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Abstract

In this research study, we empirically inves-
tigate the effect of sampling temperature on
the performance of Large Language Models
(LLMs) on various problem-solving tasks. We
created a multiple-choice question-and-answer
(MCQA) exam by randomly sampling prob-
lems from standard LLM benchmarks. Then,
we used nine popular LLMs with five prompt-
engineering techniques to solve the MCQA
problems while increasing the sampling tem-
perature from 0.0 to 1.6. Despite anecdotal
reports to the contrary, our empirical results
indicate that changes in temperature from 0.0
to 1.0 do not have a statistically significant im-
pact on LLM performance for problem-solving
tasks. In addition, these results appear to
generalize across LLMs, prompt-engineering
techniques, and problem domains. All code,
data, and supplemental materials are avail-
able on GitHub at: https://github.com/
matthewrenze/jhu-llm-temperature.

1 Introduction

1.1 Background
In recent years, Large Language Models (LLMs)
have revolutionized the field of artificial intelli-
gence. The availability of open-source LLMs
and pay-per-use APIs has allowed engineers to in-
corporate LLMs in their AI systems. However,
prompt engineering and hyperparameter tuning are
required to work effectively with LLMs.

Prompt-engineering techniques help LLMs solve
complex problems, avoid hallucinations, and pro-
vide more accurate responses. For example, we
can use techniques like chain-of-thought, tree-of-
thought, self-criticism, and self-consistency to im-
prove LLM performance (Mialon et al., 2023;
White et al., 2023).

In addition, several inference hyperparameters
can be adjusted to modify the LLM’s output at run-
time. For example, hyperparameters like sampling

temperature, top-k sampling, repetition penalty,
and maximum token length all affect the LLM’s
output and performance (OpenAI, 2023d; Llama-2-
Team, 2023; Wang et al., 2023a).

Despite significant interest in LLMs and
progress in LLM best practices, many open ques-
tions remain about optimal prompt-engineering
techniques and inference hyperparameters for
LLMs. To complicate matters, various local optima
may exist for LLMs, prompt types, and problem
domains (Wang et al., 2023a).

The prompt-engineering community has an abun-
dance of opinions and anecdotal evidence regarding
optimal prompt-engineering techniques and infer-
ence hyperparameter settings. However, we cur-
rently lack systematic studies and empirical evi-
dence to support many of these claims.

As a result, this paper aims to address the open
question of the optimal LLM sampling temperature
for problem-solving tasks. In addition, we aim to
provide a systematic study with empirical results
to add to the growing body of knowledge used to
create LLM and prompt-engineering best practices.

1.2 Sampling Temperature
Sampling temperature is a hyperparameter of an
LLM used in a temperature-based sampling pro-
cess. It controls the randomness of the model’s
output at inference time (Ackley et al., 1985; Hin-
ton et al., 2015; Wang et al., 2020, 2023a).

During each step of an LLM’s decoding process,
the LLM uses the previous tokens to choose the
next output token. The final layer of the LLM uses
a softmax function to convert raw scores (logits)
into probabilities.

In greedy sampling, the model will always
choose the most likely next token. However, for
probabilistic sampling, the next token is selected
from a probability distribution.

Temperature sampling is a modification to the
softmax function, which adjusts the resulting prob-
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ability mass functions. In this modified softmax
function, vk is the k-th vocabulary token, lk is the
token’s logit, and τ is a constant temperature. See
equation 1.

Pr(vk) =
elk/τ∑
i e

li/τ
(1)

A lower temperature makes the output of the
LLM more deterministic, thus favoring the most
likely predictions. This conservativeness is cap-
tured by the model’s tendency to produce more
repetitive, focused, and less diverse output based
on the patterns most commonly seen in the training
data (Hinton et al., 2015; Wang et al., 2020, 2023a).

A higher temperature increases the randomness
of the output, thus favoring more “creative” predic-
tions. This creativity is captured by the model’s
willingness to explore more unconventional and
less likely outputs. Higher temperatures can lead
to novel text, diverse ideas, and creative solutions
to problems (Hinton et al., 2015; Wang et al., 2020,
2023a).

In the context of problem-solving, temperature
can be seen as a trade-off between exploring and
exploiting possible solutions within the solution
space. Lower temperatures tend to exploit more
probable solutions; higher temperatures explore the
solution space more broadly.

