
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 10288–10305
November 12-16, 2024 ©2024 Association for Computational Linguistics

PromptIntern: Saving Inference Costs by Internalizing Recurrent
Prompt during Large Language Model Fine-tuning

Jiaru Zou1†, Mengyu Zhou2‡, Tao Li3†, Shi Han2, Dongmei Zhang2

1 University of Illinois Urbana-Champaign 2 Microsoft
3 Shanghai Jiao Tong University

jiaruz2@illinois.edu, li.tao@sjtu.edu.cn,
{mezho, shihan, dongmeiz}@microsoft.com

Abstract

Recent advances in fine-tuning large language
models (LLMs) have greatly enhanced their us-
age in domain-specific tasks. Despite the suc-
cess, fine-tuning continues to rely on repeated
and lengthy prompts, which escalate computa-
tional expenses, require more resources, and
lead to slower inference. In this paper, we
present a novel approach, PromptIntern, which
internalizes prompt knowledge during model
fine-tuning to achieve efficient inference and
save costs. Instead of compressing the prompts
for a vanilla model, PromptIntern aims to em-
bed the recurrent prompt directly into the model
parameters. We design a fine-tuning pipeline
that includes instruction template compression,
few-shot example absorption, and a progres-
sive internalization strategy, effectively dimin-
ishing the need for intricate prompts during
inference. Comprehensive experiments on chal-
lenging NL2Code tasks demonstrate that our
method reduces input tokens by more than 90%,
accelerates inference by 4.2 times, and reduces
monetary inference costs by 88.3%.

1 Introduction

Large language models (LLMs) have become
pivotal in numerous natural language processing
(NLP) applications, such as natural language gen-
eration (Dong et al., 2019; Zheng et al., 2024), rea-
soning (Zhu et al., 2023; Sui et al., 2023), and code
generation (Luo et al., 2023b; He et al., 2024; Roz-
ière et al., 2024). To enhance the predictive accu-
racy of LLMs in domain-specific tasks, recent tech-
niques in fine-tuning, such as parameter-efficient
fine-tuning (PEFT) (He et al., 2021; Hu et al., 2021;
Lester et al., 2021a), have been developed for pre-
trained models to excel in specific tasks by adjust-
ing their parameters to better align with targeted

† The contributions by Jiaru Zou and Tao Li have been
conducted and completed during their internships at Microsoft.

‡ Corresponding author.

Question

Template

Examples

......

Question

The answer is...

Learning …

!

"!

Cost Heavy

High Latency
......

......

! → #!
Examples

Template

Cost Saving
Inference Speedup

High Accuracy
Less Tokens

Figure 1: An illustration of PromptIntern: Like human
interns, LLMs learn and internalize repeated prompt
information such as templates and examples during fine-
tuning, leading to efficient and effective inference.

datasets (Hu et al., 2021). Many of these fine-
tuning approaches typically adopt prompts that are
optimized and integrated with detailed instructions,
examples, and retrieved documents through prompt
engineering techniques such as chain-of-thought
(Wei et al., 2022), few-shot prompting (Brown
et al., 2020), and retrieval-augmented generation
(Lewis et al., 2020; Cheng et al., 2023).

Although these advancements enhance the ca-
pabilities of LLMs during fine-tuning, they also
present new challenges: Prompt engineering of-
ten necessitates longer prompts, and directly inte-
grating lengthy prompts into the training process
further increases computational costs during in-
ference (VM et al., 2024). This increase in cost
precludes LLMs in many cost-sensitive scenar-
ios where computational resources are constrained.
Several prompt compression methods (Li et al.,
2023; Jiang et al., 2023a; Pan et al., 2024) have

10288

mailto:jiaruz2@illinois.edu
mailto:li.tao@sjtu.edu.cn
mailto:mezho@microsoft.com
mailto:shihan@microsoft.com
mailto:dongmeiz@microsoft.com

been proposed to reduce text redundancy. They
design various prompt compression systems and
strive to preserve maximum information between
original and compressed prompts. While these
methods ensure the retention of original prompt
information, they mainly focus on the prompt per-
plexity and overlook the adaption of target LLMs
during compression (Pan et al., 2024). For challeng-
ing tasks that require model fine-tuning (Mosbach
et al., 2023), these approaches struggle to estab-
lish connections between compressed tokens and
dynamically adjusted model parameters. Conse-
quently, naively applying these compression meth-
ods often leads to large performance degradation,
as relevant information may be inadvertently re-
moved or distorted during the compression process.

In this paper, we propose a novel prompt inter-
nalization approach, namely PromptIntern, which
internalizes prompt input during model fine-tuning
and enables efficient inference. Unlike prompt
compression which removes tokens based solely on
prompt information entropy, we aim to transfer vari-
ous types of prompt knowledge into updated model
parameters, thereby directly enhancing LLMs’ un-
derstanding. Our idea is motivated by the human
learning process as illustrated in Figure 1: Dur-
ing internship on-boarding, human interns need
detailed instructions, examples, and documents to
learn new tasks. As they internalize these materials
and become familiar with their duties, they mas-
ter the necessary skills and no longer require extra
guidance. Similarly, when specific prompt informa-
tion (e.g. task constraints, output formats/styles) is
repeatedly exposed to an LLM during fine-tuning,
the model can gradually internalize the knowledge
into its updated parameters. Such repeated informa-
tion can be progressively eliminated from prompt
inputs since it becomes unnecessary for inference
of the master LLM.

We dub our approach PromptIntern to regard
LLMs as human interns and internalize prompt
knowledge progressively. Our approach consists
of several key steps: Initially, we classify an input
prompt into three components: the template, ex-
amples, and query. We start by setting a schedule
to linearly decrease both the template compression
rate and the number of few-shot examples across
training stages. Following the schedule, we imple-
ment template compression and example absorp-
tion to pre-process the input prompts. We then
introduce a comprehensive pipeline that enables
LLMs to progressively internalize template and ex-

ample components into model parameters during
fine-tuning and efficiently perform inference using
query-only prompts.

We assess our method on challenging NL2Code
tasks (Zan et al., 2022) that are widely recognized
as benchmarks for model fine-tuning. Our experi-
ments evaluate PromptIntern on three key metrics:
accuracy, token usage, and inference speed. The
results indicate that under identical fine-tuning set-
tings, our method not only surpasses prompt com-
pression methods but also achieves comparable
accuracy to direct fine-tuning. Moreover, it accel-
erates the inference process by a factor of 4.2 and
reduces token usage by over 90% compared to di-
rect fine-tuning. These enhancements demonstrate
that our approach successfully balances efficiency
and effectiveness, making it well-suited for optimiz-
ing LLM performance across various cost-saving
scenarios. We further quantify the total monetary
cost savings and conduct detailed analyses to elu-
cidate the efficacy of our approach and provide
insights into its underlying mechanisms. Our main
contributions can be summarized as follows:

• We proposed PromptIntern1, a novel prompt
internalization method that aims to internalize
repetitive prompt knowledge into the model’s pa-
rameters, achieving extreme inference efficiency
while maintaining high performance.

• We devised detailed prompt internalization strate-
gies for template compression and example ab-
sorption along with a tailored progressive fine-
tuning pipeline.

