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Abstract

Large Language Models (LLMs) have shown
promising performance in text-to-SQL, which
involves translating natural language questions
into SQL queries. However, current text-to-
SQL LLMs are computationally expensive and
challenging to deploy in real-world applica-
tions, highlighting the importance of compress-
ing them. To achieve this goal, knowledge dis-
tillation (KD) is a common approach, which
aims to distill the larger teacher model into
a smaller student model. While numerous
KD methods for autoregressive LLMs have
emerged recently, it is still under-explored
whether they work well in complex text-to-SQL
scenarios. To this end, we conduct a series of
analyses and reveal that these KD methods gen-
erally fall short in balancing performance and
efficiency. In response to this problem, we pro-
pose to improve the KD with Imperfect Data,
namely KID, which effectively boosts the per-
formance without introducing much training
budget. The core of KID is to efficiently mit-
igate the training-inference mismatch by sim-
ulating the cascading effect1 of inference in
the imperfect training data. Extensive experi-
ments on 5 text-to-SQL benchmarks show that,
KID can not only achieve consistent and signifi-
cant performance gains (up to +5.83% average
score) across all model types and sizes, but also
effectively improve the training efficiency.

1 Introduction

Text-to-SQL, which aims to translate a user’s nat-
ural language question into an executable and ac-
curate SQL query, is a transformative application
of large language models (LLMs) (Katsogiannis-
Meimarakis and Koutrika, 2023; Li et al., 2024a;
Pourreza and Rafiei, 2024). However, with the

* Corresponding Authors: Juhua Liu (e-mail: liu-
juhua@whu.edu.cn), Bo Du (e-mail: dubo@whu.edu.cn)

1The error at the early step will affect the future predictions
during the autoregressive inference (Agarwal et al., 2024).
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Figure 1: Comparisons of different KD methods for
distilling the student model (QWen1.5-0.5B) from the
teacher (QWen1.5-4B). The x-axis denotes the training
latency relative to the SFT baseline, while the y-axis
denotes the average performance of students on several
popular text-to-SQL benchmarks. The evaluation details
are in §4. We see that our method achieves the best trade-
off between performance and efficiency.

scaling of model size, the inference and deploy-
ment of LLM-based text-to-SQL systems become
more computationally expensive and memory in-
tensive, hindering the development of real-world
industrial applications that require low inference
latency (Sun et al., 2023b). Hence, it is crucial and
green to compress these text-to-SQL LLMs and
accelerate the inference, while not losing much per-
formance (Schwartz et al., 2020; Zhu et al., 2023).

A common model compression approach is
knowledge distillation (KD), which involves com-
pressing a large teacher model by distilling its
knowledge into a small student model (Hinton et al.,
2015; Kim and Rush, 2016). Recently, numer-
ous KD methods for autoregressive LLMs have
emerged (Gu et al., 2023; Agarwal et al., 2024; Xu
et al., 2024), but most of them focus on the gen-
eral instruction-tuning scenarios. Different from
the general tasks that allow for flexible and di-
verse outputs, text-to-SQL is more challenging, as
it requires the LLMs to precisely output the ta-
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ble/column name. Even a minor error in the SQL
query could lead to the wrong result. Unfortunately,
it is still under-explored whether these KD methods
work well for text-to-SQL LLMs.

To this end, we conduct preliminary experiments
by applying 5 representative KD methods to distill
the QWen-family LLMs (Bai et al., 2023) on the
popular text-to-SQL benchmark, i.e., Spider (Yu
et al., 2018). We find that the performance gains
of these KD methods mainly rely on the model-
generated data, which is effective but hard to ob-
tain. Specifically, although the model-generated
data can alleviate the training-inference mismatch
(i.e., difference between teacher-forcing training
and autoregressive inference (Pang and He, 2020))
and achieves remarkable performance, it requires
the student model to autoregressively generate in
an online fashion, leading to unbearable training
latency. As illustrated in Figure 1, GKD (Agarwal
et al., 2024) training with model-generated data
performs well but greatly suffers from training in-
efficiency. Thus, there raises a question: whether
we can mitigate the training-inference mismatch
more efficiently?

Motivated by this, we propose a simple-yet-
effective approach to improve KD, namely KID,
and achieve a better trade-off between performance
and efficiency. The core of KID is to force the
student to rewrite the ground-truth training data
into imperfect one, and then learn how to calibrate
these imperfect data. Intuitively, by introducing
some errors in the imperfect data, we can simulate
the cascading effect of inference during training
processes, thus mitigating the training-inference
mismatch. More specifically, instead of autoregres-
sively generating the on-policy data, the generation
processes of imperfect data only require one-pass
forward, which is more efficient and affordable.
Moreover, by doing so, we can also encourage the
student to learn how to calibrate these imperfect
tokens and further improve the KD performance.

We evaluate KID on a variety of popular text-
to-SQL benchmarks, including BIRD (Li et al.,
2024b), Spider (Yu et al., 2018) and its variants,
upon 3 types of autoregressive LLMs: QWen (Bai
et al., 2023), CodeGen (Nijkamp et al., 2022) and
LLaMA (Touvron et al., 2023). Results show that
KID can not only achieve a better trade-off between
performance and efficiency, but also bring consis-
tent and significant improvements (up to +5.83%
average score) among all model types and sizes.
Moreover, compared to the standard KD, KID can

effectively improve the robustness of students.