1.3 Choosing a Sampling Temperature
Within the prompt-engineering community, there
are a variety of opinions and best practices re-
garding the ideal sampling temperature for vari-
ous problem-solving tasks (Microsoft, 2023; Shieh,
2024).

Low sampling temperatures are recommended
for tasks requiring precision and factual accuracy,
such as technical writing, code generation, or
question-answering (Xu et al., 2022; Zhu et al.,
2023). However, higher temperatures are recom-
mended for tasks requiring creativity, such as writ-
ing poetry, creating stories, or brainstorming.

Higher temperatures also increase the proba-
bility of model hallucination. Hallucination is a
phenomenon where an LLM produces statistically
probable responses that are factually incorrect or
nonsensical. As a result, optimal temperature se-
lection is also a balance between creativity and
hallucination (Lee, 2023).

Practical guidelines for choosing a sampling tem-
perature for a specific task or problem domain
are often vague or anecdotal. Prompt-engineering

guides often provide hypothetical examples of opti-
mal sampling temperatures for various tasks. How-
ever, they rarely cite any sources or provide empiri-
cal evidence.1

As a result, the current state of choosing the
optimal sampling temperature for specific prob-
lems is largely based on guesswork, gut instinct,
non-systematic experimentation, and iterative re-
finement.2,3

2 Methods

2.1 Models
The models used in this research project comprise
nine widely-used foundational LLMs. To comple-
ment our analysis, we also conducted experiments
using five prompts created using commonly used
prompt-engineering techniques.

First, we reviewed the prior literature to iden-
tify candidate LLMs commonly used for problem-
solving tasks. We limited our candidate models to
those that allowed the model’s sampling tempera-
ture to be specified via their API (OpenAI, 2022a,
2023b,c; Llama-2-Team, 2023). See Table 1 for a
list of LLMs used in the experiment.

Next, we reviewed the existing literature for com-
monly used prompt-engineering techniques. We
limited our candidate prompts to those that could
be performed in a single request-and-response cy-
cle with one-shot in-context learning. We excluded
multi-step agents, few-shot learning, and model
fine-tuning.

As a result, we selected five prompt-engineering
techniques to construct our system prompts:

• Baseline - no prompt engineering; the LLM
is instructed to return only a single multiple-
choice answer as its output (e.g., ‘An-
swer(“C”)’ ).

• Domain Expertise – the system prompt spec-
ifies that the LLM is an expert in the problem

1A few empirical studies exist that indicate sampling tem-
perature does have an effect on LLM performance on some
types of problem-solving tasks (e.g., code generation, engi-
neering exams, etc.) (Xu et al., 2022; Pursnani et al., 2023;
Zhu et al., 2023).

2For example, OpenAI’s GPT-3.5 API allowed users to set
the sampling temperature from 0.0 to 1.0 with a default of 0.7.
GPT-4’s API expanded this range from 0.0 to 2.0 with a default
of 1.0. No explanation from OpenAI has been provided for
these default values or their change from GPT-3.5 to GPT-4
(OpenAI, 2023a).

3Even the GPT-4 Technical Report explains that the au-
thors used their “best-guess” when choosing sampling temper-
atures while evaluating GPT-4 on various benchmarks. See
Appendix A in the GPT-4 Technical Report (OpenAI, 2023c).
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Name Vendor Released License Source
Claude 3 Opus Anthropic 2024-03-04 Closed (Anthropic, 2024b,a)
Command R+ Cohere 2024-04-04 Open (Cohere, 2024a,b)
Gemini 1.0 Pro Google 2023-12-06 Closed (Pichai and Hassabis, 2023; Gemini-Team, 2023)
Gemini 1.5 Pro (Preview) Google 2024-02-15 Closed (Pichai and Hassabis, 2024; Gemini-Team, 2024)
GPT-3.5 Turbo OpenAI 2022-11-30 Closed (OpenAI, 2022a,b)
GPT-4 OpenAI 2023-03-14 Closed (OpenAI, 2023b,c)
Llama 2 7B Chat Meta 2023-07-18 Open (Meta, 2023; Llama-2-Team, 2023)
Llama 2 70B Chat Meta 2023-07-18 Open (Meta, 2023; Llama-2-Team, 2023)
Mistral Large Mistral AI 2024-02-26 Closed (Mistral-AI-Team, 2024)

Table 1: LLMs used in the experiment.

domain of the exam (e.g., “medicine”) or the
topic of the problem (e.g., “anatomy”) (White
et al., 2023).