• We conducted extensive experiments with de-
tailed analyses on challenging NL2Code tasks.
The experimental results show that our approach
reduces token usage by over 90%, speeds up in-
ference time by 4.2 times, and achieves 88.3%
cost savings across a broad spectrum of LLMs.

2 Related Work

Prompt compression rephrases original prompts
more concisely and is classified into task-aware
and task-agnostic approaches. Specifically, the
task-aware approaches, like LongLLMLingua
(Jiang et al., 2023b), utilize a question-aware
coarse-to-fine-grained strategy to compress
information based on the query. In contrast,
methods like soft prompts (Wingate et al., 2022;

1Our code will be released at https://github.com/
microsoft/PromptIntern

10289

https://github.com/microsoft/PromptIntern
https://github.com/microsoft/PromptIntern

Template
(Instructions & Doc)

10-shot examples

Query

0.3x Template

5-shot	
examples 0-shot

No Template
Template

Compression

Example
Absorption

Scheduled Epochs

Template
Compression

Example
Absorption

$!
"#
$%
	

Query QueryPr
og

re
ss

iv
e

Fi
ne

-T
un

in
g

Pr
og

re
ss

iv
e

Fi
ne

-T
un

in
g

Preprocess

Scheduled Epochs

Scheduled Epochs

Pr
og

re
ss

iv
e

Fi
ne

-T
un

in
g

Inference

/!23

%'

/!

Inference

…
…

…Preprocess

Preprocess
/4…/5	

…
…

Schedule #!"#!$%, #!"#&'(Schedule #!!$%, #!&'(Schedule #)!$%, #)&'(

Figure 2: Overview of PromptIntern framework. We structure the input prompt into three components: the template,
examples, and query. By employing template compression and example absorption, we efficiently preprocess each
component based on schedule Stmp,Segs. We then use a progressive fine-tuning strategy to gradually incorporate
prompt knowledge into the model parameters θ, facilitating efficient inference without sacrificing performance.

Liu et al., 2022; Mu et al., 2024) use learnable
tokens to condense prompts. Conversely, the
task-agnostic methods utilize metrics such as
information entropy to eliminate redundant prompt
information, with systems like LLMLingua (Jiang
et al., 2023a; Li et al., 2023) estimating token
importance using a smaller model. Despite the
demonstrated effectiveness of these methods,
producing compressed text that can generalize
across different tasks and be effectively integrated
into training scenarios remains a challenge.

Model fine-tuning adopts pre-trained LLMs to
specific tasks by modifying parameters. Based
on the assumption that fine-tuning adds less
new information to the model pre-trained on
large internet-scale datasets, Parameter-Efficient
Fine-Tuning (PEFT) methods aim to curtail the
costs of tuning large models by adjusting a subset
of parameters. Existing PEFT methods can be
broadly categorized into three main approaches:
1) Adapter-based methods (Houlsby et al., 2019;
He et al., 2021): Introduce trainable modules
within a static "backbone" network, offering
flexibility but potentially increasing model size.
2) Prompt-based methods (Lester et al., 2021b;
Razdaibiedina et al., 2023; Nashid et al., 2023):
Employ trainable "soft tokens" at input sequence
start, requiring effective prompt design per task.
3) Low-rank adaptation methods (Hu et al., 2021;
Dettmers et al., 2024; Liu et al., 2024): Use
low-rank matrices to approximate required weight
adjustments, avoiding additional inference burden
and often delivering strong performance. Despite
advancements in fine-tuning strategies, data inputs
should be carefully managed and distinguished

from lengthy ones used for direct inference.

3 Problem Formulation

Let an input prompt as x = (xtmp, xegs, xque),
where each input prompt x is considered as a tuple
of three components: xtmp as the template such
as fixed instructions, API docs, etc., xegs as the
examples, and xque as the query. Typically, xtmp

and xegs are relatively fixed and lengthy but essen-
tial for complex tasks. Let fθ(·) denote the neural
network function of a LLM model, typically trans-
former (Vaswani et al., 2017), parameterized by θ.
The generated output by LLM can be represented
as fθ(x).

We then consider the following problem of
prompt internalization. Given a training dataset
Dtrain = {(xi, yi)}ni=1 where n is the number of
training samples, xi is an input prompt defined
above, and yi is the corresponding groundtruth
output. Our goal is to internalize the knowledge
contained in templates and examples of each in-
put prompt i.e. {(xtmp

i , xegsi)}ni=1 into model pa-
rameters θ during fine-tuning, enabling efficient
inference while maintaining high prediction per-
formance through {xquei }ni=1 only. Formally, the
prompt internalization objective can be formulated
as follows:

min
θ̃

n∑

i=1

L
(
yi, fθ̃(x

que
i)

)
(1)

where L(·) denotes the loss function and θ̃ de-
notes the updated weights with internalized prompt
knowledge. For a new incoming prompt only con-
taining the query, the updated LLM with fθ̃(·) can
internally recover the output without the assistance
of instruction and examples.

10290

4 Methodology

In this section, we introduce our method
PromptIntern in detail. We first present the tem-
plate compression to compress the entire fixed tem-
plate part inside a prompt. Then we show the exam-
ple absorption to effectively absorb demonstration
examples into model parameters. Finally, we intro-
duce a tailored training strategy for PromptIntern.
The overall framework is shown in Figure 2.

4.1 Template Compression
We first introduce template compression, which is
designed to compress the common template infor-
mation exists across training instances. The mo-
tivation of the template compression stems from
the following aspects: 1) Redundancy. The instruc-
tion is repetitive across prompts for a given task,
often containing unnecessary tokens that do not
contribute to the language model’s understanding,
posing significant memory and computational bur-
dens when the instruction is lengthy; and 2) Noise.
Excessively long prompts may incorporate extra-
neous elements—either irrelevant or misleading
information—that serve as noise and can adversely
affect the model’s generation.

To mitigate the issues stated above, we propose a
template compression system, which can generally
be expressed as:

x̃tmp = C(xtmp, τ tmp) (2)

where C is a specific template compressor, x̃tmp

is the compressed template, and τ tmp is the tem-
plate compression rate as defined in (Jiang et al.,
2023a), varying at differnt training interations. We
then adopt a predetermined schedule Stmp(t) to
progressively reduce and internalize the prompt
template information during the t-th training itera-
tion. Specifically, for a total of T training iterations,
we initially set τ tmp to 1 at Stmp(0) and gradually
decrease the value of τ tmp at Stmp(t) to zero at
end to achieve fully template internalization. Note
that such a compression system is also flexible,
allowing it to halt at a desired non-zero compres-
sion rate. This flexibility allows to maintenance
of a certain level of compressed template, serv-
ing as a trade-off to preserve inference accuracy in
specific scenarios, as discussed in Section 5.4. In
addition to the progressively decreasing template
schedule, we also specify the template compressor
C for better utilization. we categorize it into two
types which exactly reflect the primary components

of the template defined in the problem formulation:
the instruction compressor and document compres-
sor:

Instruction Compressor targets the static ele-
ments within prompts, specifically focusing on the
instructional content. Instructions in training data
often consist of repeated directives, guidelines, or
predefined tasks which are common across multiple
training scenarios. The primary goal of the instruc-
tion compressor is to distill these instructions down
to their essential components, eliminating verbosity
and redundancy without compromising the clarity
or intent of the instructions.

