures or special symbols in a
sentence, such as punctuation marks, abbrevi-
ations, and numbers.

Finally, we conduct experiments to explore
whether supervised fine-tuning (SFT) can improve
model performance on CWUM while maintain-
ing its generalization ability on general tasks. We
collect 160,000 training examples for eight En-
glish tasks from CWUM and combine them with
520,000 general-purpose instruction-response pairs
to construct the final SFT dataset. Fine-tuning
LLaMA-2-7B on this mixed dataset results in an
86% average accuracy improvement on all 10 En-
glish CWUM tasks. Additionally, on unseen gen-
eral tasks including MMLU (Hendrycks et al.,
2021a), HellaSwag (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2020), and ARC (Clark
et al., 2018), the performance of the model fine-
tuned on mixed data is comparable to that of the
model fine-tuned on instruction data alone.

2 Related Works

Large language models (LLMs) are increasingly
significant in both research and daily life, making
the evaluation of their capabilities a crucial issue.
Recently, substantial efforts have been made to de-
velop benchmarks that assess LLMs from various
perspectives. LLMs were originally designed to im-
prove performance in natural language processing
(NLP) tasks, including classification (Zellers et al.,
2019; Sakaguchi et al., 2020), question-answering
(Rajpurkar et al., 2016), generation (Narayan et al.,
2018), etc. Recently, evaluation research also
trends to domain-specific tasks using datasets such
as MATH (Hendrycks et al., 2021b) and GSM8K
(Cobbe et al., 2021) for mathematical reasoning,
IFEval (Zhou et al., 2023) for instruction following,
and HumanEval (Chen et al., 2021) for code gen-
eration. Beyond single-task datasets, large-scale
benchmarks like MMLU (Hendrycks et al., 2021a),
GLUE (Wang et al., 2019), and C-Eval (Huang
et al., 2023) cover a wide range of tasks to pro-

vide a comprehensive evaluation. Furthermore, as
LLMs are increasingly integrated into everyday
activities, studies have begun to examine their ro-
bustness (Wang et al., 2021; Nie et al., 2020), eth-
ical considerations and biases (Cao et al., 2023),
and trustworthiness (Wang et al., 2023). These
evaluations are vital to understanding the broader
implications of LLMs and ensuring their reliable
and ethical deployment.

In addition to the work mentioned above, sev-
eral studies focusing on the limitations of LLMs
are drawing attention from the research commu-
nity. Berglund et al. (2023) investigates the Re-
versal Curse of LLMs, i.e., LLMs trained on “A
is B” failing to learn “B is A”. Pezeshkpour and
Hruschka (2023) aims to study the order sensitiv-
ity of LLMs against options of multiple-choice
questions and two approaches are presented to cal-
ibrate LLMs’ predictions including majority vote
and multiple evidence calibration (MEC). To ex-
plore the limitations and predict the future behavior
of LLMs, the Beyond the Imitation Game bench-
mark (BIG-bench) (Srivastava et al., 2022) com-
piles 204 tasks believed to exceed current models’
capabilities. Similar to our work, LMentry (Efrat
et al., 2023) highlights substantial failures of LLMs
on 25 tasks that are trivial for humans, e.g., writing
a sentence containing a specific word or choosing
which of two words is longer. Unlike LMentry,
we introduce CWUM, a bilingual benchmark con-
sisting of 15 character and word editing tasks, to
evaluate the capabilities and limitations of existing
LLMs in understanding and manipulating natural
language at both character and word levels. This
comprehensive approach aims to identify specific
areas where LLMs fall short and provide insights
for future model improvements.

3 CWUM

CWUM is a bilingual benchmark designed to as-
sess the basic natural language comprehension abil-
ities of current LLMs. It consists of 15 straightfor-
ward character-editing and word-editing tasks such
as counting characters, reversing words, and identi-
fying specific characters, which are tasks that an el-
ementary student is generally expected to perform
perfectly. Each task consists of a training set and
a test set. The simplicity of these tasks highlights
the basic language understanding and manipulation
capabilities of LLMs, providing a clear measure of
their proficiency in handling fundamental linguistic
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Language Task Samples Description

Engilish

Count Letters in Word 1000 Count the number of letters comprising the input word

Count Letters in Sentence 5000
Count the number of letters comprising the word at the
specified position in the input sentence

Count Words in Sentence 1000 Count the number of words comprising the input sentence
Insert Letters in Word 5000 Insert letters at the specified position in the input word

Insert Letters in Sentence 5000
Insert letters at the specified position of the word at the
specified position in the input sentence

Insert Words in Sentence 5000 Insert words at the specified position in the input sentence
Identify Letter in Word 5000 Identify the letter at the specified position in the input word

Identify Letter in Sentence 5000
Identify the letter at the specified position of the word at the
specified position in the input sentence

Reverse Word 1000 Arrange all the characters of the input word in reverse order

Reverse Word in Sentence 5000
Arrange all the characters of the word at the specified position
in the input sentence in reverse order

Chinese

Count Chinese Characters
in Sentence

1000
Count the number of Chinese characters comprising the input
sentence

Reverse Chinese Sentence 1000
Arrange all characters comprising the input sentence in reverse
order

Insert Blank after Each
Chinese Characters

1000 Insert blank after each Chinese character in the input sentence

Insert Chinese Characters
in Sentence

5000
Insert Chinese characters at the specified position in the input
sentence

Identify Chinese Character
in Sentence

5000
Identify the Chinese character at the specified position in the
input sentence

Table 1: An introduction to each task of the CWUM benchmark.

operations.

3.1 Task Creation
Our tasks primarily revolve around four types of
text-editing operations, including counting, inser-
tion, identification, and reversal. Each task is sub-
ject to the following criteria: (1) the answer is
readily obtainable, ensuring clear and straightfor-
ward solutions; (2) no external tools are neces-
sary, making the tasks accessible and easily im-
plementable; and (3) automatic evaluation is fea-
sible, allowing for efficient and objective assess-
ment. Following these guidelines, we have curated
a total of 15 tasks, as depicted in Table 1. Specifi-
cally, for the English language, we have designed
four single character-editing tasks, four complex
character-editing tasks, and two word-editing tasks.
For the Chinese language, we have devised five
single character-editing tasks.