• Self-recitation – the system prompt instructs
the LLM to recite its own internal knowledge
about the problem before answering the ques-
tion (Sun et al., 2023; White et al., 2023).

• Chain-of-Thought (CoT) – the system
prompt instructs the LLM to “think step-by-
step” to encourage it to reason through the
problem procedurally (Kojima et al., 2022;
Wei et al., 2022).

• Composite – the system prompt combines
domain expertise, self-recitation, chain-of-
thought, and adds self-criticism (Huo et al.,
2023; Wang et al., 2023b).

Finally, we provided the LLM with a single
example problem-and-solution pair for one-shot
in-context learning. The example solution was
adapted for each prompt based on the prompt-
engineering technique used. For example, the CoT
prompt included a chain of thought in its solution.
See Figure 10 in the Appendix for a sample prompt.

2.2 Data

The test dataset used in this research study con-
sists of a series of Multiple-Choice Question-and-
Answer (MCQA) exams derived from widely used
LLM performance benchmarks.

First, we reviewed the prior literature to identify
benchmarks frequently used to evaluate LLMs. We
limited our candidate benchmarks to those contain-
ing MCQA problems so that we could use correct-
answer accuracy as our primary performance met-
ric.

Next, we selected a set of problems that cov-
ered a range of problem domains (e.g., math, sci-
ence, law, etc.) and difficulty levels (e.g., secondary

school, university, etc.) These problem sets can be
seen in Table 2.

Then, we converted the benchmark problems
from their original data format into a standardized
data structure using the JSON Lines (JSON-L) for-
mat (Ward, 2014). Our standardized set of exams
allowed us to use the exams interchangeably with-
out modifying the code in the test harness. See Fig-
ure 11 in the Appendix for a sample of an MCQA
problem.

Finally, we created two MCQA exams of differ-
ent sizes. We created a large exam with 1,000 ques-
tions by randomly sampling 100 problems from
each of the ten problem sets. This 1,000-question
(large) exam was used with GPT-3.5 to perform
a detailed analysis of temperature across problem
domains.

Additionally, we created a smaller exam of 100
questions by randomly sampling ten questions
from each of the ten domain-specific problem sets.
This 100-question (small) exam was used for our
high-level analysis of sampling temperature across
all nine models, all five prompt-engineering tech-
niques, and extended temperature range (0.0-1.6).4

2.3 Process

Our experiment was designed to test the problem-
solving performance of LLMs across ten models,
five prompt-engineering techniques, ten problem
domains, 100 problems within each problem do-
main, and all viable sampling temperatures. For
each combination of model, prompt, exam, and
temperature, we instructed the LLM to answer each
question ten times so we could assess the average
correct-answer accuracy.

The full experiment setup can be seen in Figure 1
and Algorithm 1. However, due to cost and runtime
considerations, we conducted a subset of the full
experiment designed to capture the most valuable

4We used the smaller 100-question exam due to cost and
runtime considerations.
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Problem Set Benchmark Domain Questions License Source
ARC Challenge Test ARC Science 1,173 CC BY-SA (Clark et al., 2018)
AQUA-RAT AGI Eval Math 254 Apache v2.0 (Zhong et al., 2023)
Hellaswag Val Hellaswag Common Sense Reasoning 10,042 MIT (Zellers et al., 2019)
LogiQA (English) AGI Eval Logic 651 GitHub (Liu et al., 2020)
LSAT-AR AGI Eval Law (Analytic Reasoning) 230 MIT (Wang et al., 2021)
LSAT-LR AGI Eval Law (Logical Reasoning) 510 MIT (Wang et al., 2021)
LSAT-RC AGI Eval Law (Reading Comprehension) 260 MIT (Wang et al., 2021)
MedMCQA Valid MedMCQA Medicine 6,150 MIT (Pal et al., 2022)
SAT-English AGI Eval English 206 MIT (Zhong et al., 2023)
SAT-Math AGI Eval Math 220 MIT (Zhong et al., 2023)

Table 2: Problem sets used to create the multi-domain MCQA exam.

Note: The GitHub repository for LogiQA does not include a license file. However, both the paper and readme.md file state that
"The dataset is freely available."