Document Compressor is designed to handle the
bulkier and more detailed portions of the prompts,
such as API documentation or static demonstra-
tions. These sections typically include extensive
technical descriptions and examples that, while in-
formative, often contain a significant amount of
repetitive or non-essential information (Xu et al.,
2023). The goal of the document compressor is to
reduce the information unnecessary for understand-
ing and applying the technical content, thereby
streamlining the training process.

4.2 Example Absorption
Incorporating few-shot examples into fine-tuning
not only improves information retrieval and mem-
ory recall (Hübotter et al., 2024) but also yields sub-
stantial benefits in handling a variety of tasks with
minimal data input (Mosbach et al., 2023; Snell
et al., 2017). However, directly adding lengthy
few-shot examples to input prompts burdens the
context window and increases inference latency.
Motivated by this, we propose example absorption
to benefit from the enhanced performance afforded
by few-shot examples while preventing incurring
significant additional overhead. Specifically, the
example absorption mainly contains two stages:
example retrieval and example removal.

Example Retrieval is designed to identify and
select the most related few-shot examples from
the training dataset and incorporate them into each
training instance. The underlying rationale is to
choose examples that closely align with the train-
ing instance so as to accelerate model’s internaliza-
tion during training. We employ a straightforward
approach that utilizes a relevance scoring function
s(·, ·) to assess the similarity between examples
and the training instance. Specifically, we select
the top k examples, varying at different training it-
erations, with the highest relevance scores to serve

10291

as our few-shot examples. For a training instance
(xi, yi) with xi being the input prompt and yi being
the corresponding groundtruth output, the selection
process can be expressed as follows:

xegsi = {(xj , yj) | j ̸= i, s(yi, yj) ∈ top k scores}
(3)

Note that the scoring function is calculated based
on common similarity metrics (Rubin et al., 2022;
Chen et al., 2022; Dai et al., 2022). In our experi-
ment, we use the BLEU as the scoring function.

Example Removal aims to progressively inter-
nalize the prompt knowledge from few-shot ex-
amples into model parameters. To achieve this,
we also adopt a predetermined schedule Segs(t)
to gradually decrease the number of demonstra-
tion examples in each prompt instance during the
t-th iteration. Specifically, for a total of T training
iterations, we initially set k examples at Segs(0)
and then gradually decrease the value of k at each
Segs(t) to zero at end in order to achieve fully ex-
ample internalization.

4.3 PromptIntern Pipeline
In this subsection, we describe the detailed pipeline
of PromptIntern. As demonstrated in Algorithm 1,
PromptIntern consists of three stages: preprocess
(line 1-7), progressive fine-tuning (line 8-12), and
inference (line 13-14).

Preprocess. For the first step, We preprocess
the input prompts to prepare them for the pro-
gressive training stage. Specifically, we process
the prompt template to different compression rates
based on the schedule Stmp(t) and retrieve exam-
ples for each training instance based on the sched-
ule Segs(t). For better illustration, we provide an
example of a pre-processed prompt with respect to
schedule in Appendix C.

Progressive Fine-tuning. We then fine-tune the
model parameters for internalizing. Given the train-
ing iteration t, we update the model parameters as
follows:

θt+1 = θt −
η

b

b∑

i=1

∇θL
(
fθt(x

tmp
i (t),

xegsi (t), xquei), yi
)

(4)

where η is the learning rate, L is the cross-entropy
loss function, b is the batch size, B = {(xi, yi)}bi=1

is the data batch, and y is the groundtruth label.
Inference. After the progressive fine-tuning, we

have trained the LLMs with updated model pa-
rameters θT to perform inference without adding

Algorithm 1 PromptIntern Pipeline

Input: A training dataset Dtrain ={(xi, yi)}ni=1

with xi = (xtmp
i , xegsi , xquei) and correspond-

ing labels yi, A language model f with initial
parameters θ, learning rate η, training itera-
tions T , template compression schedule Stmp,
example absorption schedule Segs

Output: The inference output fθT (x
que)

1: Preprocess
2: for i = 1, 2, . . . , n do
3: Obtain each τ tmp from Stmp

4: Obtain each k from Segs

5: Compress xtmp
i w/ each τ tmp via Eq. (2)

6: Retrieve k examples xegsi via Eq. (3)
7: end for
8: Progressive Finetuning
9: for t = 0, 1, . . . , T − 1 do

10: Adjust prompts with Stmp(t) and Segs(t)
11: Update model parameters θt via Eq. (4)
12: end for
13: Inference
14: Perform inference with fθT (x

que)

instructions or any examples. Thus, we can predict
the output simply with fθT (x

que).
Our objective is to effectively compress and in-

corporate prompt knowledge into model parame-
ters that are specifically tailored for distinct tasks.
In pursuit of this goal, we have adopted PEFT dur-
ing the fine-tuning phase of PromptIntern. Specif-
ically, we apply LoRA (Hu et al., 2021) as it im-
poses no additional computational costs during in-
ference and allows for scalable deployment across
multiple tasks (Sheng et al., 2023). Note that our
outlined pipeline in Algorithm 1 is also compatible
with other PEFT techniques.

5 Experiment

In this section, we evaluate the performance of
PromptIntern across various benchmarks on the
NL2Code task. The NL2Code task is widely recog-
nized for its utility in evaluating LLMs on both fine-
tuning efficacy and cost-effectiveness in real-world
applications (Zan et al., 2022). Following this, our
experiments primarily focus on two key perspec-
tives: 1) Effectiveness: assessing the performance
accuracy of PromptIntern during inference phases;
2) Efficiency: quantifying the reduction in token
usage and corresponding cost savings achievable
through PromptIntern.

10292

Table 1: Comparison with prompt compression baselines on NL2Code benchmark. To ensure a fair comparison, we
apply each baseline to compress the input prompt and use the compressed prompt as both training and testing data
during model fine-tuning. We also standardize the compression ratio across all methods to approximately the same
as indicated by 1/τall.

Methods MBPP NL2F NL2Bash

(Inference on GPT-3.5) Pass@1 Input Tokens 1/τall E.M. Input Tokens 1/τall BLEU Input Tokens 1/τall

GPT4 Generation 61.8 128 1.8x 59.6 425 1.6x 59.5 256 1.9x
Selective Context 59.7 102 2.2x 56.4 391 1.7x 55.2 158 3.1x
LLMLingua 70.3 115 2.0x 64.2 417 1.6x 61.3 154 3.1x
LongLLMLingua 65.2 121 1.9x 67.8 425 1.6x 58.4 133 3.6x
LLMLingua-2 72.5 107 2.1x 70.4 407 1.7x 62.8 141 3.4x

PromptIntern 78.1 107 2.1x 81.4 407 1.7x 70.5 141 3.4x

5.1 Settings
Datasets We apply three typical NL2Code
datasets: MBPP (Austin et al., 2021) for NL to
python code generalization, NL2F (Zhao et al.,
2024) for NL to Excel spreadsheet formulas gener-
ation, NL2Bash (Lin et al., 2018) for NL to Bash
Shell commands generation. Please refer to Ap-
pendix A.1 for the dataset details.

Evaluation Metrics We use one-shot pass ac-
curacy Pass@1 (Austin et al., 2021) for MBPP,
Exact Match (E.M.) for NL2F, and BLEU score for
NL2Bash. We also calculate the input tokens usage
and compression ratio 1/τ for each dataset.

