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Abstract

Speech recognition and speech synthesis mod-
els are typically trained separately, each with
its own set of learning objectives, training data,
and model parameters, resulting in two dis-
tinct large networks. We propose a parameter-
efficient approach to learning ASR and TTS
jointly via a multi-task learning objective and
shared parameters. Our evaluation demon-
strates that the performance of our multi-task
model is comparable to that of individually
trained models while significantly saving com-
putational and memory costs (∼50% reduction
in the total number of parameters required for
the two tasks combined). We experiment with
English as a resource-rich language, and Ara-
bic as a relatively low-resource language due to
shortage of TTS data. Our models are trained
with publicly available data, and both the train-
ing code and model checkpoints are openly
available for further research.1

1 Introduction

Fundamentally, text and speech are different repre-
sentations of similar information, with text being a
far more condensed form of the linguistic content
of speech. Conversion between text and speech
modalities in the form Automatic Speech Recog-
nition (ASR), text-to-speech synthesis (TTS), or
Voice Conversion (VC), are traditionally achieved
by training separate ASR, TTS, and VC models as
the input and output modalities and training objec-
tives differ significantly. However, considering the
recent developments in self-supervised and multi-
modal pre-training, a more integrated approach can
now be promising. A unified model trained simul-
taneously for multiple speech/text to speech/text,
improves on generalization to new data, cross-task
knowledge transfer, simplifies maintenance, and
also reduces the computational and memory re-
quirements for training, storage, and inference. Re-

1https://github.com/mbzuai-nlp/sttatts

cent studies seek to achieve a smooth fusion of
text and audio by developing unified audio-text
models capable of addressing diverse tasks both
within and across these modalities. While these
models are considered multi-modal if they can pro-
cess different input modalities, for our purposes
we group audio-text models into two categories
based on their output modality: uni-modal and
cross-modal. We describe uni-modal approaches
as models capable of generating output in a sin-
gle modality only, such as Whisper (Radford et al.,
2022), and Google USM (Zhang et al., 2023b),
which only generate text outputs. Cross-modal
approaches, on the other hand, are capable of gen-
erating outputs in both speech and text modalities,
such as Viola (Wang et al., 2023), SpeechT5 (Ao
et al., 2022), and SpeechGPT (Zhang et al., 2023a).
Some of these models (Zhang et al., 2023a; Maiti
et al., 2024) use discrete representations for audio
tasks, merging text and audio tokens in a shared
vocabulary while jointly training multiple tasks;
other models, such as SpeechT5 (Ao et al., 2022)
use continuous representations for audio. While
SpeechT5 is pre-trained with a cross-modal objec-
tive, handling both text and speech as input and
output modalities, the model is fine-tuned individu-
ally for downstream tasks such as ASR and TTS.

This work builds on these developments, partic-
ularly SpeechT5 (Ao et al., 2022), by achieving
a truly cross-modal speech and text conversion
in a single architecture. Unlike previous work,
our approach does not separate the speech/text-
to-speech/text tasks based on input/output modal-
ities; instead, we fine-tune these components con-
currently using a unified model and loss function
with the help of a simple MLP-based task fusion
module. The resulting model is a single encoder-
decoder that can handle both modalities at the input
and output, depending on the desired task. We sum-
marize our contributions below:
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1. We propose a novel parameter-efficient fine-
tuning methodology for jointly learning mul-
tiple speech tasks: ASR and Multi-Speaker
TTS. We demonstrate the efficiency of our
approach in terms of computational require-
ments, training time, and its scalability to
additional tasks, namely Voice Conversion.

2. We empirically demonstrate the effectiveness
and efficiency of the proposed approach, re-
sulting in improved performance compared
to the only comparable open-source model
at the time of writing (i.e. VoxLM) with a
fraction (1/2) of the parameters.

3. We demonstrate the robustness and perfor-
mance of our approach, showing its applica-
bility on both high-resource and low-resource
settings, as we present the first multi-modal,
multi-task model for the Arabic language.