Contributions. Our main contributions are:

• We reveal that current KD methods for text-to-
SQL LLMs generally fall short in balancing
performance and efficiency.

• We propose a simple-yet-effective approach
(KID) to effectively improve KD performance
without introducing much training budget.

• Extensive experiments show that KID outper-
forms the standard KD by a large margin and
effectively improves the student’s robustness.

2 Preliminary

2.1 Task Formulation
Text-to-SQL aims to convert a natural language
question Q into a SQL query Y , which is exe-
cutable and can accurately retrieve relevant data
from a database D. The database D usually con-
tains the schema (i.e., tables and columns) and
metadata, containing column types/values, primary
keys, foreign key relations and etc (Zhong et al.,
2017). Specifically, given an LLM M and a prompt
template P , we enforce the M to autoregressively
generate an output sequence Y conditioned on the
P(Q,D), which can be formulated as:

Yt ∼ PM(Yt | P(Q,D),Y<t), (1)

where PM(Yt | P(Q,D),Y<t) is the probability
for the next token, and Yt is the t-th token of Y .

2.2 Knowledge Distillation of LLMs
Knowledge Distillation (KD) aims to compress a
large teacher model Mp by distilling its knowledge
into a small student model Mθ

q parameterized by θ.
Given a divergence function F and a training set G,
we can train the student model as follows:

θ∗ := argminE(x,y)∼G [F(Mq∥Mθ
q)(y|x)], (2)

where (x, y) is the task-specific input-
output pair2 of G, and F(Mq∥Mθ

q)(y|x) =
1
|y|

∑|y|
t=1F

(
p( · |x, y<t)∥qθ( · |x, y<t)

)
is the

divergence between the teacher and student
distributions, denoted as p and qθ, respectively.
The choices of training set G and divergence
function F give rise to different possible KD

2For text-to-SQL task in §2.1, x refers to the input question
P(Q,D) and y refers to the output SQL query Y .

6875



Method Divergence Training Dataset

Data type: Fixed dataset
FKD FKL Ground-truth data
RKD RKL Ground-truth data

Data type: Model-generated dataset
f-distill TVD Data generated by Mp and Mθ

q

ImitKD FKL Ground-truth+data generated by Mθ
q

GKD FKL/RKL/JSD On-policy data generated by Mθ
q

KID RKL Imperfect ground-truth data

Table 1: Summary of various KD algorithms in terms
of training data and divergence. Notably, Mp and
Mθ

q denote the teacher and student models, respectively.

algorithms, e.g., Forward KD (FKD) (Hinton
et al., 2015), Reverse KD (RKD) (Gu et al., 2023),
f-distill (Wen et al., 2023), ImitKD (Lin et al.,
2020) and GKD (Agarwal et al., 2024). The
summary of these representative KD algorithms is
shown in Table 1.

The common divergences for KD contain the
Forward Kullback-Leibler (FKL) (Van Erven and
Harremos, 2014), Reverse KL (RKL) (Malinin
and Gales, 2019), Jensen–Shannon divergence
(JSD) (Fuglede and Topsoe, 2004) and total vari-
ation distance (TVD) (Verdú, 2014). The de-
tails of these divergences can be found in Ap-
pendix A.3. On the other hand, G may consist
of input-output pairs in the original training set (de-
noted as ground-truth dataset), or sequences gen-
erated from teacher Mp or student Mθ

q (denoted
as model-generated dataset). For the data gener-
ated by Mp, we feed the input into the Mp and
obtain the teacher’s output beforehand and keep
them fixed during training. Conversely, for the data
generated by Mθ

q , since the student is continuously
updated, we obtain the student’s output in an online
fashion. Such online generated data is also called
“on-policy data” by Agarwal et al. (2024).

2.3 Empirical Analyses

As mentioned in §1, it is under-explored whether
the aforementioned KD algorithms work well for
text-to-SQL LLMs. Hence, we conduct prelimi-
nary experiments to investigate it in this part.

Setting. We conduct experiments by first fine-
tuning larger LLMs on the original training dataset
as teachers. Then, we use different KD methods
to distill a smaller student with the teacher’s guid-
ance. Here, we use the QWen1.5-0.5B (Bai et al.,
2023) as the student and use the other QWen-family
models (i.e., QWen1.5-1.8B/-4B/-7B) as teachers.

Method Divergence 1.8B 4B 7B

Training data: Fixed dataset
FKD FKL 57.3 57.4 57.3
RKD RKL 62.7 60.1 61.5

Training data: Model-generated dataset
f-distill TVD 57.6 58.6 59.6
ImitKD FKL 58.3 59.5 59.1
GKD-FKL FKL 61.1 62.1 60.7
GKD-RKL RKL 62.9 63.8 64.3
GKD-JSD JSD 62.8 62.7 64.3

Table 2: Preliminary experimental results (%) of
various KD methods. We report the execution accuracy
of QWen1.5-0.5B distilling from QWen1.5-{1.8B, 4B,
7B} on the Spider benchmark. Best results are in bold.
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Figure 2: Comparisons of training latency between
various KD methods. The x-axis denotes the teacher
models, and the y-axis denotes the training latency rel-
ative to the SFT baseline. For ease of illustration, we
only report the results of RKL divergence for GKD.