Baselines We consider two types of baselines
with setups below:
1) Prompt Compression approaches. We em-
ploy the latest advancements in prompt compres-
sion techniques. Specifically, we utilize Gist To-
kens (Mu et al., 2024), GPT-4 Generation (Jiang
et al., 2023b), Selective Context(Li et al., 2023),
and LLMLingua series (Jiang et al., 2023a,b; Pan
et al., 2024). Each prompt compression method
is initially applied to compress the entire dataset
to a predetermined compression rate. Then, the
compressed dataset is utilized for both fine-tuning
and inference evaluation.
2) Direct Fine-tuning approaches. We use “Direct”
as the counterpart to our progressive fine-tuning
strategy. Specifically, we adopt several conven-
tional direct fine-tuning configurations, including
i) direct fine-tuning with complete template and ex-
amples (e.g. Template with 5-shots in Table 2), ii)
direct fine-tuning with compressed template and re-
duced examples (e.g. Template x0.6 with 2-shots in
Table 2), iii) direct fine-tuning with template only
(Template only), and iv) direct fine-tuning without
template and examples (No template).

Models To demonstrate the broad applicability
of PromptIntern, we utilize both closed-source and
open-source LLMs with different parameter sizes
for fine-tuning and inference processes.1) Closed-
Source: We apply GPT-4-0613 (OpenAI, 2023),
abbreviated as GPT-4, and GPT-3.5-turbo-01252,
abbreviated as GPT-3.5. 2) Open-Source: We apply
Mixtral-8x7B-v0.1 (Jiang et al., 2024), abbreviated
as Mixtral-8x7B, Llama2-7B (Touvron et al., 2023),
and Llama2-13B (Touvron et al., 2023).

Implementation Details Please refer to Ap-
pendix A for the additional experiments settings
and implementation details.

5.2 Prompt Compression Comparison

Table 1 reports the overall result of PromptIntern
with the prompt compression baselines inferenced
on GPT-3.5 across all datasets. Here we estab-
lish the template compression rate τtmp at 0.3
across all prompt compression approaches as well
as PromptIntern to ensure a fair comparison. And
τall in the table represents the overall prompt’s
compression rate. We observe that while utilizing
a comparable number of tokens for inference, our
approach outperforms all baselines, achieving im-
provements of 5.6% on MBPP, 11.0% on NL2F,
and 7.7% on NL2Bash. The result demonstrates
that PromptIntern generally offers the best balance
of efficiency and effectiveness across varied tasks.
Note that since the Gist Token(Mu et al., 2024)
baseline is only applicable to open-source LLMs,
we separately compare it with our approach which
can be found in Appendix A.3.

2https://platform.openai.com/docs/models/gpt-3-5-turbo

10293

Table 2: Comparison with direct fine-tuning baselines on NL2Code benchmark.

MBPP

Model Template with 5-shots Template x0.6 with 2-shots Template Only No Template PromptIntern

Pass@1 Input Tokens Pass@1 Input Tokens Pass@1 Input Tokens Pass@1 Input Tokens Pass@1 Input Tokens

GPT-4 91.6 1181 87.4 424 87.3 226 77.2 43 87.9 43
GPT-3.5 82.7 1181 76.2 424 75.3 226 65.8 43 76.6 43
Mixtral-8x7B 69.8 1263 65.8 453 65.7 238 56.3 54 66.3 54
Llama2-13B 39.2 1286 37.5 471 36.4 251 26.4 58 37.1 58
Llama2-7B 30.4 1286 27.7 471 27.3 251 18.3 58 27.9 58

NL2F

Model Template with 10-shots Template x0.6 with 5-shots Template Only No Template PromptIntern

E.M. Input Tokens E.M. Input Tokens E.M. Input Tokens E.M. Input Tokens E.M. Input Tokens

GPT-4 94.8 3540 92.1 1838 89.7 680 82.5 286 91.6 286
GPT-3.5 85.5 3540 78.1 1838 76.2 680 70.4 286 78.4 286
Mixtral-8x7B 69.3 4204 66.3 2191 63.8 814 54.2 339 65.2 339
Llama2-13B 59.2 4202 54.9 2183 54.1 812 32.9 339 55.3 339
Llama2-7B 45.4 4202 40.7 2183 38.5 812 21.8 339 40.8 339

NL2Bash

Model Template with 10-shots Template x0.6 with 5-shots Template Only No Template PromptIntern

BLEU Input Tokens BLEU Input Tokens BLEU Input Tokens BLEU Input Tokens BLEU Input Tokens

GPT-4 86.7 1063 81.3 810 78.6 484 71.2 52 82.5 52
GPT-3.5 74.2 1063 67.5 810 65.1 484 61.2 52 67.7 52
Mixtral-8x7B 63.8 1320 58.3 1053 54.9 603 47.6 68 57.2 68
Llama2-13B 47.1 1244 43.9 988 41.6 574 35.1 64 43.5 64
Llama2-7B 35.8 1244 32.7 988 31.4 574 22.1 64 31.6 64

5.3 Direct Fine-tuning Comparison

Table 2 shows the comparison of our approach with
direct fine-tuning baselines on three datasets. In
MBPP, our method outperforms the No Template
and Template baselines by 9.6%-10.8% and 0.6%-
1.3%, respectively, and achieves similar results to
Template x0.6 with 2-shots, using fewer tokens.
We also reduce input token usage by 9.8x-12.2x,
compared to the Template with 5-shots, which re-
quires 22.2x-27.4x more tokens. In NL2F, our
method improves over No Template by 8.0%-19.0%
with the same token usage, matching the Tem-
plate x0.6 with 2-shots baseline while reducing
token usage by 6.4x. We also observe that larger
models (LLama2-13B) show less degradation with-
out prompt templates compared to smaller models
(LLama2-7B), with a difference of -5.7% verses
-21.2%. In NL2Bash, our approach exceeds No
Template by 7.3%-11.3% and reduces token usage
by 15.5x compared to the baseline method Tem-
plate x0.6 with 5-shots.

5.4 Ablation Study

To effectively assess the impact of various com-
ponents within PromptIntern, we introduce three
variants of PromptIntern for ablation studies:

• PromptIntern w/τtmp=0.3, where we set the
compression rate to 0.3 instead of 0 in template

compression.

• PromptIntern w/o Example Absorption,
where we omit the example absorption for
retrieving and internalizing few-shot examples
during fine-tuning.

• PromptIntern w/o Template Compression,
where template compression is excluded for both
fine-tuning and inference prompt instances.

The overall results is shown in Table 3. When com-
paring PromptIntern with PromptIntern w/τtmp =
0.3, we observe an average of 2.4% drop on per-
formance but a 3.7x compression ratio on token
usages across all three datasets. This highlights
the balance between compression rate and accu-
racy performance. When comparing our with our
w/o Example Absorption, we observe a large per-
formance drop in the latter variant, despite both
approaches utilizing the same number of tokens
for inference. The result demonstrates the impor-
tance of example absorption in internalizing es-
sential information during the fine-tuning progress.
In addition, when comparing PromptIntern with
PromptIntern w/o Template Compression, we note
that adding the template compression saves an av-
erage of 280 tokens across the datasets but expe-
riences an average performance drop of 5%. The
result above demonstrates that while internalizing
the template into model parameters reduces token

10294

Table 3: Ablation Study of PromptIntern.