2 Related Work

2.1 Multi-Task Speech Models

Radford et al. introduced Whisper, an encoder-
decoder model trained on vast amount of speech-
text (680K hours) data. Whisper a multilingual
model with multitasking capabilities. However, it
only uses speech as input and can not generate
speech output. In SLAM (Bapna et al., 2021), the
authors unified speech and text pre-training within
a single model using a single encoder with the
combined BERT (Devlin et al., 2019) and W2V-
BERT (Chung et al., 2021) objectives on unlabeled
text and speech. To align their model’s representa-
tions across modalities, they used Translation Lan-
guage Modeling (TLM) and Speech Text Match-
ing (STM) alignment losses that use supervised
speech-text recognition data. They show that joint
pre-training improves model performance on down-
stream speech translation and recognition tasks.
However, these models are not jointly trained for
multi-task purposes and require dedicated fine tun-
ing for each task.

Unified Speech-Text Models

SpeechT5 (Ao et al., 2022) introduces a multi-
modal encoder-decoder pre-training approach for
spoken language processing. The authors at-
tempted a joint pre-training approach of speech and
text to improve the model’s performance on down-
stream speech/text tasks like ASR, TTS, speaker

identification, speech enhancement, and voice con-
version. They built on the transformer architecture
(Vaswani et al., 2017), adding modal-specific pre-
nets and post-nets to handle latent feature extrac-
tion/conversion for different modalities. Although
their model is pre-trained jointly with speech and
text data in a self-supervised manner, the super-
vised downstream models (e.g. ASR, TTS) were
trained individually for each task. The model was
trained and evaluated on English only. A subse-
quent work followed the same architecture and
training paradigm for building an Arabic version
of the model, named ArTST (Toyin et al., 2023),
which also requires task-specific training.

Some recent methods employ a decoder-only
framework post-conversion of continuous audio
into discrete tokens, subsequently combining text
and audio tokens into a unified vocabulary (Maiti
et al., 2024; Zhang et al., 2023a; Wang et al., 2023).
These models can generate both text and speech
output from speech/text input. Some models (Maiti
et al., 2024) discretize speech using k-means on fea-
tures extracted from speech-text pre-trained mod-
els like HuBert (Hsu et al., 2021). However, their
method can suffer from information loss caused by
quantizing speech signals into discrete tokens and
its performance highly depends on the value of k
used for feature extraction. Moreover, combining
text and discrete speech tokens into a vocabulary
can lead to a large vocabulary size for multilingual
training.

3 Our Method

In this section, we describe a unified Speech-To-
Text And Text-To-Speech model, STTATTS, our
proposed architecture for jointly training ASR and
TTS. After unified self-supervised training as de-
scribed in Ao et al. (2022), we propose utilizing
a multi-task loss objective to optimize our model
parameters for multiple tasks, along with a task
fusion module to handle the different tasks. Unlike
the fine-tuning methodology followed in SpeechT5
(Ao et al., 2022; Toyin et al., 2023), which results
in a completely disjoint copy of the model for each
task (see Figure 2: Right), STTATTS utilizes a task
fusion module with negligible number of additional
parameters to handle multiple tasks using the same
encoder-decoder backbone (See Figure 1). This
results in a ∼50% reduction in the total number of
parameters required for the two tasks combined.
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Figure 1: STTATTS architecture: the task fusion module
is used to condition the encoder output to a specific task.

3.1 Underlying Architecture
The model is based on the SpeechT5 architec-
ture, which comprises transformer encoder-decoder
blocks and some auxiliary modules for modality-
specific feature extraction and decoding. Specif-
ically, the modal-specific encoder prenets, and
modal-specific decoder pre/postnet modules, are
used to handle the text and speech modalities at the
input and output, while the main encoder/decoder
network processes the unified representations.