3.2 Data Construction
In this section, we provide a detailed description
of constructing the data of the CWUM benchmark.
Each task in CWUM is formulated as an open-
ended question, with the input typically consisting
of an instruction and a text input. The instruction
outlines the task guidelines, providing a foundation
for the model’s operations. The text input speci-

fies the object for editing operations, which could
be an English word (word), an English sentence
(sentence), or a Chinese sentence. The answer for
each question includes a golden answer and an ac-
companying natural language rationale. Figure 2
presents the examples for four representative tasks,
with additional examples illustrated in Appendix
Figures 6 and 7.

Source of input text: For English tasks, we
construct a sentence corpus consisting of 100,000
English sentences derived from CommonCrawl
dumps from 2020, the C4 Dataset, and Wikipedia
dumps (June to August 2022), and a word corpus
consisting of 22,000 common words available in
the Natural Language Toolkit (NLTK) (Hardeniya
et al., 2016) library. For each corpus, 1,000 sam-
ples are used as text inputs for the test set, and the
remaining sentences are used for the training set.
For Chinese tasks, 100,000 Chinese sentences de-
rived from the C4 Dataset and Wikipedia dumps
(June to August 2022) are divided into 1,000 for
the text inputs of the test data and 99,000 for the
training data.

Design the questions: For each task, we meticu-
lously craft 8-10 instructions covering both simple
and complex scenarios. The input for a question
consists of a randomly sampled instruction. For
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Count Letters in Sentence 
Instruction: Examine the 4th word in the following sentence and provide the number of letters it contains. Code 
prohibited.
Input: In July 2023, they planned to embark on their journey across Europe.
Golden Answer: 7
Rationale: The words contained in the sentence are: ['In', 'July', 'they', 'planned', 'to', 'embark', 'on', 'their', 'journey', 
'across', 'Europe']. The 4th word of the given sentence is 'planned'. The letters contained in 'planned' are: ['p', 'l', 'a', 'n', 
'n', 'e', 'd']. The total number of letters is 7. Therefore, the answer is 7

Insert Words in Sentence 
Instruction: Examine the following sentence and demonstrate the outcome when 'test sample' is added immediately 
after the last word. Code prohibited.
Input: In July 2023, they planned to embark on their journey across Europe.
Golden Answer: In July 2023, they planned to embark on their journey across Europe test sample.
Rationale: The words contained in the given sentence are:  ['In', 'July', 'they', 'planned', 'to', 'embark', 'on', 'their', 
'journey', 'across', 'Europe']. The last word of the given sentence is 'Europe'. Therefore, the answer is: In July 2023, they 
planned to embark on their journey across Europe test sample.

Identify Chinese Character in Sentence 
Instruction: 从给定的句子中识别第十个汉字并提供结果。代码被禁止使用。
Input: 2024年9月，他们计划去欧洲旅行，感受这里的独特魅力和风土人情。
Golden Answer: 旅
Rationale:  给定句子包含的汉字列表为：['年', '月', '他', '们', '计', '划', '去', '欧', '洲', '旅', '行', '感', '受', '这', '里', '的', '
独', '特', '魅', '力', '和', '风', '土', '人', '情']。其中第十个汉字是“旅”。因此答案是：旅 

Reverse Chinese Sentence 
Instruction: 请把下列句子的字符顺序颠倒过来并提供结果。代码被禁止使用。
Input: 2024年9月，他们计划去欧洲旅行，感受这里的独特魅力和风土人情。
Golden Answer: 。情人土风和力魅特独的里这受感，行旅洲欧去划计们他，月9年4202
Rationale: 给定句子包含的字符列表为：['2', '0', '2', '4', '年', '9', '月', '，', '他', '们', '计', '划', '去', '欧', '洲', '旅', '行', '，
', '感', '受', '这', '里', '的', '独', '特', '魅', '力', '和', '风', '土', '人', '情', '。']。倒着输出该句子包含的字符得到的答案
是：。情人土风和力魅特独的里这受感，行旅洲欧去划计们他，月9年4202

Figure 2: Several examples of the benchmark CWUM.

tasks requiring a specific position in the instruc-
tion, such as the Identify Letter in Word task, we
randomly sample a position ranging from 0 to the
length of the input text. Each input text is used at
five different positions, creating five examples. For
insertion tasks, we randomly select combinations
of 1 to 10 letters from the lowercase English alpha-
bet (‘a’ to ‘z’) or combinations of 1 to 10 words
from a set of 20 common words generated by GPT-
4 (OpenAI, 2023) as the target for insertion.

Design the answers: For each input, the golden
answer is generated using tools and rules, e.g.,
Python code. For example, the golden answer for
the Reverse Word task is simply the reversed word.
The rationale provides a detailed breakdown of the
input text, e.g., the list of words constituting the
input sentence or the list of letters constituting the
input word.

In summary, CWUM consists of 51,000 exam-

ples designed to evaluate a model’s ability to un-
derstand natural language at both character and
word levels. Each example includes an instruction,
an input text, and a golden answer accompanied
by the rationale. This diverse and representative
benchmark allows for a comprehensive assessment
of model performance in various text manipulation
tasks.

4 Experiment

In this section, we perform comprehensive eval-
uation experiments on the proposed benchmark
CWUM to achieve the following objectives: evalu-
ate the capability of representative LLMs encom-
passing both base and chat variants, explore how
model performance varies with increasing sizes,
increasing shots, and different prompts, and inves-
tigate whether supervised fine-tuning (SFT) can
improve model performance on CWUM.
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4.1 Baselines

We test CWUM on eight models from two families
including open-source LLMs and closed-source
LLMs. When evaluated on CWUM, all models are
prohibited from using codes.

Open-source LLMs include both base and
chat ones. For base LLMs, we use Qwen
(7B and 72B) (Bai et al., 2023), LLaMA-2 (7B
and 70B) and LLaMA-3 (8B and 70B) (Tou-
vron et al., 2023), DeepSeek-67B (DeepSeek-AI,
2024), Mistral-7B (Jiang et al., 2023), Yi (6B and
34B) (AI et al., 2024), Baichuan2-7B (Baichuan,
2023), ChatGLM3-6B (Zeng et al., 2023), and
Mixtral-8x7B (Jiang et al., 2024). For chat LLMs,
we utilize Qwen-72B-Chat, LLaMA-2-70B-Chat,
LLaMA-3-70B-Instruct, Yi-34B-Chat, DeepSeek-
67B-Chat, and Mixtral-8x7B-Instruct. For all open-
source models, we use the Hugging Face (Wolf
et al., 2020) implementation and greedy decoding
to generate deterministic answers.