Methods MBPP NL2F NL2Bash

(Inference on GPT-3.5) Pass@1 Tokens 1/τall E.M. Tokens 1/τall BLEU Tokens 1/τall

PromptIntern 76.6 43 5.3x 78.4 286 2.4x 67.7 52 9.3x

w/ τtmp = 0.3 78.1 107 2.1x 81.4 407 1.7x 70.5 241 2.0x
w/o Example Absorption 72.9 43 5.3x 73.5 286 2.4x 64.6 52 9.3x
w/o Template Compression 80.2 226 1.0x 83.6 680 1.0x 73.5 484 1.0x

Table 4: Comparison of schedule pattern and example
retrival bank of PromptIntern. The results are infer-
enced on GPT-3.5.

PromptIntern MBPP(Pass@1) NL2F(E.M.) NL2Bash(BLEU)

Pattern of Schedule S
- exp 74.8 72.5 59.4
- exp−1 67.3 64.9 52.8
- linear (ours) 77.6 78.4 67.7

Example Retrival Bank
- 25% 75.9 77.5 66.2
- 50% 76.1 78.1 66.8
- 100% (ours) 77.6 78.4 67.7

usage, it requires a trade-off in terms of inference
performance.

5.5 Analysis on Schedule Pattern

In Table 4, we test the effectiveness of different
scheduling patterns during the progressive fine-
tuning process, specifically focusing on how the de-
creasing speed curve influences the compression of
the template and absorption of few-shot examples.
The patterns tested include exponential, inverse-
exponential, and linear decrease.

From the data in the table, we observe that the
linear decreasing schedule delivers the most consis-
tent and highest performance across all three evalu-
ation metrics, indicating superior performance in
both parsing efficiency and language model un-
derstanding. Conversely, the inverse-exponential
schedule shows the least effectiveness, with scores
considerably lower in all metrics compared to the
linear schedule. The exponential decrease performs
moderately, but still falls short of the linear sched-
ule, suggesting that a steady, predictable reduc-
tion is more beneficial than more aggressive de-
crease. This analysis suggests that for adopting a
linearly decreasing schedule for progressive fine-
tuning may lead to better performance in terms of
accuracy compared to other scheduling patterns.

5.6 Analysis on Examples Retrieval Bank

Table 4 examines the impact of varying proportion
of the training set used for constructing relevant ex-
amples in the examples retrieval bank. The options
tested include using 25%, 50%, and 100% of the
training set. The results show a trend where increas-
ing the percentage of the training set used in the
examples retrieval bank correlates with improved
performance. This suggests that larger examples
retrieval bank provides a richer set of few-shots
for the model to learn from, thereby enhancing its
ability to perform accurately across tasks.

Additional Experiments. In Appendix A.4, we
explain why performing direct inference with a
compressed prompt, while using the full prompt
during training, is less effective compared to
the progressive fine-tuning strategy employed by
PromptIntern. Also, to provide a comprehensive
analysis of PromptIntern’s efficiency, we evaluate
the inference speed and calculate the overall mon-
etary cost during inference (details in Appendix
A.5). In addition, to show that the principle of
PromptIntern can generalize beyond the NL2Code
domain, we evaluate PromptIntern on an additional
task, which is presented in Appendix A.6.

6 Discussion

6.1 Training Overhead of PromptIntern

As PromptIntern is specifically designed to en-
hance the efficiency of LLMs during inference, the
multi-stage design of progressive fine-tuning may
introduce additional computational overhead. It is
crucial to manage this overhead during the training
phase to ensure that PromptIntern remains scalable
and applicable in real-world, large-scale scenarios.

To illustrate the overhead of PromptIntern, we
provide a detailed breakdown of the time overhead
incurred during the training phase. We compare
our method to the baseline template with k-shots,
which represents common use cases. Our eval-

10295

Table 5: Time Overhead of PromptIntern during fine-tuning.

Model MBPP NL2F NL2Bash

PromptIntern Template with 5-shots PromptIntern Template with 10-shots PromptIntern Template with 10-shots

GPT-4 01h 38m 54s 02h 13m 07s 03h 46m 15s 04h 32m 12s 03h 23m 18s 04h 17m 28s
GPT-3.5 01h 19m 03s 01h 48m 55s 03h 02m 29s 03h 44m 46s 02h 23m 19s 03h 09m 16s
Llama2-13B 00h 45m 27s 01h 14m 10s 01h 36m 17s 02h 16m 21s 01h 12m 48s 01h 48m 03s

uation includes the complete end-to-end process,
covering dataset import and training times. All
experiments were conducted on an A100x1-80G
GPU. As shown in Table 5, PromptIntern consis-
tently requires less time for both data preparation
and training compared to the baseline. This ef-
ficiency is primarily due to the reduced number
of input tokens per training instance during pro-
gressive fine-tuning. Furthermore, as outlined in
our experimental settings, the number of training
epochs for PromptIntern matches that of the direct
fine-tuning baselines, ensuring no additional com-
putational cost from extra training steps.

6.2 General model ability

Although progressive fine-tuning ensures high ac-
curacy for domain-specific tasks, concerns may
arise regarding whether this multi-step fine-tuning
approach could negatively impact the overall
model’s generalizability. Several studies have ex-
amined fine-tuning for LLMs. (Wei et al., 2021)
shows that multi-task fine-tuning enhances zero-
shot and ICL capabilities. (Mosbach et al., 2023)
finds that few-shot fine-tuning preserves out-of-
domain generalization similar to ICL settings.
However, (Wang et al., 2022) reveals that fine-
tuning may overly adapt models to task-specific
formats, reducing flexibility for new tasks. (Luo
et al., 2023a) also explore catastrophic forgetting
during continual fine-tuning.

In this work, PromptIntern is designed to en-
hance the efficiency of fine-tuned LLMs during
inference while maintaining task-specific perfor-
mance. Our approach is particularly suited for sce-
narios where LLMs are fine-tuned and deployed
for domain-specific tasks. Although PromptIntern
is currently limited to fine-tuning a single task, re-
cent inference optimization techniques (Ye et al.,
2023; Wang et al., 2023; Sheng et al., 2023) enable
concurrent fine-tuning of multiple LoRA adapters
while sharing a single backbone model. This allows
for efficient adaptation to multiple tasks, reduc-
ing the number of parameters requiring fine-tuning.
We will leave the integration of PromptIntern with

these approaches in our future work.
We also provide a detailed discussion on prevent-

ing model overfitting in Appendix B.1.

7 Conclusion

In this paper, we propose PromptIntern, a prompt
internalization method that internalizes repetitive
prompt knowledge into LLMs parameters. We de-
velop specific compression strategies for different
components of the prompt, accompanied by a tai-
lored progressive fine-tuning pipeline. Extensive
experiments demonstrate that our method main-
tains comparable performance effectiveness while
accelerating inference speed with less token usage.