Large
Language

Model

✓

Prompt

Answer the 
following 

question …

Exam

1. What is 
the capital 
of …

Response

Knowledge:
Thought: …
Criticism: …
Answer(“B”)

× 100 problems
× 10 exams

× 5 prompts

× 9 LLMs

Temperature

(in increments of 0.1)

0.0 2.0

× 10 attempts

Figure 1: Diagram of the full experiment.

Algorithm 1 Full LLM Temperature Experiment
1: for each model m in M do ▷ 10 models
2: for each prompt p in P do ▷ 5 prompts
3: for each exam e in E do ▷ 10 exams
4: for each temperature τ in T do ▷ 16 temperatures
5: for each problem q in Q do ▷ 100 problems
6: for each attempt a in A do ▷ 10 attempts
7: Create the prompt
8: Answer the question
9: Record the answer

10: end for
11: end for
12: end for
13: Save the results
14: end for
15: end for
16: end for
17: Process the results
18: Analyze the results

information as efficiently as possible.
First, we instructed GPT-3.5 to complete the 100-

question (small) exam using the CoT prompt with
temperatures ranging from 0.0 to 2.0 in increments
of 0.1. This allowed us to determine the range of
viable sampling temperatures to explore. 5

Performance began to drop rapidly after a tem-
perature of 1.0 until the generated text became in-
coherent at 1.6. As a result, we stopped the initial
temperature sweep at 1.6 and limited the rest of our
sweeps from 0.0 to 1.0.

Next, we instructed the other eight LLMs to com-
plete the 100-question (small) exam using the CoT
prompt with temperatures from 0.0 to 1.0. This
allowed us to determine if the results generalize to
other LLMs.

Then, we instructed GPT-3.5 to complete the
100-question (small) exam using each of the five
prompts over temperatures from 0.0 to 1.0. This

5For this experiment, we fixed all other sampling parame-
ters (e.g., top-k, top-p, etc.) to isolate the effects of tempera-
ture.

allowed us to determine if the results generalize
over various prompt-engineering techniques.

Finally, we instructed GPT-3.5 to complete the
1,000-question (large) exam using the CoT prompt
with temperatures from 0.0 to 1.0. This allowed us
to determine if the results were domain-specific or
generalized across problem domains.

2.4 Metrics
To test our hypothesis, we measured the LLM’s
correct-answer accuracy as our primary perfor-
mance metric. For each combination of model,
prompt, exam, and temperature, we calculated the
accuracy as the number of correct answers from
ten attempts at each problem. Then, we computed
the average (mean) accuracy across all problems.

To further support our findings, we also mea-
sured the similarity of the LLM’s responses using
a series of text-similarity metrics. These metrics
are defined as follows:
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• Jaccard similarity – the ratio of the intersec-
tion to the union of word sets in the output
text (Jaccard, 1912).

• Bag-of-Words (BoW) similarity – compari-
son of the frequency of each word, ignoring
order (Harris, 1954).

• TF-IDF similarity – comparison of word fre-
quency weighted by inverse document fre-
quency (Jones, 1972).

• Levenshtein similarity – the number of edits
needed to change one string of text into the
other (Levenshtein, 1966).

• BLEU score – comparison of similarity based
on n-gram overlap (Papineni et al., 2001).

• SBERT similarity – semantic similarity
computed using Sentence-BERT embeddings
(Reimers and Gurevych, 2019).

2.5 Analysis
We used the Kruskal-Wallis test to evaluate the
statistical significance of any changes in accuracy
as a function of temperature (Kruskal and Wallis,
1952). We chose the Kruskal-Wallis test because
the data (i.e., correct-answer accuracy by question)
were not normally distributed. Rather, they were
bimodally distributed with centers at 0.0 and 1.0.

3 Results

3.1 Accuracy vs. Temperature
Our analysis revealed that the problem-solving
performance of LLMs remained relatively stable
across sampling temperatures from 0.0 to 1.0 for all
LLMs, prompt-engineering techniques, and prob-
lem domains. Using GPT-3.5 with a CoT prompt
on the 1,000-question exam from 0.0 to 1.0, the
Kruskal-Wallis test yielded H(10) = 10.439, p =
0.403.

First, we analyzed the performance of GPT-3.5
using the CoT prompt on the 100-question exam.
Accuracy remained stable over temperatures from
0.0 to 1.0. However, after a temperature of 1.0,
the text rapidly became incoherent, and the accu-
racy began to drop until it reached zero around a
temperature of 1.6. See Figure 2.