Unified Encoder-Decoder. The unified encoder-
decoder follows the transformer architecture
(Vaswani et al., 2017). The transformer encoder
in our base model has 12 blocks, with a model di-
mension of 768 and an inner feed-forward network
dimension of 3072. The decoder comprises 6 trans-
former decoder blocks with a model dimension of
768 and an inner dimension of 3072. The unified
encoder and decoder can process either latent repre-
sentation of text or speech. We use the pre-trained
encoder weights from SpeechT5 and ArTST for
English and Arabic experiments, respectively.

Text Encoder and Decoder Pre/Post-Nets. The
text encoder pre-net and text decoder pre/post-nets
use shared embeddings. The pre-nets transform a
token in the sequence to a 768 embedding vector.
The text decoder post-net projects the decoder’s
hidden state into the probability distribution of to-
kens, normalized by the softmax function.

Speech Encoder and Decoder Pre/Post-Nets.
The speech encoder pre-net is a convolutional fea-
ture extraction model with 6 1-dimensional con-

volutional layers, and GELU activation following
wav2vec2.0 (Baevski et al., 2020). The output of
the convolutional network is normalized before
passing to a linear layer to up-sample from 512
to 768. The speech decoder pre-net upsamples the
mel spectrogram to a 768-dimensional vector. It
consists of two sequential layers of Linear trans-
formations with ReLU activations, followed by an
additional Linear layer that upsamples the output
from the previous layers. To enable multi-speaker
TTS, the speaker embedding vector of the target
speaker extracted using x-vectors (Snyder et al.,
2018) is concatenated to the output of the speech
decoder pre-net before being down-sampled with a
linear layer to the decoder hidden size followed by
RELU activation.

The speech decoder post-net utilizes a linear
layer to predict the log mel-filterbank from the de-
coder output and five 1-dimensional convolutional
layers to generate a residual for enhancing the pre-
dicted mel (Ao et al., 2022). Another linear module
is incorporated to transform the decoder output into
a scalar to predict the stop token. Ao et al.’s (2022)
HiFi-GAN vocoder is used to synthesize speech
from the generated mel spectrogram.

3.2 Task Fusion Module

Each task is represented with a 128-dimensional
vector, which is concatenated with the encoder’s
output, followed by a fully connected layer (See
Figure 1) to project the learned representation back
to the encoder embedding size. The output of this
module is used as input to the decoder.

3.3 Multi-Task Loss Objective

For ASR, we use Lce: the cross-entropy loss of
the decoder and Lctc: the standard CTC loss from
ESPNet (Watanabe et al., 2018).

Lasr = Lce + Lctc (1)

For optimizing speech synthesis, we use the L1

loss to minimize the distance between the target
and generated mel spectrograms; the binary cross
entropy Ls

bce loss is used to predict the stop token
for generation; and the guided attention loss is used
to speed up training convergence for speech syn-
thesis as described by Tachibana et al. (2018). The
latter was added to speed up the training of TTS
(Ao et al., 2022) which is typically a lot slower
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Figure 2: Left: Other modifications we experimented with. Right: Architecture for single task training using the
SpeechT5/ArTST methodology.

compared to ASR.

Ltts = L1 + Lbce + Lattn (2)

For joint training, similar convergence rates en-
able better and consistent training. The ASR and
TTS objectives are combined as L = Lasr + Ltts.
At each step, we calculate the loss for each task
and normalize by the number of samples per task
in that step. The model is updated after some k
gradient accumulation steps.

Input/Output Representation. For speech, we
use the raw waveform sampled at 16kHz as input
and the 80-dimensional log mel-filterbank features
as target output for all experiments. We trained
with a maximum input token size of 480K, which
corresponds to 30 seconds of speech. For text,
character-level tokens served as input and output
for all experiments. The maximum input token
length is 600. Our vocabulary size is 98 for experi-
ments using Arabic following ArTST (Toyin et al.,
2023) and 84 for English following SpeechT5 (Ao
et al., 2022).