8 Limitations

Through extensive experiments in this paper,
PromptIntern has demonstrated a strong ability to
reduce model costs during inference. However, as
shown in Table 2, PromptIntern still exhibits a per-
formance gap in accuracy compared to the use of
original prompts (i.e., template with k-shots). Also,
while we empirically validate the effectiveness of
PromptIntern, a theoretical analysis of model pa-
rameter updates and the training pipeline complex-
ity is still required. In addition, although the prin-
ciple of PromptIntern can be generalized to most
downstream NLP tasks (as demonstrated in Ap-
pendix A.6, further empirical verification is needed
on more advanced tasks. In future work, we plan to
conduct more evaluations on several complex tasks,
including long-document summarization, question-
answering in specialized technical domains, etc.

9 Ethics Statement

All datasets used in this paper are publicly avail-
able and have been reviewed to ensure they do not
contain any personally identifiable information or
offensive content. Additionally, experiments were
conducted on computational clusters with NVIDIA
A100 GPUs. It is important to note that this could
have an environmental impact, and the carbon foot-
prints were monitored in real time.

10296

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Xiang Chen, Lei Li, Ningyu Zhang, Xiaozhuan Liang,
Shumin Deng, Chuanqi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022. Decoupling knowledge from
memorization: Retrieval-augmented prompt learn-
ing. In Advances in Neural Information Processing
Systems.

Zhoujun Cheng, Jungo Kasai, and Tao Yu. 2023. Batch
prompting: Efficient inference with large language
model apis. arXiv preprint arXiv:2301.08721.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith Hall,
and Ming-Wei Chang. 2022. Promptagator: Few-
shot dense retrieval from 8 examples. In The Eleventh
International Conference on Learning Representa-
tions.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. Advances in neural information process-
ing systems, 32.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Xinyi He, Jiaru Zou, Yun Lin, Mengyu Zhou, Shi Han,
Zejian Yuan, and Dongmei Zhang. 2024. Conline:
Complex code generation and refinement with online
searching and correctness testing. arXiv preprint
arXiv:2403.13583.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.

Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden
As, and Andreas Krause. 2024. Active few-shot fine-
tuning. arXiv preprint arXiv:2402.15441.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023a. Llmlingua: Compressing
prompts for accelerated inference of large language
models. arXiv preprint arXiv:2310.05736.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023b.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
arXiv preprint arXiv:2310.06839.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021a.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021b.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin.
2023. Compressing context to enhance inference
efficiency of large language models. arXiv preprint
arXiv:2310.06201.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D Ernst. 2018. Nl2bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018).

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

10297

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie
Zhou, and Yue Zhang. 2023a. An empirical study
of catastrophic forgetting in large language mod-
els during continual fine-tuning. arXiv preprint
arXiv:2308.08747.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:
Empowering code large language models with evol-
instruct. Preprint, arXiv:2306.08568.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-
etrich Klakow, and Yanai Elazar. 2023. Few-shot
fine-tuning vs. in-context learning: A fair comparison
and evaluation. arXiv preprint arXiv:2305.16938.

Jesse Mu, Xiang Li, and Noah Goodman. 2024. Learn-
ing to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36.

Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023.
Retrieval-based prompt selection for code-related
few-shot learning. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE),
pages 2450–2462. IEEE.

R OpenAI. 2023. Gpt-4 technical report. arxiv
2303.08774. View in Article, 2(5).

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Vic-
tor Rühle, Yuqing Yang, Chin-Yew Lin, et al. 2024.
Llmlingua-2: Data distillation for efficient and faith-
ful task-agnostic prompt compression. arXiv preprint
arXiv:2403.12968.

Anastasiia Razdaibiedina, Yuning Mao, Madian Khabsa,
Mike Lewis, Rui Hou, Jimmy Ba, and Amjad Alma-
hairi. 2023. Residual prompt tuning: improving
prompt tuning with residual reparameterization. In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 6740–6757.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. Preprint, arXiv:2308.12950.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference
of the North American Chapter of the Association

for Computational Linguistics: Human Language
Technologies, pages 2655–2671.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman
Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al.
2023. S-lora: Serving thousands of concurrent lora
adapters. arXiv preprint arXiv:2311.03285.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30.

Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du,
Shi Han, and Dongmei Zhang. 2023. Tap4llm: Table
provider on sampling, augmenting, and packing semi-
structured data for large language model reasoning.
arXiv preprint arXiv:2312.09039.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Kushala VM, Harikrishna Warrier, Yogesh Gupta, et al.
2024. Fine tuning llm for enterprise: Practical
guidelines and recommendations. arXiv preprint
arXiv:2404.10779.

Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix
Yu, Cho-Jui Hsieh, Inderjit S Dhillon, and Sanjiv Ku-
mar. 2022. Two-stage llm fine-tuning with less spe-
cialization and more generalization. arXiv preprint
arXiv:2211.00635.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guan-
nan Zhang. 2023. Multilora: Democratizing lora
for better multi-task learning. arXiv preprint
arXiv:2311.11501.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

David Wingate, Mohammad Shoeybi, and Taylor
Sorensen. 2022. Prompt compression and contrastive
conditioning for controllability and toxicity reduction
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
5621–5634.

10298

https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. Re-
comp: Improving retrieval-augmented lms with con-
text compression and selective augmentation. In The
Twelfth International Conference on Learning Repre-
sentations.

Zhengmao Ye, Dengchun Li, Jingqi Tian, Tingfeng Lan,
Jie Zuo, Lei Duan, Hui Lu, Yexi Jiang, Jian Sha,
Ke Zhang, et al. 2023. Aspen: High-throughput lora
fine-tuning of large language models with a single
gpu. arXiv preprint arXiv:2312.02515.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and
Jian-Guang Lou. 2022. Large language mod-
els meet nl2code: A survey. arXiv preprint
arXiv:2212.09420.

Wei Zhao, Zhitao Hou, Siyuan Wu, Yan Gao, Haoyu
Dong, Yao Wan, Hongyu Zhang, Yulei Sui, and
Haidong Zhang. 2024. Nl2formula: Generating
spreadsheet formulas from natural language queries.
arXiv preprint arXiv:2402.14853.

Lecheng Zheng, Baoyu Jing, Zihao Li, Hanghang Tong,
and Jingrui He. 2024. Heterogeneous contrastive
learning for foundation models and beyond. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 6666–
6676.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

A Additional Experiments

A.1 Dataset Details

MBPP The MBPP dataset, as detailed by (Mos-
bach et al., 2023), consists of Python programming
tasks, each accompanied by a description in natu-
ral language that has been expertly curated. The
dataset is segmented into training and test sets, with
974 and 102 examples, respectively.

NL2F The NL2F dataset, as detailed by (Zhao
et al., 2024), consists of 70,799 pairs of NL queries
and spreadsheet formulas and covers 21,670 ta-
bles. We follow the dataset instructions (Zhao
et al., 2024) to randomly split data into a train-
ing set (75%), validation set (10%), and test set
(15%).

NL2Bash The NL2Bash dataset, as described by
(Lin et al., 2018), comprises snippets of Bash code,
each paired with a natural language description ex-
pertly curated. The dataset is divided into training
and test sets, containing 8,090 and 606 examples,
respectively.

A.2 Implementation Details

Fine-tuning Procedures For PromptIntern train-
ing, we adopt LoRA (Hu et al., 2021) with
a rank of 32. For GPT-series and open-
source model fine-tuning we train models for
MBPP/NL2F/NL2Bash with 6/12/12 epochs,
16/128/128 batch size, 200/200/200 checkpoint in-
terval, and 4096/4096/4096 context window length,
respectively.