Closed-source LLMs include representative
GPT-42 (OpenAI, 2023). We set the temperature to
0.2 for generating quality responses.

4.2 Evaluation Metrics

We conduct an automatic evaluation on the CWUM
benchmark using the exact string match as the eval-
uation metric. In addition, a team of human raters
is hired to establish a human baseline. Three hu-
man annotators, all sixth-grade students, are tasked
with generating answers following the instructions
provided for each sample. Detailed guidelines are
introduced to ensure consistency and clarity before
the evaluation process begins. Due to cost con-
siderations, we randomly select a subset of 100
samples from each task. Notably, all annotators
achieve a 0% failure rate across all tasks of the
CWUM benchmark when evaluated using the au-
tomatic evaluation metric. This demonstrates the
high proficiency of humans in successfully solving
tasks within the CWUM benchmark.

4.3 Overview of Model Performance and
Human Rater Performance on CWUM

Although scaling up model sizes leads to notice-
able performance enhancements, it remains low
in absolute terms compared with human rater
performance. Table 2 and Figure 1 display the
average accuracy of automatic evaluation results
across different LLMs. Notably, on both English

2We use gpt4-1106-preview.

Model English Tasks Chinese Tasks

LLaMA-2-7B 7.70 -
LLaMA-3-8B 25.13 8.32
Qwen-7B 16.87 4.24
Mistral-7B 12.15 3.17
Baichuan2-7B 12.47 2.30
ChatGLM3-6B 10.54 2.03
Yi-6B 13.87 3.22

LLaMA-2-70B 25.76 -
LLaMA-3-70B 39.32 30.02
Qwen-72B 33.16 17.15
Mixtral-8x7B 30.04 11.56
DeepSeek-67B 29.24 9.96

GPT-4 66.64 78.20

Human Performance 100 100

Table 2: Comparison of average model accuracy on
all English and all Chinese tasks of CWUM. GPT-4
performance for each task is computed on 100 uniformly
distributed test examples owing to its cost and usage
limit. Other model performance is calculated on the full
test examples.

and Chinese tasks, average model performance im-
proves with model size (refer to Tables 3 and 6
for a more granular examination of how individ-
ual task contributes to the overall performance).
Despite these advancements, the top-performing
model, GPT-4, achieves an average accuracy of
only 66.64% on English tasks and 78.20% on Chi-
nese tasks, falling significantly short of the esti-
mated 100% accuracy of human raters. Instruction-
tuning the model does not yield significant perfor-
mance gains. As illustrated in Figure 1, the average
accuracy of Qwen-72B-Chat is 31.99%, slightly
lower than that of the base Qwen-72B (33.16%),
on English tasks.

All open-source LLMs perform worse on Chi-
nese tasks than on English tasks. For example,
on all Chinese tasks, DeepSeek-67B and Mixtral-
8x7B achieve average accuracies of only 11.56%
and 9.96%, respectively, markedly lower than their
performance on all English tasks (30.04% and
29.24%, respectively).

4.4 Performance Analysis on Individual Task
of CWUM

Models exhibit significant performance differ-
ences across various tasks. Table 3 provides a
detailed accuracy comparison of different LLMs
on each task of CWUM. Focusing on the average
accuracy across base models with 56B to 72B pa-
rameters, models perform best in the single letter-
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Task
LLaMA-2

-70B
LLaMA-3

-70B
Qwen-72B

Mixtral
-8x7B

DeepSeek
-67B

Avg Yi-34B GPT-4

Count Words in Sentence 12.80 20.10 12.60 15.90 15.20 15.32 6.80 41.00
Count Letters in Word 69.40 99.70 97.60 95.60 91.90 90.84 74.50 100
Count Letters in Sentence 25.20 42.52 34.06 25.66 30.38 31.56 21.00 61.00
Insert Words in Sentence 10.14 29.14 15.26 8.66 11.60 14.96 9.92 48.00
Insert Letters in Sentence 4.72 18.72 2.74 6.02 5.76 7.59 3.62 46.00
Insert Letters in Word 19.72 32.66 27.6 20.84 18.82 23.93 18.62 72.00
Identify Letter in Word 57.62 58.14 83.98 56.48 57.54 62.75 39.00 100
Identify Letter in Sentence 19.74 36.42 21.30 19.22 21.56 23.65 12.36 56.00
Reverse Word 6.10 26.20 2.30 11.80 5.80 10.44 4.00 73.00
Reverse Word in Sentence 7.34 29.56 10.18 10.16 8.12 13.07 3.82 49.00

Avg 25.76 39.32 33.16 30.04 29.24 - 22.36 66.64

Count Chinese Characters
in Sentence

- 23.30 15.80 12.60 11.80 15.86 13.40 54.00

Insert Chinese Characters
in Sentence

- 21.78 15.88 10.06 7.88 13.90 7.36 73.00

Insert Blank after Each
Chinese Characters

- 45.20 12.60 19.00 8.70 21.38 17.50 90.00

Reverse Chinese Sentence - 30.10 10.00 1.90 4.96 11.74 0.70 77.00
Identify Chinese Character
in Sentence

- 29.72 31.46 14.26 16.44 22.97 15.26 97.00

Avg - 30.02 17.15 11.56 9.96 - 9.56 78.20

Table 3: Comparison of testing accuracy by advanced LLMs on each task of CWUM.

counting task, achieving the highest average accu-
racy of 90.84%. In contrast, they exhibit the worst
performance in the Insert Letters in Sentence task,
achieving the lowest average accuracy of 7.59%.
All tested open-source models perform poorly on
input-reversing tasks including Reverse Word, Re-
verse Word in Sentence, and Reverse Chinese Sen-
tence, with average accuracies of 10.44%, 13.07%,
and 11.84%, respectively. Also, LLMs emerge
with the ability to reverse the input word at specific
scales. For example, Yi-6B and Yi-34B achieve
accuracies of 0.00% and 4.00% on the task of Re-
verse Word, respectively. More evaluation results
for LLMs with sizes ranging from 5B to 7B and
for instruction-tuned LLMs ranging from 56B to
72B are presented in Appendix C and Appendix D,
respectively.