4 Experimental Settings

We conducted experiments across two languages:
English and Arabic using open-source datasets. En-
glish was used as a resource-rich language, and
trained using the benchmark LibriSpeech dataset;
this enables the utilization of pre-trained models
from SpeechT5 (Ao et al., 2022), and a direct
comparison with their downstream models. Ara-
bic served as a relatively low-resource language,

mainly because of the shortage of clean speech
data that can be utilized for training high-quality
TTS systems (Kulkarni et al., 2023). This also
enables using the pre-trained checkpoints from
ArTST (Toyin et al., 2023).

4.1 Datasets

English. We used LibriSpeech (Panayotov et al.,
2015), referred to as LS for ASR. For TTS, we use
LibriTTS (Zen et al., 2019), referred to as Ltts,
along with LJSpeech (Ito and Johnson, 2017). We
conducted experiments with varying training data
sizes to evaluate the impact of data size on perfor-
mance. See Table 1 for data combinations.

LS Ltts LJSpeech

100hr 360hr 500hr 100hr 360hr 500hr -

ens ✓ ✗ ✗ ✓ ✓ ✗ ✗

enm ✓ ✓ ✗ ✓ ✓ ✓ ✗

enl ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Datasets for English experiments.

Arabic. We combined quality data for speech
synthesis from two publicly available datasets: Ara-
bic Speech Corpus (ASC) (Halabi, 2016), and Clas-
sical Arabic Text-to-Speech Corpus (ClArTTS)
(Kulkarni et al., 2023) for both ASR and TTS.
Since TTS quality is highly sensitive to the quality
and consistency of the audios and annotations used
for training, we did not utilize other large speech
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data for joint training 2. This also serves as a good
setting for validating the approach on low-resource
settings. We combined the train and test sets of
both datasets. However, the original transcripts for
the ASC corpus were modified to match the phones
(Halabi, 2016), leading to the removal/addition of
characters that are silenced/pronounced. These
modifications negatively impact both ASR and TTS
performance in our set-up as they are inconsistent
with the transcripts used in ClArTTS, which fol-
lows standard Arabic spelling conventions. To rec-
tify this issue, we restored the transcripts to stan-
dard Arabic spelling. We utilized ChatGPT 4.0 to
restore the spelling, and manually inspected a sub-
set of the resulting transcripts, which were deemed
to be correct by a native Arabic evaluator. We used
regex to remove punctuation marks, newline char-
acters, and additional English text from the model’s
output. The prompt used was: In the given arabic
texts, fix the incorrect characters in the words, take
each line as a sentence, and return the same num-
ber of lines as passed. Don’t remove the diacritics
{line separated transcriptions} .

4.2 Data Preparation
All punctuation marks were removed for both En-
glish and Arabic texts and all English characters
were converted to lowercase letters. The standard-
ized sampling rate for speech data across all col-
lected datasets was 16 kHz. For Arabic, we trained
the model for TTS with and without diacritics.

4.3 Training Details
The pre-trained checkpoints from SpeechT53 and
ArTST4 were used as initialization weights for our
experiments on English and Arabic, respectively.
For reproducibility, we summarize training details
per experiment in Table 2. All experiments were
carried out on A100 GPUs with 80GB memory.
Our training code and checkpoints are available. 5

Warm Fine-tuning. Toyin et al. (2023) discuss
that in the low-resource TTS setting for Arabic,
fine-tuning with larger ASR datasets first, followed
by continual fine-tuning with high-quality TTS data

2Our preliminary experiments showed that balancing train-
ing data for TTS and ASR are needed to achieve balanced
outcomes on both tasks. As TTS data are limited for Ara-
bic, we limited the data used for ASR training to achieve that
balance.