Model Inference We provide the detailed param-
eters we adopted during fine-tuned LLM inference:
temperature equal to 0, max tokens equal to 1028,
top p equal to 0.95, presence penalty equal to 0,
and frequency penalty equal to 0.

Baseline Settings For prompt compression base-
lines comparison, we set the template compression
ratio τtmp = 0.3. For direct fine-tuning baselines,
we apply LLMLingua-2 (Pan et al., 2024) as the
default template compressor as it performs the best
in Table 1.

Parameter Settings for PromptIntern
1) Number of top-k for example absorp-
tion: We set the initial k as 5/10/10 across
MBPP/NL2F/NL2Bash for the initial number of
few-shot examples for example absorption. Dur-
ing progressive fine-tuning, we decrease k lin-
early in the order of 5-2-0/10-5-0/10-5-0 across
MBPP/NL2F/NL2Bash.
2) Number of τtmp for template compression: For
the prompt compression baseline experiments, we
set the final template rate to 0.3, which is used in
the last stage of fine-tuning as well as inference.
For the other experiments and ablation studies, we
set the final template rate to 0 to achieve full inter-
nalization.

Cost Evaluation We compute the total costs
based on the price shown in OpenAI Pricing3

Computational Resource We conduct all exper-
iments on AzureAI Machine Learning Studio with
one A100x1-80G computational cluster

A.3 Comparison with Gist Tokens

We report the comparison result of PromptIntern
with Gist Tokens (Mu et al., 2024) on Table 6. Gist
Tokens showcases consistent performance, with
notable results in NL2Bash where it achieves a

3https://openai.com/api/pricing/

10299

Table 6: Comparison with Gist Tokens (Mu et al., 2024)

Methods MBPP NL2F NL2Bash

(Inference on Llama2-7B) Pass@1 Tokens 1/τall E.M. Tokens 1/τall BLEU Tokens 1/τall

Gist Tokens 10.2 61 4.1x 17.5 342 2.4x 22.7 66 8.6x

PromptIntern 27.9 58 4.3x 40.8 339 2.4x 31.6 64 9.0x

Table 7: Speed (s/instance) Comparison of PromptIntern with Direct Fine-tuning baseline on NL2Code benchmarks.

Model Template with 5-shots Template x0.6 with 2-shots Template No template PromptIntern

MBPP

GPT-4 10.21 8.68 7.29 4.36 4.17
GPT-3.5 5.43 3.68 3.06 1.35 1.31
Mixtral-8x7B 4.84 3.23 3.14 1.76 1.62
Llama2-13B 3.17 2.54 2.19 1.08 1.13
Llama2-7B 2.95 2.27 1.95 0.84 0.76

NL2F

GPT-4 12.47 8.43 4.16 2.12 2.15
GPT-3.5 8.16 5.26 2.18 1.46 1.44
Mixtral-8x7B 6.27 4.71 3.17 1.19 1.20
Llama2-13B 4.15 2.95 1.25 0.63 0.63
Llama2-7B 3.83 2.03 1.24 0.41 0.39

NL2Bash

GPT-4 4.46 3.18 1.57 1.18 1.18
GPT-3.5 2.79 2.36 1.29 1.02 1.02
Mixtral-8x7B 2.65 2.23 1.59 1.13 1.13
Llama2-13B 2.21 1.96 1.41 1.05 1.05
Llama2-7B 1.86 1.49 1.02 0.87 0.87

BLEU score of 22.7, suggesting a moderate align-
ment with the dataset’s requirements. In contrast,
PromptIntern demonstrates superior performance
across all metrics and datasets, particularly ex-
celling in the NL2Bash dataset with a BLEU score
of 31.6 and maintaining similar efficiency in token
usage. The results demonstrate that our approach
significantly outperforms the Gist token while con-
ducting overall the same compression rate.

A.4 Effectiveness of progressive fine-tuning in
PromptIntern

In this experiment, we compare PromptIntern with
the method of direct fine-tuning with a full-loaded
prompt (template plus few-shot examples) followed
by inferencing with queries only (designated as
Template with k-shots* in table 8). We use the
comparison to demonstrate the effectiveness of pro-
gressive fine-tuning for updating model parame-
ters properly. The result is shown in Table 8. We
can clearly observe that Template with k-shots*

Table 8: Demonstration of progressive fine-tuning in
PromptIntern

Dataset (Inference on GPT3.5) MBPP NL2F NL2Bash

Template with k-shots∗ 69.1 71.7 63.2
PromptIntern 76.6 78.4 67.7

has a large performance degradation compared to
PromptIntern. This indicates that fine-tuned LLMs
struggle to establish a proper connection between
the full-length prompts used in training and the
query-only prompts used during inference. It also
motivates the development of the progressive fine-
tuning strategy in PromptIntern. Beyond empirical
experiments demonstration, we will leave the the-
oretical proof of the effectiveness of PromptIntern
(Algorithm 1) in our future work.

A.5 Experiments on Inference Speed

The experimental results presented in Table
7 illustrate the low latency characteristics

10300

You are an advanced data analyst and programmer. Follow the
instruction and few-shot examples to translate a user's query into
an executable excel formula based on given table.

+ Here is the API documents for excel formulas that you can refer to
for your answer:

<API Doc 1>

1. ⟨Formula⟩ ::= = ⟨Expr⟩

2. ⟨Expr⟩ ::= ⟨Term⟩ {⟨AddOp⟩ ⟨Term⟩}

...

<API Doc 2> ...

+ You are provided with two inputs. The first is a natural language
query starting with label [NL] and ending with [/NL]. The second is a
serialized representation of a table starting with label [TABLE] and
ending with [/TABLE].

+ Your output should only contain the excel formulas following the
format ```formula <code> ```

Follow the examples below to convert a user's query into a runnable
excel formula using the provided tabular data.

0.3 x Template

Example 1

[NL] What is the date of the game where the NY Islanders are the
home team? [/NL]
[Table] [["0","A","B","C","D","E", "F"], ["1",
"Date","Visitor","Score","Home","Record","Points"], ...] [/Table]

Output: ```formula
UNIQUE(CHOOSECOLS(FILTER(A2:F13,D2:D13=\"ny
islanders\"),1))```

Example 2 ...

…

Example 10 …

INPUT

[NL]Who was the home team on February 3?[/NL]

[Table]…[/Table]

10-shot Examples

Question

You are an advanced data analyst and programmer. Your
tasks is to convert a user's query into an executable excel
formula.

+ You are provided with a natural language [NL] and a
serialized table [TABLE].

+ Output should be in the format: ```formula <code> ```.

Template

Example 1 ..