Designing different CoT prompts or further
increasing the number of shots does not result
in distinct performance improvements. Specifi-
cally, experiments are conducted to analyze model
performance with increasing sizes, increasing shots,
and different prompts. Two representative English
tasks (Count Letters in Word and Reverse Word),
and two representative Chinese tasks (Identify Chi-
nese Character in Sentence and Reverse Chinese
Sentence) are taken as examples. As shown in
Appendix A Table 5, CoT prompting significantly

improves model performance on most tasks, with
minimal performance improvements across differ-
ent CoT prompts. Additionally, model performance
shows an overall upward trend as the shot count in-
creases from 0 to 10, but further increases in shots
do not yield additional gains, as demonstrated in
Appendix A Figure 5.

4.5 Failure Analyses

In this section, qualitative and quantitative failure
analyses are performed on the base Qwen-72B to
identify areas where the model falls short.

Detailed qualitative analyses of failure cases are
presented in Appendix B. The primary reasons for
failures in character-level tasks are attributed to the
use of Byte-Pair Encoding (BPE), which frequently
splits words into subwords, leading to inconsisten-
cies. In addition to the limitations of BPE encod-
ing, shortcomings in word-level tasks are due to
the model’s insufficient capacity to handle absolute
positions, discrete data, and special symbols.

Further quantitative analysis comparing the ac-
tual word count with the predicted word count in
the Count Words in Sentence task confirmed that
the failures in word-level tasks are not solely due to
BPE encoding. As illustrated in Fig. 3, statistical
results show that for over 75% of the samples, the
predicted word count by Qwen-72B is lower than

11832



the actual word count. Additionally, when counting
the number of tokens for each sentence, we find that
BPE encoding typically generates more tokens than
the actual word count because it splits words into
common subword segments. The tendency of the
model to underpredict word counts suggests that
its deficiencies in word-level tasks extend beyond
issues with BPE encoding and also be related to
challenges in processing absolute position, discrete
data, and special symbols.

These findings underscore the need for im-
proved positional embedding techniques and more
advanced tokenization strategies to enhance the
model’s accuracy in both character-level and word-
level tasks.

Figure 3: This figure shows the distribution of the num-
ber of samples for golden word count minus model
prediction word count.

4.6 Improving model performance on CWUM
by Supervised Fine-tuning

In this subsection, we investigate the impact of su-
pervised fine-tuning (SFT) on the performance of
the base LLaMA-2-7B model across the 10 En-
glish tasks of CWUM. The training configuration
is detailed as follows: The fine-tuning process uti-
lizes 8x NVIDIA A100 GPUs to fully optimize
the 7B model. The training is conducted over 3
epochs, with a batch size set to 128 to balance
computational efficiency and model convergence.
The learning rate is initialized at 2e-5, and a 3%
learning rate warmup is applied to facilitate better
convergence during the initial stages of training.
Our analysis aims to answer the following ques-
tions:

(1) Can fine-tuning on target training data
maintain generalization within in-domain (IND)
tasks? We tune the base model on four represen-
tative tasks covering four text manipulation opera-
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Figure 4: This figure shows the accuracy of the SFT
model on the target test set varying with increasing
training samples.

tions and incrementally increase the SFT training
data from 10,000 to 80,000 for each task. The re-
sults, illustrated in Figure 4, show that each SFT
model achieves over 90% testing accuracy when
the training data size reaches 80,000. For example,
the model accuracy on the Reverse Word in Sen-
tence task improves from 60.18% to 90.36% as the
training data increases from 10,000 to 80,000 in-
stances. These results confirm the effectiveness of
SFT in enhancing model performance on CWUM.
Considering both performance and training costs,
the training data size for each task is set to 20,000.

(2) Can multi-task fine-tuning on the part of
CWUM tasks generalize to all CWUM tasks?
To explore this, we create a mixed training dataset
from six tasks (20,000 instances each) covering
all types of word-level and character-level tasks
(identify letters, insert letters, insert words, reverse
words, count words, and count letters). As shown
in Table 4, the tuned model achieves an average
accuracy of 82.74% on CWUM. Specifically, its
average accuracy on six IND tasks is 91.94%, but
only 68.94% on four out-of-domain (OOD) tasks
from CWUM. This disparity arises because spe-
cific task abilities, such as reversing a word within
a sentence, do not transfer well to reversing a single
word, and inserting letters in a sentence does not
transfer to inserting letters in a single word. Ex-
tending the training mix to eight CWUM tasks re-
sults in an average accuracy of 94.30% on CWUM.
However, the performance of the tuned model on
four general OOD tasks remains poor, which is
significantly worse than that of the base Qwen-7B.

(3) Can comprehensive fine-tuning enhance
performance on CWUM tasks while preserv-
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Training Data BIBench
General Task

MMLU HellaSwag WinoGrange ARC
0 Task 7.70 45.30 77.20 70.20 45.90

6 Tasks 82.74 26.10 28.33 51.95 0.00
8 Tasks 94.30 25.07 28.56 50.67 0.00

8 Tasks +
General Data

93.71 50.43 75.65 72.30 47.78

General Data - 50.93 76.37 70.24 48.90

Table 4: Testing accuracy of the SFT model by fine-
tuning Qwen-7B on different training data. 0 Task rep-
resents the base Qwen-7B without additional tuning on
our constructed training data.

ing generalization on unseen general tasks? To
enhance the model’s ability to adhere to general
instructions, we merge 520,000 general-purpose
instruction-response pairs from Orca (Mukherjee
et al., 2023) with the 160,000 training data from
step (2) to create the final SFT training dataset. Ac-
cording to Table 4, the fine-tuned model achieves
an average accuracy of 93.71% on CWUM, which
is 86% higher than the base Qwen-7B. Additionally,
its performance on four general OOD tasks aver-
ages 61.54%, comparable to the model fine-tuned
solely on the 520,000 general-purpose instruction
data, which scores 61.61%.