Second, we analyzed the performance of all nine
LLMs using the CoT prompt on the 100-question
exam. Accuracy also remained stable across all of
the LLMs, except for Llama 2 7B. The performance
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Figure 2: Accuracy by temperature from 0.0 to 1.6 for
GPT-3.5 using the CoT prompt on the 100-question
exam.

of most LLMs showed a gradual (non-significant)
decrease in performance as a function of tempera-
ture. See Figure 3 and Table 3.

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Model
Claude 3 Opus
Command R+
Gemini Pro 1.0
Gemini Pro 1.5
GPT-3.5 Turbo
GPT-4
Llama 2 70B
Llama 2 7B
Mistral Large

Figure 3: Accuracy by temperature and model using the
CoT prompt on the 100-question exam.

Model H(10) p-value
Claude 3 Opus 1.735 0.998
Command R+ 1.771 0.998
Gemini Pro 1.0 7.379 0.689
Gemini Pro 1.5 3.119 0.978
GPT-3.5 Turbo 2.042 0.996
GPT-4 3.789 0.956
Llama 2 70B 3.677 0.961
Llama 2 7B 17.086 0.072
Mistral Large 3.069 0.980

Table 3: Kruskal-Wallis test results by model using the
CoT prompt on the 100-question exam.

Llama 2 7B did not perform better than sta-
tistically random guesses. Its poor performance
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was due to generating incorrectly formatted an-
swers (39%) and correctly formatted but incorrect
answers (36%). Its all-or-nothing behavior at a
temperature of 0.0 versus more random behavior
from 0.1 to 1.0 led to a much lower, yet still non-
significant, p-value.

Third, we analyzed the performance of GPT-
3.5 using each of the five prompts on the 100-
question exam. Accuracy remained stable for all
temperatures across all prompt-engineering tech-
niques. The CoT prompt outperformed the other
four prompts. As a result, we used the CoT prompt
for all single-prompt experiments. See Figure 4
and Table 4.
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Figure 4: Accuracy by temperature and prompt for
GPT-3.5 on the 100-question exam.

Prompt H(10) p-value
Baseline 0.420 1.000
Domain Expert 0.548 1.000
Self-recitation 1.403 0.999
Chain of Thought 2.042 0.996
Composite 1.000 1.000

Table 4: Kruskal-Wallis test results by prompt for
GPT-3.5 on the 100-question exam.

Finally, we analyzed the performance of GPT-
3.5 using the CoT prompt on all ten exams. Accu-
racy remained stable for all temperatures across all
problem domains based on visual analysis. How-
ever, the LSAT-AR and SAT-Math exams showed
statistically significant differences in the Kruskal-
Wallis p-values. 6 See Figure 5 and Table 5.

6We considered the ARC Challenge results to be non-
significant since they were greater than the significance thresh-
old of 0.05.

We performed the Dunn-Bonferroni test on the
LSAT-AR and SAT-Math results (Dunn, 1964).
It revealed that the all-or-nothing behavior of re-
sponses generated at a temperature of 0.0 versus
the more random responses from 0.1 to 1.0 caused
the anomaly. The correct-answer accuracy for each
individual problem varied significantly when eval-
uated pairwise across temperatures. However, the
average accuracy for all problems remained similar
across temperatures.
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MedMCQA
SAT-English
SAT-Math

Figure 5: Accuracy by temperature and exam for
GPT-3.5 using the CoT prompt.

Exam H(10) p-value
AQUA-RAT 10.320 0.413
ARC Challenge 16.390 0.089
Hellaswag 4.473 0.924
LogiQA 3.208 0.976
LSAT-AR 37.874 < 0.001
LSAT-LR 7.816 0.647
LSAT-RC 4.037 0.946
MedMCQA 2.334 0.993
SAT-English 3.937 0.950
SAT-Math 21.276 0.019

Table 5: Kruskal-Wallis test results by exam for
GPT-3.5 using the CoT prompt.

3.2 Text Variability vs. Temperature

To further support our results, we analyzed text
variability as a function of temperature. Our find-
ings show a clear trend of decreasing text similarity
(thus increasing text variability) as temperature in-
creases. Text similarity decreases rapidly after a
temperature of 1.0, corresponding to the rapid de-
crease in accuracy observed above τ = 1.0. See
Figure 6.