3https://github.com/microsoft/SpeechT5/tree/
main/SpeechT5

4https://github.com/mbzuai-nlp/ArTST
5https://github.com/mbzuai-nlp/sttatts

improved synthesized speech quality. The resulting
model achieved higher intelligibility even without
the use of diacritics. We incorporate this finding
in our Arabic model by first fine-tuning the model
for single-task TTS on the MGB2 (Ali et al., 2016)
dataset, followed by continual fine-tuning for joint
ASR and TTS using our smaller dataset, which im-
proves TTS performance. For English, we utilize a
similar approach for a different purpose: In enl, the
sizes of ASR and TTS training sets are imbalanced,
which negatively impacts TTS performance. In the
first 200k updates, we use the train-other-500 split
from LS (Panayotov et al., 2015) for optimizing the
ASR part of the joint objective. For the rest of the
training duration, we use the rest of the data (the
combined LS 100 and LS 360) to continue optimiz-
ing ASR in the joint objective. The training data for
TTS (see Table 1) remain unchanged throughout
training. This approach enables the utilization of
the full ASR train set without negatively impact-
ing TTS performance. Ablation results with and
without this approach are discussed in Section 6.4.

Arabic English (Den
s )

Data
Total hours

- ASR
- TTS

Character vocabulary size

-
32
16
16
98

-
291
100
191
84

Model architecture
Parameters (M)

-
155

-
155

Training Configurations
Max. input tokens (M)
Total updates (K)
Update frequency (k)
Learning rate
LR scheduler
phase ratio
Optimizer
# GPU

-
4.0
80
6

1e-4
tri-stage

0.25,0.4,0.35
adam

3

-
3.2
150

8
1e-4

tri-stage
0.25,0.4,0.35

adam
3

Table 2: Experiment details. For enm we use 250K
training updates and 4 A100 GPU’s. For enl we use
450K training updates and 4 A100 GPU’s.

4.4 Evaluation Metrics

ASR. We report the Word and Character Error
rates (WER & CER) for evaluating our model’s
performance for ASR task. For Arabic, the texts
are normalized before evaluation by removing di-
acritics. Diacritics are mostly useful as input for
TTS models, but most ASR models are trained and
evaluated without diacritics. We transcribe speech
using CTC weight of 0.5.
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TTS. We employ objective metrics to evaluate
our model’s synthesized speech intelligibility. We
use Whisper’s (Radford et al., 2022) large model to
transcribe synthesized speech and calculate CER
of transcribed speech. Subjective Mean Opinion
Score (MOS) was used to measure naturalness and
intelligibility for the main results, in addition to pre-
dicted MOS values using Wav2Vec2.0 as described
in Andreev et al. (2023). Native speakers of both
languages rated 5 random samples of synthesized
speech on a scale of 1 to 5, with a step of 0.5.

5 Results

In this section, we report our model’s performance,
comparison against SpeechT5 single-task models
(see Figure 2) and comparison against a baseline
joint-task model, VoxLM. Table 3 shows the re-
sults for Arabic and English with various scales of
training data. The performance improves with ad-
ditional training data, approaching state-of-the-art
results on the LibriSpeech test set. On Arabic, the
high WER is attributed to the low-resource setting
as it was trained with only 16 hours for ASR. Ex-
amples of ASR predictions from the Arabic model
are shown in Figure 3.

Data
ASR TTS

WER ↓ CER ↓ CER ↓ Naturalness ↑ Intelligibility ↑ WV-MOS ↑

ar 10.22 2.63 6.22 3.28 2.78 3.69
ens 4.84 1.63 3.18 3.36 4.00 4.40
enm 3.47 1.07 2.74 3.20 4.04 4.24
enl 2.99 0.90 2.10 3.00 4.38 4.26

Table 3: Evaluation of ASR performance using WER
and CER on LibriSpeech test set, and TTS performance
using CER, Naturalness MOS, Intelligibility MOS, and
MOS scores predicted by Wav2Vec2.0 (WV-MOS).