These findings demonstrate that SFT can sig-
nificantly improve the performance of LLMs on
CWUM tasks while maintaining their generaliza-
tion capability on unseen general tasks.

5 Conclusion

In this study, we introduce CWUM, a novel bilin-
gual benchmark designed to evaluate the capabili-
ties and limitations of LLMs in understanding and
manipulating natural language at both word and
sentence levels. CWUM comprises 15 text-editing
tasks, including 10 in English and five in Chinese,
which are simple for humans but challenging for
current LLMs. Our comprehensive evaluation of
eight advanced LLMs, including both base and
instruction-tuned (chat) models, reveals significant
deficiencies in their performance on these tasks.
These findings suggest that while LLMs have made
considerable progress, there is still a substantial
gap to bridge in terms of achieving human-like pro-
ficiency in language understanding and manipula-
tion. Overall, CWUM provides a valuable tool for
assessing and guiding the development of future
LLMs, emphasizing the need for more sophisti-
cated mechanisms to handle the complexities of
natural language at both character and word levels.

Limitations

CWUM primarily focuses on character and word-
level editing tasks. Future work should include
more complex language understanding tasks, such
as paragraph comprehension, text generation, and
semantic analysis, to comprehensively evaluate the
capabilities and limitations of LLMs. This will pro-
vide a more holistic assessment of the language un-
derstanding and generation capabilities of LLMs.

Ethics Statement

All procedures performed in studies involving hu-
man participants were in accordance with the eth-
ical standards of the institutional and/or national
research committee and with the 1964 Helsinki
Declaration and its later amendments or compara-
ble ethical standards. This article does not contain
any studies with animals performed by any of the
authors. Informed consent was obtained from all
individual participants included in the study.

Acknowledgments

This work is supported by the National Natu-
ral Science Foundation of China under Grant
NSF 62422604, the National Key Research and
Development Program of China under Grant
2023YFF1204901, the National Natural Science
Foundation of China under Grant NSFC-62076172,
and the Key Research and Development Program
of Sichuan Province under Grant 2023YFG0116.

References
01. AI, :, Alex Young, Bei Chen, Chao Li, Chen-

gen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong
Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang,
Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang,
Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng
Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai,
Zhenyu Gu, Zhiyuan Liu, and Zonghong Dai. 2024.
Yi: Open foundation models by 01.ai.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang

11834

http://arxiv.org/abs/2403.04652


Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Baichuan. 2023. Baichuan 2: Open large-scale lan-
guage models. arXiv preprint arXiv:2309.10305.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita
Balesni, Asa Cooper Stickland, Tomasz Korbak, and
Owain Evans. 2023. The reversal curse: Llms trained
on "a is b" fail to learn "b is a". arXiv preprint
arXiv:2309.12288.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli,
Russ B. Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, Erik Brynjolfsson, Shya-
mal Buch, Dallas Card, Rodrigo Castellon, Ni-
ladri S. Chatterji, Annie S. Chen, Kathleen Creel,
Jared Quincy Davis, Dorottya Demszky, Chris Don-
ahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-
Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie,
Karan Goel, Noah D. Goodman, Shelby Grossman,
Neel Guha, Tatsunori Hashimoto, Peter Henderson,
John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Juraf-
sky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff
Keeling, Fereshte Khani, Omar Khattab, Pang Wei
Koh, Mark S. Krass, Ranjay Krishna, Rohith Ku-
ditipudi, and et al. 2021. On the opportunities
and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Yong Cao, Li Zhou, Seolhwa Lee, Laura Cabello, Min
Chen, and Daniel Hershcovich. 2023. Assessing
cross-cultural alignment between chatgpt and hu-
man societies: An empirical study. arXiv preprint
arXiv:2303.17466.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv:2107.03374.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

DeepSeek-AI. 2024. Deepseek llm: Scaling open-
source language models with longtermism. arXiv
preprint arXiv:2401.02954.

Avia Efrat, Or Honovich, and Omer Levy. 2023. Lmen-
try: A language model benchmark of elementary lan-
guage tasks. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 10476–10501. Association for
Computational Linguistics.

Nitin Hardeniya, Jacob Perkins, Deepti Chopra,
Nisheeth Joshi, and Iti Mathur. 2016. Natural lan-
guage processing: python and NLTK. Packt Publish-
ing Ltd.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021a. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the MATH dataset. In Pro-
ceedings of the Neural Information Processing Sys-
tems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, December 2021, vir-
tual.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,
Maosong Sun, and Junxian He. 2023. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models. In Advances in Neural In-
formation Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de Las Casas,
Emma Bou Hanna, Florian Bressand, Gianna
Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,

11835

https://doi.org/10.48550/arXiv.2309.16609
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305
https://doi.org/10.48550/arXiv.2309.12288
https://doi.org/10.48550/arXiv.2309.12288
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://doi.org/10.48550/arXiv.2303.17466
https://doi.org/10.48550/arXiv.2303.17466
https://doi.org/10.48550/arXiv.2303.17466
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://github.com/deepseek-ai/DeepSeek-LLM
https://github.com/deepseek-ai/DeepSeek-LLM
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825


Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. arXiv preprint arXiv:2401.04088.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of GPT-4. arXiv preprint
arXiv:2306.02707.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1797–1807. Association
for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 4885–4901.
Association for Computational Linguistics.

OpenAI. 2023. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

Pouya Pezeshkpour and Estevam Hruschka. 2023.
Large language models sensitivity to the order of
options in multiple-choice questions. arXiv preprint
arXiv:2308.11483.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.
The Association for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732–
8740. AAAI Press.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,
Alex Ray, Alex Warstadt, Alexander W. Kocurek,
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-
rish, Allen Nie, Aman Hussain, Amanda Askell,
Amanda Dsouza, Ameet Rahane, Anantharaman S.
Iyer, Anders Andreassen, Andrea Santilli, Andreas

Stuhlmüller, Andrew M. Dai, Andrew La, Andrew K.
Lampinen, Andy Zou, Angela Jiang, Angelica Chen,
Anh Vuong, Animesh Gupta, Anna Gottardi, Anto-
nio Norelli, Anu Venkatesh, Arash Gholamidavoodi,
Arfa Tabassum, Arul Menezes, Arun Kirubarajan,
Asher Mullokandov, Ashish Sabharwal, Austin Her-
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, and
et al. 2022. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie,
Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi
Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong,
Simran Arora, Mantas Mazeika, Dan Hendrycks, Zi-
nan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and
Bo Li. 2023. Decodingtrust: A comprehensive as-
sessment of trustworthiness in GPT models. In Ad-
vances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan,
Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadal-
lah, and Bo Li. 2021. Adversarial GLUE: A multi-
task benchmark for robustness evaluation of language
models. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021,
December 2021, virtual.