7351



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Temperature

0.0

0.2

0.4

0.6

0.8

1.0
Si

m
ila

ri
ty

Metric
Jaccard Similarity
BoW Similarity
TF-IDF Similarity
Levenshtein Similarity
BLEU Score
SBERT Similarity

Figure 6: Text similarity by temperature and metric
for GPT-3.5 using CoT prompting on the 100-question
exam over sampling temperatures from 0.0 to 1.6.

These results are consistent with our understand-
ing of sampling temperature, indicating that higher
temperatures produce more widely varied outputs.
Furthermore, these results hold regardless of the
LLM, prompt-engineering technique, or problem
domain. See Figures 7, 8, and 9.
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Figure 7: TF-IDF text similarity by temperature and
model using the CoT prompt on the 100-question exam
over sampling temperatures from 0.0 to 1.0

4 Discussion

4.1 Interpretation

Based on these results, changes in temperature
from 0.0 to 1.0 do not have a statistically signifi-
cant effect on the problem-solving performance of
LLMs. These results appear to generalize across
LLMs, prompt-engineering techniques, and prob-
lem domains. However, there are a few potential
exceptions to these general findings.
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Figure 8: TF-IDF text similarity by temperature and
prompt for GPT-3.5 on the 100-question exam over
sampling temperatures from 0.0 to 1.0.
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Figure 9: TF-IDF text similarity by temperature and
exam for GPT-3.5 using the CoT prompt over sampling
temperatures from 0.0 to 1.0

Therefore, we recommend setting an LLM’s
sampling temperature to 0.0 for problem-solving
tasks. This temperature maximizes reproducibil-
ity without compromising accuracy. In addition, it
helps avoid the inevitable drop-off in performance
that occurs beyond a temperature of 1.0. However,
exceptions to this guidance should be taken into
consideration.

4.2 Limitations
There were several limitations to our research study
due to cost and runtime considerations:

First, our study was limited to a subset of popu-
lar LLMs. As a result, our findings may not hold
for other LLMs that were excluded from our exper-
iment.
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Second, we only explored a subset of prompt-
engineering techniques using a single prompt-and-
response cycle with one-shot in-context learning.
As a result, there may be more complex prompts
or agent architectures that better leverage sampling
temperature for creativity in their problem-solving
capabilities.

Third, our study was limited to a subset of prob-
lems, problem domains, and problem-solving tasks.
As a result, our findings may not hold for larger
data sets, different problem domains, or other types
of problem-solving tasks.

Fourth, due to time and cost constraints, we lim-
ited our study to two test sets of 1,000 and 100
randomly selected questions from standard bench-
marks. These limited sample sizes may have intro-
duced bias into the results. Utilizing a larger and
more diverse test set would enhance the statistical
reliability of our findings.

Fifth, we had to limit the sampling temperature
range we explored from 0.0 to 1.0 for all combi-
nations of models, prompts, and exams, except for
GPT-3.5 using CoT prompting on the 100-question
exam. As a result, the temperature hyperparameter
of other LLMs may operate differently at tempera-
tures above 1.0.

Sixth, we fixed all other sampling parameters
(e.g., top-p, top-k, repetition penalty, etc.) to isolate
the effect of sampling temperature. As a result,
there may be combinations of sampling parameters
that result in different outcomes.

Finally, we could only explore a subset of the var-
ious combinations of models, prompts, exams, and
temperatures. As a result, other combinations of
LLMs, prompt-engineering techniques, and prob-
lem domains may exist where temperature plays
a more important role in problem-solving perfor-
mance.

4.3 Implications
This research study provides empirical evidence
that changes in sampling temperature in the range
of 0.0 to 1.0 do not significantly impact the
problem-solving capabilities of LLMs on MCQA
problems.

Answering this question may save AI engineers
significant time and resources evaluating various
sampling temperatures for their LLM agents and
applications. In addition, it may reduce unproduc-
tive debates in the prompt-engineering community
regarding the optimal sampling temperatures for
various problem-solving tasks.

This research also provides broader insights for
AI researchers studying model hallucination and
problem-solution state-space search with LLMs.
Our results show that increasing LLM temperature
up to 1.0 does not cause the LLM to hallucinate
in ways that lead to incorrect MCQA solutions.
In addition, higher temperatures do not appear to
improve MCQA solution-space search in ways that
lead to correct solutions more often than lower
temperatures.