Spider (Yu et al., 2018) is used as training data, and
the models are evaluated on the development set.
We follow Li et al. (2024a) and use the “Execution
Accuracy” as metric to quantify the model output.

Findings. The comparative results are listed in
Table 2, from which we empirically find that:

Reverse KL is more suitable for distilling the
text-to-SQL LLMs. We first analyze the impact
of different divergence functions, and find that RKL
generally outperforms the other divergences, e.g.,
FKD (57.4%) v.s. RKD (60.1%) and GKD-FKL
(62.1%) v.s. GKD-RKL (63.8%). This is similar to
the statements of prior studies (Gu et al., 2023; Wu
et al., 2024), as they argue that Reverse KL shows
mode-seeking behaviors, i.e., it does not force the
student to fit all teacher’s distributions, but assigns
high probabilities to teacher’s large modes and ig-
nores the small ones. In the context of text-to-SQL,
the output tokens (e.g., table/column name and
value) are usually precise and low-diversity, and
enforcing the student to learn the high-probability
regions could lead to better performance.
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Figure 3: Illustrations of different KD methods: (a) KD methods with ground-truth data, (b) KD methods with
model-generated data and (c) our KID method with imperfect data. Additionally, we show (d) the pipeline to obtain
the imperfect data, which contains three-stage processes: ❶ masking, ❷ predicting and ❸ rewriting.

Model-generated datasets perform better but
suffer from training inefficiency. By compar-
ing the KD results between ground-truth datasets
and model-generated datasets, we find that model-
generated datasets perform better than the fixed
ground-truth ones, especially the on-policy dataset
generated by students (i.e., GKD). This is because
that student-generated dataset can alleviate the
training-inference mismatch, i.e., the discrepancy
between teacher-forcing training and free-run in-
ference. Despite its remarkable performance, it
requires the student to autoregressively generate
the output in an online manner, which will lead
to unaffordable training latency. This can be em-
pirically proven by the results in Figure 2, as the
training latency of GKD is much higher than those
trained on ground-truth datasets.

3 Improving Knowledge Distillation with
Imperfect Data

Motivation and Overview. Based on the obser-
vation in §2, we recognize that the key for improv-
ing the performance KD is to alleviate the training-
inference mismatch. However, the current KD
methods relying on model-generated datasets usu-
ally suffer from training inefficiency, i.e., they fail
to balance the performance and efficiency. Thus,
there raises a question: whether we can mitigate
the training-inference mismatch more efficiently?
Motivated by this, we propose to improve KD with
imperfect data (KID), which effectively and effi-
ciently boosts the performance by simulating the
cascading effect of inference during training. The
illustration of KID is shown in Figure 3.

Intuition of KID. As stated by prior studies (Pang
and He, 2020; Agarwal et al., 2024), the training-
inference mismatch mainly comes from the cascad-
ing effect of inference. Specifically, during train-
ing, LLMs condition on ground-truth tokens. How-
ever, during inference, they condition on the model-
generated tokens, which might be wrong and affect
the future predictions. Intuitively, enforcing the stu-
dent to rewrite the ground-truth training data into
imperfect one, i.e., introducing some errors dur-
ing training, can simulate the cascading effect of
inference and thus mitigate the training-inference
mismatch. Moreover, by encouraging the student
to learn how to calibrate these imperfect tokens,
KID can further improve the performance.

Pipeline to Obtain the Imperfect Data. The key
technique of KID is to rewrite the ground-truth data
into an imperfect one. Specifically, the generation
of imperfect data consists of three-stage processes:
❶ masking, ❷ predicting and ❸ rewriting. In
practice, we ❶ first sample α of tokens3 from the
ground-truth output y and mask them with a special
token (e.g., “<s>”). For sampling the tokens, we
design some strategies: 1) “Random”: randomly
sampling, 2) “Uniform”: uniformly sampling, 3)
“Hard”: sampling α of tokens with the lowest con-
fidence; 4) “Easy”: sampling α of tokens with the
highest confidence. More specifically, for 3) and
4), we feed the original sequence y into the student
for obtaining prediction probabilities qθi , and then
compute the entropy of qθi as the confidence4.

3The analysis of sampling ratio α can be found in §4.3.
4Intuitively, the tokens with high entropy value are hard-to-

learn, as the model predict them with low confidence towards
the gold labels (Zhong et al., 2023).
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After masking the spans of y, we ❷ then gener-
ate imperfect tokens to fill in the spans. Specifically,
we feed the masked sequence into the student to
generate predictions with a one-pass forward pro-
cess. Finally, given the predicted imperfect tokens
on the masking place, we ❸ rewrite the ground-
truth y into the imperfect one ŷ.

Training of KID. During training, given a mini-
batch of input-output pairs (x, y), we first perform
the above processes to obtain the imperfect data
(x, ŷ). Then, we can train the student model with
the teacher’s guidance. As shown in §2, Reverse
KL is more suitable for text-to-SQL task, and we
thus use it as the divergence function in our KID.
Moreover, since our KID require sampling from a
student, which may generate poor samples at the
beginning of training and make the distilling more
difficult, we follow prior works (Wen et al., 2023;
Gu et al., 2023) and combine the KD loss in Eq. 2
with an auxiliary maximum likelihood estimation
(MLE) loss. Specifically, the MLE loss enforces
the student to predict the ground-truth target se-
quences y. Notably, for a fair comparison, we also
add the auxiliary MLE loss into the baseline KD
methods that rely on the ground-truth data.