11836

https://doi.org/10.48550/arXiv.2401.04088
https://doi.org/10.48550/arXiv.2401.04088
https://doi.org/10.48550/arXiv.2306.02707
https://doi.org/10.48550/arXiv.2306.02707
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2308.11483
https://doi.org/10.48550/arXiv.2308.11483
https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288


Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent abilities of large language models. Trans. Mach.
Learn. Res., 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022b. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November
16-20, 2020, pages 38–45. Association for Computa-
tional Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023.
GLM-130B: an open bilingual pre-trained model. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

A Analyses of Model Sizes, Shots, and
Prompts, on Individual Task

Accuracy gains vary significantly across differ-
ent tasks with increasing model size. Specifically,

the task of Count Letters in Word demonstrates the
highest gains in average model accuracy, reaching
50.00% as the model size increases from 6-7B to
56-72B. Conversely, the task of Insert Letters in
Sentence exhibits the least gains, with accuracy
improvements of merely 6.48%.

LLMs emerge with the ability to reverse the
input word at specific scales. Most small-sized
LLMs in the range of 6-7B parameters achieve
nearly 0.00% accuracy, while larger LLMs with
around 34B parameters attain an accuracy of about
4.00%. For example, Yi-6B and Yi-34B achieve
accuracies of 0.00% and 4.00%, respectively, on
the task of reversing a word.
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Figure 5: This figure shows the test accuracy of Qwen-
72B varying with increasing shots on four representative
tasks of CWUM.

Model performance tends to stabilize at 10
shots, with further increases in shots not yield-
ing additional gains. We conduct experiments on
two representative English tasks (Count Letters in
Word and Reverse Word) and two representative
Chinese tasks (Identify Chinese Character in Sen-
tence and Reverse Chinese Sentence), to analyze
the sensitivity of model performance to increased
shots. Using Qwen-72B as the evaluated model,
Figure 5 illustrates the model performance with
increasing shots. We observe a noticeable perfor-
mance improvement across three tasks, excluding
the Reverse Word task, as the shot increases from
0 to 3. With the shot increasing from 3 to 10, the
model performance shows a slow upward trend.
When the shot count reaches 10, performance stabi-
lizes. Notably, the Reverse Word task displays the
slowest growth trend with increasing shots, with the
accuracy consistently below 3%, highlighting the
inadequacy of LLMs in handling input-reversing
tasks. Subsequently, we conduct experiments on
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these four tasks to investigate the influence of dif-
ferent prompts on model performance.

Task CoT1(Ours) CoT2 Prefix-CoT1 No-CoT

Count Letters
in Word

97.60 78.5 100 38.50

Reverse Word 2.43 3.30 2.50 1.00
Identify Chinese
Character in Sentence

31.46 30.58 40.34 8.46

Reverse Chinese
Sentence

10.00 10.90 9.20 0.00

Table 5: Comparison of testing accuracy of Qwen-72B
under different prompts on four representative tasks of
CWUM.

CoT prompting can bring huge performance
gains on most tasks. As shown in Table 5, CoT2
requires the model to describe the task and ex-
plain the answer, while CoT1 (ours) encourages the
model first to output the characters or words com-
prising the input text. Prefix-CoT1 provides the
characters or words comprising the queried input
text at the end of the prompt. CoT prompting leads
to noticeable performance improvements compared
to no CoT prompting for tasks excluding Reverse
Word. The performance gap led by different CoT
prompts for most tasks is minimal, except for the
task of Count Letters in Word. Providing the list of
letters composing the queried input word enables
the model to achieve 100% accuracy in the Count
Letters in Word task. However, providing the list
of letters comprising the queried input word does
not enhance the model performance on the Reverse
Word task. Similarly, providing the characters com-
prising the queried input sentence does not lead to
distinct performance improvement in the Reverse
Chinese Sentence task.

B Failure Cases

On word-level tasks, we have identified major fail-
ure cases of LLMs:

(1) Incorrect word count and positioning:
LLMs often underestimate the word count of input
sentences and inaccurately position words within
specified locations. These issues stem from LLMs’
limited capacity to understand and process abso-
lute positions. Additionally, LLMs lack specialized
mechanisms for accurately handling discrete data,
such as precise numbers and positions.

(2) Inaccurate predictions of word lists: LLMs
often produce inaccurate predictions of the word
list constituting the input sentence. This inaccu-
racy arises from the misinterpretation of LLMs to

complex structures or special symbols within the
sentence, including punctuation marks, abbrevia-
tions, numbers, etc.

These failure cases underscore the necessity for
enhanced mechanisms within LLMs to better man-
age absolute positioning and interpret discrete data,
thereby ensuring more precise processing of word-
level tasks.

On character-level tasks, we have identified ma-
jor failure cases of LLMs:

(1) Incomplete reversal of common word frag-
ments: Common word fragments within the in-
put word are not correctly reversed. For example,
given the input word ‘though’, the model predicts
‘hguoth’ instead of the correct reversal ‘hguoht’,
where the fragment ‘th’ remains unreversed.

(2) Incorrect insertion after common word
fragments: The model incorrectly inserts letters
after common word fragments. For instance, giving
the input word ‘though’ and a requirement to insert
‘abc’ after the third character, the model predicts
‘thabcough’ instead of the correct insertion pattern
‘thoabcugh’.

These issues stem from the wide utilization of
the Byte-Pair Encoding (BPE) algorithm to con-
struct vocabulary, which results in the model hav-
ing never seen individual characters but rather
opaque word fragments. Consequently, the model
struggles with tasks that require precise manipula-
tion of individual characters within words.