4.4 Future Research

To improve upon this research, we propose the
following follow-up experiments:

First, we recommend conducting this experiment
with additional LLMs. Other proprietary and open-
source LLMs may utilize temperature in ways that
benefit their specific models but did not benefit the
LLMs we tested.

Second, we recommend expanding beyond
MCQA problems to other types of problem-solving
tasks whose correct answers are more open-ended.
The limited effects of sampling temperature in our
experiments may have simply resulted from the
constraints imposed by the structure of MCQA
problems.

Third, we recommend conducting additional ex-
periments with more MCQA problems and prob-
lem domains. We recommend specifically targeting
tasks and problem domains that require more cre-
ative solutions or lateral “out-of-the-box” thinking.

Fourth, we recommend extending the sampling
temperature range until accuracy drops to zero for
each LLM, prompt, and exam. However, it should
be noted that as the generated text becomes more
random, the number of tokens in each response
increases significantly, leading to a considerable in-
crease in runtime and cost to explore temperatures
above 1.0.

Finally, we recommend a more in-depth error
analysis to determine if any sub-types of problems
within these problem domains benefit from changes
to sampling temperature. It is possible that statisti-
cal noise or averaging may have hidden individual
problems that were sensitive to changes in sam-
pling temperature.

5 Conclusion

This research study empirically investigated the
effect of sampling temperature on the problem-
solving performance of LLMs across multiple prob-
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lem domains.
We demonstrated that changes in sampling tem-

perature from 0.0 to 1.0 do not produce statistically
significant differences in problem-solving perfor-
mance on MCQA problems across multiple LLMs,
prompt-engineering techniques, and problem do-
mains.

These results have practical implications for AI
engineers using LLMs to develop new AI systems.
Additionally, they have theoretical implications for
AI researchers studying model hallucination and
solution-space search with LLMs.
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A Appendix

[System Prompt]
You are an expert in {{expertise}}.
Your task is to answer the following multiple-choice questions.
First, you should recite all of the relevant knowledge you have about the question and each option.
Next, you should think step-by-step through the problem to ensure you have the correct answer.
Then, you should critically evaluate your thoughts to identify any flaws in your facts, logic, and reasoning.
Finally, you MUST answer the question using the following format 'Action: Answer("[choice]")'
The parameter [choice] is the letter or number of the answer you want to select (e.g. "A", "B", "C", or "D")
For example, 'Answer("C")' will select choice "C" as the best answer.
The answer MUST ALWAYS be one of the available choices; it CANNOT be "None of the Above".
If you think the answer is "none of the above", then you MUST select the most likely answer.

[Example Problem]
Question: What is the capital of the state where Johns Hopkins University is located?
Choices:

A: Baltimore
B: Annapolis
C: Des Moines
D: Las Vegas

[Example Solution]
Knowledge:

Johns Hopkins University is located in Baltimore, Maryland.
A: Baltimore is a city located in the State of Maryland, but it is not the capital of Maryland.
B: Annapolis is the capital of the State of Maryland.
C: Des Moines is a city located in the State of Iowa and is the capital of Iowa.
D: Las Vegas is located in the State of Nevada, but it is not the capital of Nevada.

Thought:
Johns Hopkins University is located in Baltimore.
Baltimore is a city located in the state of Maryland.
The capital of Maryland is Baltimore.
Therefore, the capital of the state where Johns Hopkins University is located is Baltimore.
The answer is A: Baltimore.

Criticism:
You are correct that Johns Hopkins is located in the State of Maryland.
However, the capital of Maryland is Annapolis, not Baltimore.
So, the correct answer is actually B: Annapolis.

Action: Answer("B")

Figure 10: Sample of the composite system prompt with a one-shot example (i.e., problem-and-solution pair).

{
"source": "arc/arc-challenge-test",
"source_id": 1,
"topic": "Science",
"context": "",
"question": "An astronomer observes that a planet rotates faster

after a meteorite impact. Which is the most likely effect
of this increase in rotation?",

"choices": {
"A": "Planetary density will decrease.",
"B": "Planetary years will become longer.",
"C": "Planetary days will become shorter.",
"D": "Planetary gravity will become stronger." },

"answer": "C",
"solution":""

}

Figure 11: Sample of an MCQA problem in JSON-L format – with whitespace added for readability.
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