4 Experiments

4.1 Setup

Tasks and Datasets. We conduct our main ex-
periments on two popular text-to-SQL benchmarks,
i.e., Spider (Yu et al., 2018) and BIRD (Li et al.,
2024b). For each task, models are trained with
the original training set and evaluated on the devel-
opment set, denoted as Spider-dev and BIRD-dev,
respectively. Moreover, following prior studies (Li
et al., 2023, 2024a), we also evaluate the mod-
els trained with the Spider dataset on three more
challenging robustness benchmarks, i.e., Spider-
DK (Gan et al., 2021b), Spider-Realistic (Deng
et al., 2021) and Spider-Syn (Gan et al., 2021a).

For evaluation on Spider-family benchmarks, we
utilize two widely-used metrics, i.e., “Execution
Accuracy” (EX) (Yu et al., 2018) and “Test-Suite
Accuracy” (TS) (Zhong et al., 2020). For BIRD,
we simply use the EX as the evaluation metric. No-
tably, BIRD offers external knowledge for guiding
the generation of SQL queries. Considering that
such external knowledge is usually unavailable in
the real world, we follow Li et al. (2024a) and per-
form the evaluation in two settings: without (“w/o

EK”) and with (“w/ EK”) external knowledge. The
details of all tasks are shown in Appendix A.1.

Models. We evaluate KID on three types of LLMs
with various sizes: QWen1.5 (Bai et al., 2023) (stu-
dent: 0.5B, teachers: 1.8B, 4B, 7B), CodeGen (Ni-
jkamp et al., 2022) (student: 350M, teachers: 2B),
and LLaMA2 (student: TinyLLaMA-1.1B (Zhang
et al., 2024b), teachers: 7B (Touvron et al., 2023)).
All models are trained with a popular parameter-
efficient fine-tuning method, i.e., LoRA (Hu et al.,
2021). The details of all training hyper-parameters
can be found in Appendix A.2.

Baselines. We consider 5 cutting-edge KD
baselines in our main experiment: Forward
KD (FKD) (Hinton et al., 2015), Reverse KD
(RKD) (Gu et al., 2023), f-distill (Wen et al., 2023),
ImitKD (Lin et al., 2020) and GKD5 (Agarwal
et al., 2024). For reference, we also report the
performance of teachers as the upper bound. We
use the codebase of Liu et al. (2023) to implement
these baselines and distill students.

4.2 Main Results

KID achieves a better trade-off between the KD
performance and efficiency. The main results
on QWen-family models are listed in Table 3.
As seen, most KD methods outperform the SFT
baseline, while introducing extra training budgets.
Training with the on-policy data, GKD achieves
much better performance than the other counter-
parts. However, the computational budget of GKD
is not affordable, as it leads to up to 13.9× training
latency against the SFT baseline. Conversely, our
KID can not only achieve comparable or even better
performance than GKD, but also effectively reduce
the training latency. These results can prove the
superiority of our method.

KID brings consistent and significant perfor-
mance gains among all model sizes and types.
In addition to QWen-family models, we also ap-
ply our method on CodeGen and LLaMA models,
and report the results in Table 4. Notably, due to
the space limitation, we only report the contrastive
results of two most relevant KD counterparts, i.e.,
RKD and GKD. From the results of Table 3 and 4, it
can be found that our KID consistently outperforms
the other KD counterparts and brings significant

5As shown in Table 2, GKD with RKL divergence (i.e.,
GKD-RKL) performs best, and we thus only report the results
of GKD-RKL for GKD in the following content.

6878



Method Latency
Spider-dev BIRD-dev (EX%) Spider-DK Spider-Real Spider-Syn Score

EX% TS% w/o EK w/ EK EX% TS% EX% TS% EX% TS% Avg. ∆

Student: QWen1.5-0.5B
SFT 1.0× 57.8 56.4 16.36 30.51 44.8 46.5 50.6 47.6 44.2 43.7 43.85 *

Teacher: QWen1.5-1.8B
Teacher 1.5× 67.3 66.3 21.71 34.22 54.6 52.3 62.0 60.8 52.7 52.6 52.45 -
FKD 2.1× 57.3 56.5 16.82 28.68 43.7 41.7 50.2 48.0 43.7 43.3 42.99 -0.86
RKD 2.0× 62.7 61.5 16.10 31.81 50.8 49.2 51.2 49.6 48.7 48.3 46.99 +3.14
f-distill 6.0× 57.6 56.3 15.78 27.90 45.0 43.2 52.6 51.0 43.4 43.0 43.58 -0.27
ImitKD 5.9× 58.3 57.2 16.04 28.49 46.2 44.1 52.4 50.8 44.1 43.3 44.09 +0.24
GKD 10.9× 62.9 61.6 18.25 32.99 49.9 47.9 50.6 48.6 48.6 48.1 46.94 +3.09
KID (Ours) 2.0× 63.7 63.1 18.38 33.12 47.6 45.4 53.0 51.4 47.5 47.0 47.02 +3.17