C Accuracy Comparison between
Different Small Base LLMs

Table 6 provides a detailed overview of the perfor-
mance of six base LLMs with sizes ranging from
6B to 7B on each task of the CWUM benchmark.
For each task, based on the average accuracy of
the six tested models, we observe that the model
performs best on the Count Letters in Word task
and Identify Chinese Character in Sentence task,
with an accuracy of 40.84% and 8.70%, respec-
tively. Conversely, they perform worst on the Insert
Letters in Sentence and Reverse Chinese Sentence
tasks, with an accuracy of 1.11% and 0.12%, re-
spectively. Additionally, based on the average ac-
curacy on 10 English tasks and five Chinese tasks
for each model, it can be seen that LLaMA-3-8B
performs best on both English and Chinese tasks.
LLaMA-2-7B performs worst on English tasks,
while ChatGLM3-6B performs worst on Chinese
tasks.
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Task
LLaMA-2

-7B
LLaMA-3

-8B
Qwen
-7B

Mistral
-7B

Baichuan2
-7B

ChatGLM3
-6B

Yi-6B Avg

Count Words in Sentence 5.10 11.10 2.60 3.80 8.30 4.10 9.30 6.33
Count Letters in Word 7.60 94.5 55.00 24.00 40.90 19.00 44.90 40.84
Count Letters in Sentence 15.12 23.94 17.92 13.86 15.00 9.24 12.82 15.41
Insert Words in Sentence 3.88 10.56 6.28 5.50 2.62 1.80 3.60 4.89
Insert Letters in Sentence 0.70 3.90 1.36 0.94 0.22 0.26 0.42 1.11
Insert Letters in Word 8.50 20.94 9.42 10.26 5.94 4.76 8.06 9.70
Identify Letter in Word 13.24 56.34 39.72 38.62 27.88 28.56 28.42 33.25
Identify Letter in Sentence 4.04 15.44 12.18 12.36 9.46 10.16 9.56 10.46
Reverse Word 0.00 8.70 0.30 0.00 0.00 0.00 0.00 1.29
Reverse Word in Sentence 0.50 5.90 2.10 0.42 1.10 1.38 0.48 1.70

Avg 7.70 25.13 16.87 12.15 12.47 10.54 13.87 -

Count Chinese Characters
in Sentence

- 11.40 6.30 3.00 0.00 2.70 4.50 4.65

Insert Chinese Characters
in Sentence

- 6.90 3.76 1.78 1.48 1.22 2.38 2.92

Insert Blank after Each
Chinese Characters

- 10.80 2.00 2.10 1.50 0.20 1.50 3.02

Reverse Chinese Sentence - 0.70 0.00 0.00 0.00 0.00 0.00 0.12
Identify Chinese Character
in Sentence

- 11.78 9.16 8.96 8.52 6.04 7.74 8.70

Avg - 8.32 4.24 3.17 2.30 2.03 3.22 -

Table 6: Comparison of testing accuracy by small LLMs with sizes ranging from 6B to 7B on each task of CWUM.

D Accuracy Comparison between
Different Instruction-tuned LLMs

Table 7 provides a detailed overview of the perfor-
mance of five instruction-tuned LLMs on each task
of the CWUM benchmark. We focus on LLMs
with sizes ranging from 56B to 72B. Based on
the average accuracy on 10 English tasks and five
Chinese tasks for each model, it can be seen that
LLaMA3-70B-Instruct performs best on both En-
glish and Chinese tasks. LLaMA-2-70B-chat per-
forms worst on English tasks, while Mixtral-8x7B-
chat performs worst on Chinese tasks. In particular,
LLaMA-2-70B-chat performs worse than Yi-34B-
Chat, on English tasks.
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Task
LLaMA-2
-70B-Chat

LLaMA-3
-70B-Instruct

Qwen-72B
-Chat

Mixtral-
8x7B-Instruct

DeepSeek
-67B-Chat

Avg
Yi-34B
-Chat

Count Words in Sentence 26.60 12.50 14.00 11.30 13.60 15.60 12.40
Count Letters in Word 68.30 99.50 97.00 76.80 81.10 84.54 57.10
Count Letters in Sentence 16.42 40.04 29.04 29.88 30.36 19.15 26.30
Insert Words in Sentence 1.98 31.66 22.70 8.78 14.64 15.95 5.98
Insert Letters in Sentence 1.64 10.72 4.98 5.04 7.16 5.91 3.26
Insert Letters in Word 14.84 36.94 16.48 21.02 18.62 21.58 17.72
Identify Letter in Word 26.12 97.82 76.82 63.60 54.66 63.80 59.86
Identify Letter in Sentence 12.16 23.36 27.20 20.40 23.92 21.41 17.60
Reverse Word 2.00 32.70 1.70 5.20 2.50 8.82 2.50
Reverse Word in Sentence 1.14 22.34 6.64 12.78 9.78 10.54 4.60

Avg 18.92 40.76 31.99 28.07 28.93 - 24.07

Count Chinese Characters
in Sentence

- 19.20 9.80 9.90 13.10 13.00 11.00

Insert Chinese Characters
in Sentence

- 25.22 13.60 8.76 11.42 14.75 6.22

Insert Blank after Each
Chinese Characters

- 19.90 6.50 13.00 4.00 10.85 1.20

Reverse Chinese Sentence - 15.30 2.80 0.70 0.80 4.90 0.00
Identify Chinese Character
in Sentence

- 36.66 27.76 16.46 23.12 26.00 17.74

Avg - 23.26 12.09 9.76 10.49 - 7.23

Table 7: Comparison of testing accuracy by advanced instruction-tuned LLMs on each task of CWUM.
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Count Words in Sentence
Instruction: Please count the words in the following sentence. Code prohibited.
Input: In July 2023, they planned to embark on their journey across Europe.
Golden Answer: 11
Rationale: The words contained in the sentence are: ['In', 'July', 'they', 'planned', 'to', 'embark', 'on', 'their',
'journey', 'across', 'Europe']. The total number of words is 11. Therefore, the answer is 11

Count Letters in Word
Instruction: Please count the letters in the following word and provide the exact number. Code
prohibited.
Input: investor
Golden Answer: 8
Rationale: The letters contained in 'investor' are: ['i', 'n', 'v', 'e', 's', 't', 'o', 'r']. The total number of letters
is 8. Therefore, the answer is 8