Example 2 …

…
Example 5 …

5-shot Examples

INPUT

[NL]Who was the home team on February 3?[/NL]

[Table]…[/Table]

Question

INPUT

[NL]Who was the home team on February 3?[/NL]

[Table]…[/Table]

Question

Initial Input prompt Input prompt during
progressive finetuning

Input prompt for final iteration
& inference

&()* ' , &+,-(')	

&()* , , &+,-(,)	

&()* - , &+,-(-)	

Figure 3: An Example from NL2F demonstrating how an original prompt is preprocessed through template
compression and example absorption in PromptIntern for progressive fine-tuning and final inference.

of PromptIntern during inference across three
datasets, MBPP, NL2F, and NL2Bash. Specifically,
for the MBPP dataset, PromptIntern achieves an
inference speed of 4.17 s/instance on the GPT-4
model, closely aligning with the 4.36 s/instance ob-
served in the no template setup and far surpassing
the more resource-intensive template with 5-shots
configuration at 10.21 s/instance. In the NL2F
dataset, PromptIntern similarly demonstrates its ef-
ficiency with an inference speed of 2.15 s/instance
for GPT-4, which is nearly equivalent to the
2.12 s/instance observed without any template and
significantly outperforms the elaborate template
with 10-shots configuration, which achieves 12.47
s/instance. The experimental results outlined in the
table also highlight the efficiency of PromptIntern
in the NL2Bash dataset. Notably, for GPT-4 under
the NL2Bash benchmark, PromptIntern maintains
a competitive inference speed of 1.18 s/instance,
matching the performance seen in the no template
scenario and markedly better than the template with
5-shots setup, which records a slower speed of
4.46 s/instance. The result across three NL2Code
benchmarks highlights PromptIntern ’s capability

to maintain competitive inference speeds while
minimizing latency efficiently.

A.6 Evaluating PromptIntern on GSM8K

To demonstrate the generalization ability of
PromptIntern on other domain tasks, we also test
on the GSM8K dataset (Cobbe et al., 2021). We
use the same experiment settings stated in our ex-
periment setups to compare with the prompt com-
pression baselines. The results are shown in Table
9. The result demonstrates that, under the same
compression rate for inference, PromptIntern out-
performs other compression baselines by 3%-34%
for the arithmetic reasoning task.

Table 9: Comparison of prompt compression baselines
on GSM8K.

Methods (Inference on GPT 3.5) E.M. Tokens

Selective Context 63.5 443
LLMLingua 83.2 452
LLMLingua-2 81.9 458
PromptIntern 85.7 458

10301

B Additional Discussions

B.1 Prevention of Model Over-fitting

To prevent LLMs from over-fitting due to lengthy
input prompts, such as long templates, and to miti-
gate over-fitting during multi-stage fine-tuning, we
have implemented several strategies:

• Prompt Selection: For each dataset, we uti-
lize default prompts provided by the authors or
sourced from widely recognized papers. In our
experiments, these prompts are applied for the
baseline template with 5/10 shots, which out-
performs other approaches and aligns with re-
sults from sources like Papers With Code. This
ensures that our prompts will not cause perfor-
mance degradation due to over-fitting input.

• Model Checkpointing: To mitigate over-fitting
during fine-tuning, particularly due to exces-
sively lengthy training epochs, we implemented a
model checkpointing strategy. We save the model
state every 200 training steps and evaluate each
checkpoint on a separate validation dataset. This
allows us to track performance changes through-
out the whole training process. By comparing
checkpoints, we identify the optimal iteration
that achieves the best results, determining the ap-
propriate number of training steps and epochs for
our experiments.

• Validation Monitoring: Training is halted using
an early stopping technique when the validation
loss begins to rise or ceases to decline, indicating
potential over-fitting. Additionally, we manually
monitor the training and validation losses against
the number of training steps for each experiment
of PromptIntern. This visualization helps ensure
that each model avoids training over-fitting by
providing a clear depiction of the training dynam-
ics and enabling timely adjustments.

C Example Demonstration

We demonstrate an example of how we schedule
and pre-process an input prompt through both tem-
plate compression and example absorption in Fig-
ure 3. During the initial fine-tuning phase, the input
prompt will fully incorporate the template and 10-
shot examples for the NL2F dataset. After a spec-
ified number of training iterations, the template
will undergo compression at a rate of 0.3, and the
number of examples will be reduced to five. This
modified prompt is then used for the intermediate

stage of fine-tuning. In the final phase, the template
and few-shot examples are removed from the train-
ing prompt. It is important to note that the query
remains unchanged throughout the entire progres-
sive fine-tuning process. The prompt used in the
last stage, which consists solely of the query, will
also serve as the input for subsequent model infer-
ence. This method enables the fine-tuned language
model to perform zero-shot inference without the
need for an instruction or document template.

D Prompts

D.1 GPT-4 Generation (Baseline) instruction
For detailed prompts, please refer to Figure 4.

GPT-4 Generation Instruction

Compress the given text to short expressions, and
make sure you can reconstruct it as close as
possible to the original.

Unlike the usual text compression, I need you to
comply with the 5 conditions below:
+ You can ONLY remove unimportant words.
+ Do not reorder the original words.
+ Do not change the original words.
+ Do not use abbreviations or emojis.
+ Do not add new words or symbols.

Compress the origin aggressively by removing
words only. Compress the origin as short as you
can, while retaining as much information as
possible. If you understand, please compress the
following text: <text to compress>
The compressed text is:

Figure 4: The instruction baseline for the baseline
method GPT-4 Generation.

D.2 Prompts of PromptIntern on NL2Code
For detailed prompts of each dataset, please refer
to Figures 5,6,7.

10302

MBPP Generation Prompt

[Template]
You are an advanced Python programmer.
Read the instructions claimed below and write the corresponding Python code.
You will be given a question describing the python function need to implement for.
You will also be given three corresponding test cases written in Python code. They all using
assert styles.
Read the question and test cases carefully and fulfill the requirements below:

+ Your written function's name should be the same as the function name shown in the test cases.
+ Your function should take the same number of input arguments and output values as shown in

the test cases.
+ Your function should handle same type of input and return the same type of value as shown in

the test cases.
+ Your function should pass all the three provided test cases.
+ You can use any built-in python libraries.
+ Your output should strictly follow the format of ```python <code>```.

[Example]
Example 1
…
Example 2
…

[Question]
NL Question: …
Three Test Cases: …

Figure 5: Prompts of MBPP

10303

NL2F Generation Prompt

[Template]
You are an advanced data analyst and programmer. Follow the instruction, referred API documents,
and few-shot examples to translate a user’s query into an executable excel formula based on the
given table.
+ Here is the API documents for excel formulas that you can refer to for your answer:
<API Doc 1>
<API Doc 2>
<API Doc 3>
…
+ You are provided with two inputs. The first is a natural language query starting with label [NL] and
ending with [/NL]. The second is a serialized representation of a table starting with label [TABLE]
and ending with [/TABLE].
+ Your output should only contain the excel formulas following the format ```formula <code> ```
Follow the examples below to convert a user's query into a runnable excel formula using the
provided tabular data.

[Example]
Example 1
…
Example 2
…

[Question]
[NL] … [/NL]
[TABLE] … [/TABLE]

Figure 6: Prompts of NL2F

10304

NL2Bash Generation Prompt

[Template]
You are an advanced shell programmer. Follow the instruction, referred API documents, and few-
shot examples to translate a user’s natural language command into an executable Bash command.

+ Here is the API documents for advanced bash shell functions and commands that you can refer
to for your answer:
<API Doc 1>
<API Doc 2>
<API Doc 3>
…
+ You are provided with one input. The first is a natural language query starting with label [NL] and
ending with [/NL].
+ Your output should only contain the excel formulas following the format ```bash <code> ```

Follow the examples below to convert a user's query into a runnable bash command.

[Example]
Example 1
…
Example 2
…

[Question]
[NL] … [/NL]

Figure 7: Prompts of NL2Bash

10305