Teacher: QWen1.5-4B
Teacher 3.0× 78.2 77.3 35.27 48.11 61.3 58.7 72.6 70.3 67.4 66.8 63.60 -
FKD 2.2× 57.4 56.5 18.32 29.34 47.1 45.6 50.6 48.6 42.4 41.8 43.77 -0.08
RKD 2.2× 60.1 59.1 17.01 31.75 45.8 43.6 49.6 47.4 46.1 45.6 44.61 +0.76
f-distill 6.3× 58.6 57.3 17.67 31.55 45.8 43.6 50.8 49.2 44.4 43.8 44.27 +0.42
ImitKD 6.3× 59.5 59.4 19.04 30.31 48.6 46.9 49.2 46.9 45.0 44.5 44.94 +1.09
GKD 12.7× 63.8 62.4 20.21 36.11 50.8 48.2 55.5 53.3 47.5 46.9 48.47 +4.62
KID (Ours) 2.3× 65.8 64.7 20.08 33.57 50.5 48.0 55.1 53.3 47.6 47.0 48.57 +4.72

Teacher: QWen1.5-7B
Teacher 3.3× 81.6 80.6 39.44 52.02 67.7 64.9 76.6 74.2 70.1 69.5 67.67 -
FKD 2.4× 57.3 56.4 17.14 31.03 46.4 44.9 50.6 49.0 41.0 40.5 43.43 -0.42
RKD 2.3× 61.5 60.2 16.10 31.81 48.4 46.5 51.0 49.2 46.7 46.0 45.74 +1.89
f-distill 7.2× 59.6 58.2 18.19 32.78 47.7 46.0 49.8 47.6 44.9 44.4 44.92 +1.07
ImitKD 7.2× 59.1 57.9 17.60 30.44 47.3 45.4 48.8 47.2 43.8 43.4 44.09 +0.24
GKD 13.9× 64.3 62.9 20.08 34.62 51.6 49.7 54.1 51.6 46.9 46.2 48.20 +4.35
KID (Ours) 2.3× 64.0 62.6 20.40 34.35 50.7 48.5 52.4 50.8 47.7 47.3 47.88 +4.03

Table 3: Evaluation of QWen-family models on several popular text-to-SQL benchmarks. Notably, “Latency”
means the average training latency relative to the SFT baseline. “Spider-Real” refers to the Spider-Realistic
benchmark. “Avg.” denotes the average performance among all benchmarks and “∆” denotes the performance gains
against the SFT baseline. Best performance in each group is emphasized in bold.

+5.3

+5.1

CodeGen-350M TinyLLaMA-1.1B

Figure 4: Analysis of different masking strategies.
The y-axis denotes the EX performance on Spider-dev.
For reference, we also report the results of SFT.

performance gains (up to +5.83% average score)
against the SFT baseline among all model sizes and
types, indicating its universality.

KID effectively improves the robustness of
distilled models. Spider-DK, Spider-Syn, and
Spider-Realistic are widely-used challenging
benchmarks to investigate the robustness of text-to-

SQL models. Contrastive results on these bench-
marks show that our KID exhibits exceptional per-
formance and effectively improves the robustness
of distilled students. For example, when distilling
CodeGen models, KID achieves gains of 2.7% on
Spider-DK (43.7% to 46.4%) and 2.1% on Spider-
Realistic (45.5% to 47.6%), comparing with the
best counterpart.

4.3 Analysis of KID

We evaluate the impact of each component of our
KID, including 1) masking strategies, 2) masking
ratio α, and 3) rewriting approach for obtaining the
imperfect data. Additionally, we 4) perform the
in-depth analysis on the training efficiency of KID.

Effect of different masking strategies. As men-
tioned in §3, we introduce several strategies to se-
lect the tokens for masking. Here, we conduct
experiments to analyze the impact of different
masking strategies. Results of CodeGen-350M
and TinyLLaMA-1.1B in Figure 4 show that: 1)
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Method Latency
Spider-dev BIRD-dev (EX%) Spider-DK Spider-Real Spider-Syn Score

EX% TS% w/o EK w/ EK EX% TS% EX% TS% EX% TS% Avg. ∆

Student: CodeGen-350M, Teacher: CodeGen-2B .

SFT 1.0× 53.1 51.8 9.90 26.01 37.4 36.1 38.4 36.0 35.4 34.9 35.90 *
Teacher 3.7× 72.3 71.3 26.47 35.66 57.9 55.1 63.2 61.6 55.4 54.8 55.37 -
RKD 2.1× 55.1 54.4 10.50 27.18 43.6 40.0 43.1 40.7 37.6 36.8 38.90 +3.00
GKD 14.1× 56.6 54.9 11.44 27.57 43.7 40.4 45.5 43.1 40.1 39.3 40.26 +4.36
KID (Ours) 2.4× 58.4 56.8 10.52 27.57 46.4 44.1 47.6 44.5 41.1 40.3 41.73 +5.83

Student: TinyLLaMA-1.1B, Teacher: LLaMA2-7B .