Insert Letters in Word
Instruction: Please add 'abcdef' before the first letter in the given word. Code prohibited.
Input: investor
Golden Answer: abcdefinvestor
Rationale: The letters contained in 'investor' are: ['i', 'n', 'v', 'e', 's', 't', 'o', 'r']. Inserting 'abcdef' before the
first letter get 'abcdefinvestor'. Therefore, the answer is abcdefinvestor

Insert Letters in Sentence
Instruction: Perform the task of inserting 'abcdef' right after the last letter of the 4th word in the
following sentence and provide the modified sentence. Code prohibited.
Input: In July 2023, they planned to embark on their journey across Europe.
Golden Answer: In July 2023, they plannedabcdef to embark on their journey across Europe.
Rationale: The words contained in the sentence are: ['In', 'July', 'they', 'planned', 'to', 'embark', 'on', 'their',
'journey', 'across', 'Europe']. The 4th word of the given sentence is 'planned'. The letters contained in
'planned' are: ['p', 'l', 'a', 'n', 'n', 'e', 'd']. Inserting 'abcdef' after the last letter of 'planned' get
'plannedabcdef'. Therefore, the answer is: In July 2023, they plannedabcdef to embark on their journey
across Europe.

Identify Letter in Word
Instruction: Employ lexical investigation to identify the 8th letter of the given word. Code prohibited.
Input: investor
Golden Answer: r
Rationale: The letters contained in 'investor' are: ['i', 'n', 'v', 'e', 's', 't', 'o', 'r']. The 8th letter is 'r'.
Therefore, the answer is r

Identify Letter in Sentence
Instruction: Retrieve the first letter of the last word in the given sentence. Code prohibited.
Input: In July 2023, they planned to embark on their journey across Europe.
Rationale: The words contained in the given sentence are: [‘In’, ‘July’, ‘they’, ‘planned’, ‘to’, ‘embark’,
‘on’, ‘their’, ‘journey’, ‘across’, ‘Europe’]. The last word of the given sentence is ‘Europe’. The letters
contained in ‘Europe’ are: [‘E’, ‘u’, ‘r’, ‘o’, ‘p’, ‘e’]. The first letter of ‘Europe’ is ‘E’. Therefore, the
answer is E
Golden Answer: E

Figure 6: Several examples of the benchmark CWUM.
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Identify Letter in Sentence
Instruction: Retrieve the first letter of the last word in the given sentence. Code prohibited.
Input: In July 2023, they planned to embark on their journey across Europe.
Golden Answer: E
Rationale: The words contained in the given sentence are: ['In', 'July', 'they', 'planned', 'to', 'embark', 'on', 'their', 'journey',
'across', 'Europe']. The last word of the given sentence is 'Europe'. The letters contained in 'Europe' are: ['E', 'u', 'r', 'o', 'p',
'e']. The first letter of 'Europe' is 'E'. Therefore, the answer is E

Reverse Word
Instruction: Perform the task of reversing the following word and provide the modified word. Code prohibited.
Input: investor
Golden Answer: rotsevni
Rationale: The chars contained in 'investor' are: ['i', 'n', 'v', 'e', 's', 't', 'o', 'r']. Putting the chars in reverse order get 'rotsevni'.
Therefore, the answer is rotsevni.

Reverse Word in Sentence
Instruction: Your assignment is to reverse the last word of the following word and furnish the resulting word. Code
prohibited.
Input: In July 2023, they planned to embark on their journey across Europe.
Golden Answer: eporuE
Rationale: The words contained in the given sentence are: ['In', 'July', 'they', 'planned', 'to', 'embark', 'on', 'their', 'journey',
'across', 'Europe']. The last word of the given sentence is 'Europe'. The chars contained in 'Europe' are: ['E', 'u', 'r', 'o', 'p',
'e']. Putting the chars in reverse order get 'eporuE'. Therefore, the answer is eporuE.

Count Chinese Characters in Sentence
Instruction: 针对给定的句子，仔细分析它包含的汉字个数。确保你的回答准确无误。代码被禁止使用。
Input: 2024年 9月，他们计划去欧洲旅行，感受这里的独特魅力和风土人情。
Golden Answer: 25
Rationale: 给定句子包含的汉字列表为：['年', '月', '他', '们', '计', '划', '去', '欧', '洲', '旅', '行', '感', '受', '这', '里', '的', '独
', '特', '魅', '力', '和', '风', '土', '人', '情']。其中总共有 25个汉字。因此，答案是：25

Insert Blank after Each Chinese Characters
Instruction: 执行在下列句子的每个汉字后插入' '的任务，并提供修改后的句子。代码被禁止使用。
Input: 2024年 9月，他们计划去欧洲旅行，感受这里的独特魅力和风土人情。
Golden Answer: 2024年 9月 ，他 们 计 划 去 欧 洲 旅 行 ，感 受 这 里 的 独 特 魅 力 和 风 土 人 情 。
Rationale: 给定句子包含的汉字列表为：['年', '月', '他', '们', '计', '划', '去', '欧', '洲', '旅', '行', '感', '受', '这', '里', '的', '独
', '特', '魅', '力', '和', '风', '土', '人', '情']。在每个汉字后插入' '后的答案是：2024年 9月 ，他 们 计 划 去 欧 洲 旅
行 ，感 受 这 里 的 独 特 魅 力 和 风 土 人 情 。

Insert Chinese Characters in Sentence
Instruction: 你的任务是通过第二个汉字后面插入“测试”来修改下面的句子。在你的回答中展示完整的修改后的句
子。代码被禁止使用。
Input: 2024年 9月，他们计划去欧洲旅行，感受这里的独特魅力和风土人情。
Golden Answer: 2024年 9月测试，他们计划去欧洲旅行，感受这里的独特魅力和风土人情。
Rationale: 给定句子包含的汉字列表为：['年', '月', '他', '们', '计', '划', '去', '欧', '洲', '旅', '行', '感', '受', '这', '里', '的', '独
', '特', '魅', '力', '和', '风', '土', '人', '情']。其中第二个汉字是“月”。在第二个汉字后插入“测试”后的答案是：2024年 9
月测试，他们计划去欧洲旅行，感受这里的独特魅力和风土人情。

Figure 7: Several examples of the benchmark CWUM.
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