5.1 Comparison with Single-Task Models

In Table 4, we compare our model with single
task models from ArTST (Toyin et al., 2023) and
SpeechT5 (Ao et al., 2022), which have the same
pre-trained checkpoint and fine-tuning data, so they
are directly comparable: we used the ens described
in Table 1 for English and ar. STTATTS achieves
comparable performance to the single-task models,
demonstrating the effectiveness of the proposed
multi-task methodology. Compared to the large-
scale multi-lingual model, Whisper, STTATTS per-
forms better than Whispersmall, in spite of having
smaller number of parameters and being trained on
a much smaller data set. In English, Whisperlarge

Model # params(M)
ASR TTS

WER ↓ CER ↓

Arabic
⋆ArTSTASR (Toyin et al., 2023) 151 7.59 ×
⋆ArTSTTTS 145 × 9.61
⋆Whispersmall (Radford et al., 2022) 244 32.2 ×
⋆Whisperlarge 1550 23.4 ×
STTATTS 155 10.22 6.22

English ens

†SpeechT5ASR (Ao et al., 2022) 151 4.4 ×
††SpeechT5TTS 145 × 6.3
†Whispersmall 244 3.4 ×
†Whisperlarge 1550 3.0 ×
STTATTS 155 4.8 3.2

Table 4: Comparison of STTATTS with single task mod-
els on our test sets. Whisper models use 438K hours of
English ASR data, and SpeechT5 uses 100 hours Lib-
riSpeech for ASR and 460 hours LibriTTS for TTS. For
ArTST results, we train the model with our combined
dataset and report evaluation results on our test set. ⋆

indicates we trained the models and evaluated ourselves,
† indicates results as reported in the corresponding pa-
per, †† indicates the evaluation of model on randomly
selected synthesized text as ours, × indicates the models
cannot perform the corresponding task.

performs marginally better than STTATTS trained
on ens. For Arabic, STTATTS performs substan-
tially better than both small and large variants.

5.2 Comparison with Joint-Task Models

We compare our model’s performance with re-
ported joint models that perform both TTS and
ASR in Table 5. In particular, we use VoxtLM
(Maiti et al., 2024) as it is publicly available for
direct comparison, while other models are not cur-
rently available to perform comparable evaluation.
Using the same training data, STTATTS performs
better in both tasks, even when compared with the
large VoxtLM model of 1.3B parameters. Com-
pared to the VoxtLM base, which has a comparable
number of parameters, STTATTS performs on a par
with a fraction of the training data and is far better
when an almost equal amount of data is used.

6 Ablations & Analysis

6.1 Task Scaling

To evaluate whether the model can be scaled to
perform additional speech/text to speech/text tasks,
we experiment with adding Voice Conversion in
the enm setting. We use the CMU Arctic (Kominek
and Black, 2004) dataset, and optimize voice con-
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Model # params
Train Data(hrs) ASR TTS

ASR/TTS WER↓ CER↓

English
VoxtLM_base† 2024 350M 0.9K/0.5K 6.5 3.5
VoxtLM_large† 1.3B 0.9K/0.5K 4.6 3.9
VoxtLM_large† 1.3B 45K/0.6K 2.7 3.6
STTATTS(ens) 154M 0.1K/0.2K 4.8 3.2
STTATTS(enl) 154M 0.9K/0.5K 3.0 2.1

Table 5: Comparison with other joint-task models. †
indicates results as reported in the reference paper. ASR
results are on the Librispeech test-clean set for all mod-
els. TTS results are on 100 subset from the LibriTTS
test set, we can’t compare with the same samples since
the samples used for testing in VoxtLM are not publicly
available.

version using the same loss function used for TTS
(see Equation 3.3). We evaluate VC performance
using CER and Speaker Similarity (SS) using the
cosine similarity function on speaker embedding
(Snyder et al., 2018) extracted from the speech. The
results are shown in Table 6. Although there’s a
slight reduction in WER for the ASR task, TTS
MOS score has improved, possibly due to the
shared output space and loss function. We achieve
speaker similairy score of 0.99, and a low CER,
demonstrating the high quality in the additional
VC task without any additional parameters added
to the model.

ASR TTS VC

Data WER CER CER WV-MOS CER SS

enm 3.59 1.13 2.83 4.28 1.58 0.99

Table 6: Results for joint training of ASR,TTS and VC.