SFT 1.0× 63.0 61.8 13.40 24.77 49.0 48.0 54.7 52.4 51.4 50.6 46.91 *
Teacher 2.6× 78.8 77.9 35.40 48.63 64.5 61.1 72.4 70.1 67.6 66.4 64.28 -
RKD 1.4× 66.0 64.6 15.45 31.75 48.4 46.9 55.7 54.1 52.9 52.2 48.80 +1.89
GKD 8.3× 64.8 63.2 16.62 33.44 52.1 49.9 54.1 51.0 53.0 51.8 49.00 +2.09
KID (Ours) 1.5× 68.1 66.8 18.97 32.53 52.9 51.8 59.8 57.7 55.0 54.5 51.81 +4.90

Table 4: Evaluation of CodeGen and LLaMA models on several text-to-SQL benchmarks. Due to the space
constraints, we only present the contrastive results of most relevant KD counterparts, i.e., RKD and GKD.
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Figure 5: Parameter analysis of masking ratio α.
We report the EX results of TinyLLaMA-1.1B and
CodeGen-350M on the Spider-dev.

Our KID with various masking strategies consis-
tently outperforms the SFT baseline. 2) Perfor-
mance of difficulty-driven strategies (i.e., “Easy”
and “Hard”) is unstable, as paying too much atten-
tion to the easy-to-learn/hard-to-learn tokens might
affect the learning of the other tokens and thus
leads to sub-optimal performance. 3) The “Ran-
dom” strategy achieves consistently better perfor-
mance. We conjecture that such a random masking
strategy is closer to the errors that are prone to
occur during inference, as a model might predict
incorrect tokens at any inference step. Thus, we
use the “Random” strategy as our default setting.

Parameter analysis on α. The α used to con-
trol the ratio of masking tokens is an important
hyper-parameter. Here, we analyze its influence by
evaluating the performance of KID with different
α, spanning {0.1, 0.2, 0.3, 0.4, 0.5} on Spider-dev.

Method CodeGen TinyLLaMA

SFT 53.1 63.0

Vanilla KID 55.1 66.0
-w/ Masking-only 55.8 (↑ 0.7) 66.5 (↑ 0.5)
-w/ Rewriting (Ours) 58.4 (↑ 3.3) 68.1 (↑ 2.1)

Table 5: Impact of rewriting approach of KID. No-
tably, “Vanilla KID” means that we do not train with the
imperfect data in our KID, “-w/ Masking-only” denotes
that we directly use the sequence with masking spans
as final imperfect data during the training of KID, and
“-w/ Rewriting (Ours)” refers to the full KID.

Figure 5 illustrates the contrastive results. Com-
pared with the SFT baseline, our KID consistently
brings improvements across a certain range of α
(i.e., 0.1 to 0.3), basically indicating that the perfor-
mance of KID is not sensitive to α. 2) Too large α
values (e.g., 0.5) lead to performance degradation,
as too many rewriting tokens might distort the se-
quence meaning and are challenging for models to
calibrate. More specifically, the case of α = 0.2
performs best, and we use this setting as default.

Impact of rewriting approach. In the stage ❸

of pipeline for obtaining the imperfect data, we
rewrite the ground-truth data with the predicted
imperfect tokens. To verify its effectiveness, we
compare it with a simple alternative, i.e., directly
using the sequence with masking spans (output of
stage ❶) as final imperfect data ŷ, denoted as “-
w/ masking-only”. Table 5 shows the contrastive
results (EX results on Spider-dev), in which we see
that 1) the alternative approach equipped with KID
outperforms the SFT, showing the superiority of
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Figure 6: Performance on Spider-dev of students
(QWen1.5-0.5B) trained with different KD methods
for the full training process. QWen1.5-1.8B is used as
the teacher. We see that KID achieves comparable per-
formance with most counterparts at 2K training steps.

our KID, and importantly, 2) our rewriting approach
could further improve the results by a large margin
against the simple alternative, e.g., +3.3% gains on
CodeGen-350M, indicating its effectiveness.

Analysis of training efficiency. In Table 3, we
show that our KID effectively reduces the training
latency compared to those counterparts based on
model-generated data. Here, to further verify the
training efficiency of KID, we present the perfor-
mance of students trained with various KD methods
across different training steps. QWen1.5-0.5B and
1.8B models are used as student and teacher, re-
spectively. The results are illustrated in Figure 6.
As seen, KID can achieve comparable or even better
performance than most KD counterparts with much
fewer training steps, i.e., effectively improving the
training efficiency. We attribute it to the higher
data efficiency, since the imperfect data is closer to
inference scenarios and can help the student better
adapt to downstream generation.

4.4 Discussion

Does KID still work under larger model size
gaps? Here, to further prove the effectiveness of
our KID, we attempt to apply it to distill the larger
LLMs. In practice, we use our method to distill
the Qwen1.5-32B teacher model into the Qwen1.5-
0.5B student model, and report the contrastive re-
sults on Spider-family benchmarks in Table 6. As
seen, compared with the KD baselines, KID can still
achieve much better performance among all bench-
marks. These results indicate that our method can
work well in the larger teacher models.

Method Spider-dev Spider-DK Spider-Real Spider-Syn

FKD 57.4 44.7 52.8 42.8
RKD 60.3 50.5 51.2 44.6
KID 63.7 50.8 52.2 49.2

Table 6: Performance (EX%) on Spider-family bench-
marks of QWen1.5-0.5B distilling from QWen1.5-32B.

Metric FKD RKD f-distill GKD KID

ExAccErr (↓) 35.4 16.2 11.3 0.8 5.3
Performance 31.03 31.81 32.78 34.62 34.35

Table 7: Results of Qwen1.5-0.5B on BIRD-dev (w/
EK) benchmark. QWen1.5-7B is used as the teacher.

Does KID indeed alleviate the training-inference
mismatch? To verify it, we follow the prior
work (Gu et al., 2023) and use the ExAc-
cErr (Arora et al., 2022) metric (lower score refers
to less training-inference mismatch) to measure
the training-inference mismatch. The results of
QWen1.5-0.5B (distilling from QWen1.5-7B) on
BIRD-dev (w/ EK) are listed in Table 7. Obviously,
comparing to the other methods, our KID achieves
lower ExAccErr score, and there is a significant
correlation between the ExAccErr score and the
distillation performance, i.e., a lower mismatch
leads to better performance. These results show
the effectiveness of KID, and confirm our statement
that alleviating the training-inference mismatch can
enhance the distillation of text-to-SQL models.

5 Related Work

LLM-based Text-to-SQL. Recently, autoregres-
sive LLMs (OpenAI, 2023; Ouyang et al., 2022;
Touvron et al., 2023; Anil et al., 2023; Zhao et al.,
2023) have shown their superior performance by
solving various NLP tasks in a generative manner.
In the field of text-to-SQL, researchers are increas-
ingly interested in leveraging the powerful capabili-
ties of LLMs to create text-to-SQL systems, which
can be classified into two groups: 1) prompt-based
text-to-SQL and training-based text-to-SQL. The
former involves designing some effective prompts
to instruct the closed-source LLMs for better text-
to-SQL parsing (Pourreza and Rafiei, 2024; Sun
et al., 2023a; Chen et al., 2024; Dong et al., 2023).
On the other hand, the training-based methods aim
to improve the text-to-SQL performance of open-
source LLMs by tuning them on the supervised
input-output pairs (Sun et al., 2023a; Zhang et al.,
2024a), or continuing pretraining the LLMs on the
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related database-related data (Roziere et al., 2023;
Li et al., 2024a). While achieving remarkable per-
formance, the above methods usually suffer from
unbearable inference latency (Zhong et al., 2024;
Leviathan et al., 2023), hindering the applications
in real-world scenarios.

Knowledge Distillation for Autoregressive
LLMs. KD, as a common approach for com-
pressing LLMs, has attracted great attention re-
cently (Gu et al., 2023; Agarwal et al., 2024; Zhong
et al., 2024; Rao et al., 2024; Xu et al., 2024). In the
context of text-to-SQL, Sun et al. (2023b) is first to
apply the KD for distilling the text-to-SQL models,
but they mainly focus on the encoder-only (De-
vlin et al., 2019) and sequence-to-sequence mod-
els (Raffel et al., 2020). It is still under-explored
whether these methods work well for distilling au-
toregressive text-to-SQL LLMs. In this paper, we
conduct a series of preliminary experiments to ex-
plore it and reveal that training-inference mismatch
is one of the main factors hindering the KD perfor-
mance in autoregressive LLMs. Hence, we propose
an effective and efficient KD method to alleviate
the training-inference mismatch. Notably, our mo-
tivation is similar to the schedule sampling (Ben-
gio et al., 2015), but there are significant differ-
ences between the two. We depart from the prior
schedule sampling and ours as follows: 1) Different
approaches: schedule sampling focuses on RNN
models involving serial training, whereas ours tar-
gets Transformer models requiring parallel training.
2) Different application scenarios: schedule sam-
pling was applied to small RNN model training, but
our method is applied in the distillation scenario of
LLMs, especially for the text-to-SQL.

6 Conclusion

In this paper, we reveal and address the limitations
of current KD methods in compressing the autore-
gressive text-to-SQL LLMs. Based on a series of
preliminary analyses, we find that these methods
fall short in balancing performance and training
efficiency. To this end, we propose a novel efficient
KD algorithm (KID), which utilizes a simple-yet-
effective strategy to simulate the inference scenar-
ios during training, with only a one-pass forward
process. By doing so, KID can mitigate the training-
inference mismatch in an efficient manner, and
achieve a better trade-off between performance and
efficiency. Experiments show that our approach
consistently and significantly improves distillation

performance across all model architectures, and
reduces the training latency by a large margin.

Limitations

Our work has several potential limitations. First,
given the limited computational budget, we only
validate our KID on up to 7B LLMs in the main
experiments. It will be more convincing if scaling
up to super-large model size, e.g., 70B. Secondly,
in our KID, we leverage an auxiliary MLE loss
to ensure the stable training. In our preliminary
experiments, we found that the MLE loss plays
an import role in KID. However, the better combi-
nation of the distillation loss and MLE loss is still
under-explored, which is in our future work. Lastly,
besides the distillation for text-to-SQL, we believe
that our method has the great potential to expand
to more scenarios.
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proposes an efficient knowledge distillation algo-
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A Appendix

A.1 Details of Tasks and Datasets
In this work, we conduct extensive experiments
on several text-to-SQL benchmarks. Here, we in-
troduce the descriptions of these datasets in detail.
Firstly, we present the statistics of all used datasets
in Table 8. Then, each task is described as:

Spider. Spider (Yu et al., 2018) is a widely-used
English text-to-SQL benchmark, comprising 8,659
training samples and 1,034 development samples.
The training set encompasses 7,000 manually anno-
tated samples and 1,659 samples sourced from six
previous text-to-SQL benchmarks. There are 200
databases covering 138 diverse domains in Spider.
Due to the submission constraints of the Spider
leaderboard, we follow Li et al. (2024a) and do not
evaluate our models on its test set, but alternatively
on the publicly available development set.