6.2 Architectural Variations

Y-Decoder. Y in Y-decoder stands for the desired
output: either text or speech. Here, we use a sim-
ilar approach to STTATTS but with modal-specific
decoders, i.e., a separate text decoder and a speech
decoder, while sharing the same encoder. In this
model, no task fusion module is used since each
task is parameterized by its own standalone decoder.
This results in a larger model than STTATTS but still
smaller than the disjoint ASR and TTS SpeechT5
models. See Figure 2 (left) for an illustration of
Y-decoder architecture.

Multi-Stage Training. We also experimented
with multi-stage training, where we alternate updat-

ing the weights for a specific task with some model
components frozen/unfrozen. We performed two
experiments using STTATTS, where we update the
parameters of the ASR first, followed by TTS, or
vice versa, with the respective single-task loss func-
tion in each stage. For example, if we follow an
ASR-first schedule, we first update the auxiliary
weights, the encoder, and the decoder for the ASR
task, then in the second stage, we keep the en-
coder and decoder frozen and update the auxiliary
weights for the TTS task.

Task-Specific Adapters. We experimented with
a shared transformer encoder-decoder backbone
using pre-trained weights with adapters (Houlsby
et al., 2019) as an alternative architecture. We
tried using the base model architecture offline and
only updating the weights of an adapter for each
task. We added a 64 inner dimension adapter to
the decoder, but this approach didn’t yield good
results. For ASR, the WER was 150% and the TTS
loss converged at a high value (≈ 0.8) relative to
STTATTS (≈ 0.4).

Results. Evaluation results are shown in Table 7.
While performance on ASR is comparable across
models and slightly better with the Y-decoder ar-
chitecture, STTATTS is the best overall in terms of
balancing performance across multiple tasks while
maintaining a lower number of parameters. With
multi-stage training, we find that it works better
when we update the encoder weights for the ASR
task first. We observe TTS performance is good
whether the transformer encoder is optimized for
ASR or TTS first, but the performance for ASR sig-
nificantly degrades with ×10 difference between
the WER for ASR-first and TTS-first approaches.
This may be attributed to the dimensionality of the
input features for each task, as ASR requires more
computations to process the input in the encoder,
while TTS works with discrete text input.

6.3 Effect of Data Imbalance

For ens, we first fine-tuned with LS-100 and Ltts-
100 (which contains ≈ 58 hours of speech). This
data combination resulted in less intelligible and
robotic synthesized speech (MOS of 1.5). Interest-
ingly, the ASR performance is not affected when
we have more TTS data, as shown for ens in Table
3; on the contrary, the results improved from 5.61
to 4.84. As a result, and since TTS data are gener-
ally more scarce, our main experimental settings
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ReferencePredictions

               أَتَاحَتْ لِلْبَائِعِ الْمُتَجَوِّلِ أَنْ يَكُونَ جَاذِبًا لِلْمُوَاطِنِ الْأَقَلِّ دَخْلاً               أَتاحَت لِلبائِعِ المُتَجَوِّلِ أَن يَكُونَ جاذِبًا لِلمُواطِنِ الأَقَلِّ دَخلًا

وذلك بحضور رئيس الهيئة

    تحتضن القاعة دفيني وسط بيروت معرض الفن الإستثنائي  

أتاحت للبائع المتجول أن يكون جاذبا للمواطن الأقل دخلا

    وَذَلِكَ بِحُضُورِ رَئِيسِ الهَيْئَةِ

وذلك بحضور رئيس الهيئة

أتاحت للبائع المتجول أن يكون جاذبا للمواطن الأقل دخلا

     وَذَلِكَ بِحُضُورِ رَئِيسِ الْهَيْئَةِ

تحتضن قاعة ذا فينيو وسط بيروت معرضا لفن الإستثنائي

Figure 3: Sample ASR predictions from the Arabic STTATTS model. Diacritic Errors Character Errors