BIRD. BIRD (Li et al., 2024b) is a more chal-
lenging text-to-SQL benchmark that examines the
impact of extensive database contents on text-to-
SQL parsing. BIRD contains over 12,751 unique
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Benchmark #Training #Development

Spider 8,659 1,034
BIRD 9,428 1,534
Spider-DK - 535
Spider-Realistic - 508
Spider-Syn - 1,034

Table 8: Statistic of all used text-to-SQL benchmarks.
Notably, “Spider-DK”, “Spider-Realistic” and “Spider-
Syn” are variants of the development of Spider.

Setting QWen1.5 CodeGen LLaMA2

Learning Rate 2e-4 2e-4 2e-4
Epoch 8 8 4
Batch Size 16 16 16
Max Input Length 1024 1024 2048
Max Output Length 128 128 256
LoRA_Rank 64 8 64
LoRA_Alpha 32 32 32

Table 9: Details of training hyper-parameters for
different LLMs. For each model, we use the same
settings among all benchmarks.

question-SQL pairs and 95 big databases with a to-
tal size of 33.4 GB. Each database contains around
549K rows on average.

Spider-DK. Spider-DK (Gan et al., 2021b) is
a variant derived from the original Spider dataset.
It modifies some samples of Spider by adding do-
main knowledge that reflects real-world question
paraphrases.

Spider-Realistic. Spider-Realistic (Deng et al.,
2021) is also a variant of Spider dataset. It modifies
the NL questions in the complex subset of Spider to
remove or paraphrase explicit mentions of column
names, while keeping the SQL queries unchanged.

Spider-Syn. Spider-Syn (Gan et al., 2021a) is a
human-curated dataset based on the Spider. NL
questions in Spider-Syn are modified from Spi-
der, by replacing their schema-related words with
manually selected synonyms that reflect real-world
question para-phrases.

A.2 Training Hyper-parameters.

We train each model with a batch size of 16 and
a peak learning rate of 2e-4. The training epochs
are selected from {4, 8} for different models. We
follow Li et al. (2024a) to construct the database
prompt (an example of an input-output pair is illus-
trated in Figure 7) and set the max length of input
and output depending on different models. Due
to the limited computational resources, we train

Database prompt:
table movie , columns = [ movie.mid ( int | primary key | comment : movie id | values : 101 , 
102 ) , movie.title ( text | values : Gone with the Wind , Star Wars ) , movie.year ( int | 
values : 1939 , 1977 ) , movie.director ( text | values : Victor Fleming , George Lucas ) ]
table reviewer , columns = [ reviewer.rid ( int | primary key | comment : reviewer id | values : 
201 , 202 ) , reviewer.name ( text | values : Sarah Martinez , Daniel Lewis ) ] 
table rating , columns = [ rating.rid ( int | comment : reviewer id | values : 201 , 202 ) , 
rating.mid ( int | comment : movie id | values : 101 ,106 ) , rating.stars ( int | comment : rating 
stars | values : 2 , 4 ) , rating.ratingdate ( date | values : 2011-01-22 , 2011-01-27 ) ]
foreign keys :
rating.rid = reviewer.rid
rating.mid = movie.mid
matched values :
reviewer.name ( Sarah Martinez )
Question:
What are the names of all directors whose movies have been reviewed by Sarah Martinez?

INPUT

OUTPUT

SELECT DISTINCT movie.director FROM rating JOIN movie ON rating.mid  =  movie.mid 
JOIN reviewer ON rating.rid  =  reviewer.rid WHERE reviewer.name  =  'Sarah Martinez'

Figure 7: A text-to-SQL sample in Spider’s training
set. We follow Li et al. (2024a) to construct the database
prompts. Note that this illustration is from the original
paper (Li et al., 2024a).

all models with a popular parameter-efficient fine-
tuning method, i.e., LoRA. Specifically, the alpha
of LoRA is set as 32 and the rank of LoRA is set as
64 or 8. We present the training hyper-parameters
in Table 9. All experiments are conducted on 8
NVIDIA H800 (80GB) GPUs.

A.3 Details of divergence functions for KD
Here, we introduce the commonly-used divergence
functions for KD. Let the probability distribution
of teacher and student be p and qθ, respectively.
For the training set G, the divergence functions can
be formulated as:

Kullback-Leibler (KL) divergence

FKL(p∥qθ) =
∑

(x,y)∈G
p(y|x) log p(y|x)

qθ(y|x) . (3)

Note that the KL divergence is not symmetric,
i.e., FKL(p∥qθ) ̸= FKL(q

θ∥p). More specifically,
the FKL(p∥qθ) refers to the forward KL, while
FKL(q

θ∥p) refers to the reverse KL.

Jensen–Shannon (JS) divergence

FJS(p∥qθ) =
1

2
(FKL(p∥M) + FKL(q

θ∥M)),

(4)
where M = 1

2(p+ qθ).

Total variation distance (TVD)

FTV D(p∥qθ) =
∑

(x,y)∈G
|p(y|x)− qθ(y|x)

2
|. (5)
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