Model # params(M)
ASR TTS

WER↓ CER↓ CER↓ WV-MOS↑

Arabic
Multistage

TTS-first 155 109.94 78.47 9.61 3.70

ASR-first 155 11.60 7.80 67.87 2.79

Y-decoder (enc - 2× dec) 211 10.37 2.78 8.31 3.68

STTATTS 155 10.22 2.63 6.22 3.69

English ens

Y-decoder (enc - 2× dec) 211 5.67 1.91 4.36 4.45

STTATTS 155 4.84 1.63 3.18 4.40

Table 7: Results from other architectural variation exper-
iments. For Multistage, we only show our preliminary
results for Arabic since performance was sub-optimal.

are all conducted with ASR data downsampled to
match the size of the TTS training set.

6.4 Effect of Warm Fine-Tuning

We compare STTATTS’s performance with and with-
out the warm fine-tuning approach introduced de-
scribed in section 6.4. The results are shown in
Table 8. Except for the Arabic ASR performance
that is degraded by ≈ 2% absolute WER, we find
that this approach results in improved performance.

Data Warm ft
ASR TTS

WER ↓ CER ↓ CER ↓ WV-MOS ↑

ar ✗ 8.61 5.60 9.94 3.61
ar ✓ 10.22 2.63 6.22 3.69
enl ✗ 3.08 0.96 3.28 4.24
enl ✓ 2.99 0.90 2.10 4.26

Table 8: Results of experimenting with warm fine-
tuning (ft) and without.

6.5 Diacritization in Arabic

TTS models for Arabic are typically trained with
full diacritics (Kulkarni et al., 2023). This is be-
cause diacritics contain essential information about
most vowels, without which the text is highly am-

biguous. However, Toyin et al. (2023) demon-
strated good TTS performance without the inclu-
sion of diacritics, which is mainly attributed to the
warm fine-tuning they perform with ASR data. As
the TTS data include diacritics, we performed ex-
periments where we train models with and without
diacritics. We evaluate ASR on normalized text
where all diacritics are removed. The results are
reported in Table 9. We notice that performance
in TTS is in fact better without diacritics using
this model. This surprising observation may be
attributed to the fact that ArTST(Toyin et al., 2023)
was pre-trained without diacritics, so adding di-
acritics in the fine-tuning stage with small data
size may not be sufficient. However, as shown in
the examples in Figure 3, we note that ASR tran-
scription with diacritics (first line) is in fact correct,
even though it does not match exactly the reference,
which is mainly a result of the sukoon diacritic that
is often omitted in the reference.

Data Diacritics
ASR TTS

WER ↓ CER ↓ CER ↓ WV-MOS ↑

ar ✓ 10.10 2.75 7.40 3.68
ar ✗ 10.22 2.63 6.22 3.69

Table 9: Results with and without diacritics.

6.6 Effect of Task-Fusion Module Position

We experimented with having the task fusion mod-
ule before the encoder with the aim of guiding
latent feature extraction based on the given output.
This approach performs fairly well for ASR (CER
4%) but fails for TTS with CER of 80%.

6.7 Effect of Pre-Trained Weights

The results above are all reported with pre-trained
weights from SpeechT5 and ArTST pre-trained
checkpoints. We examined the effect on perfor-
mance with and without starting with these pre-
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trained weights. See Figure 4 for the learning curve
in terms of loss reduction during training. We see
that using pre-trained weights is beneficial for max-
imizing performance. Pre-training is particularly
crucial for TTS tasks, as starting from scratch re-
sults in 10-fold degradation in CER. On the other
hand, the performance for ASR is far less affected
(only +1% increase in CER value for STTATTS, and
a larger increase for Y-decoder). Overall, starting
with pre-trained weights is crucial in downstream
tasks for all model variations.

Figure 4: Comparison of training objective with and
without using pre-trained weight.

7 Discussion

We described our experiments of jointly learning
Speech-to-Text and Text-to-Speech models based
on the SpeechT5 architecture, resulting in a truly
multi-modal and functional model, that accepts
both speech and text as input and output. We exper-
imented with both Arabic and English languages,
with Arabic being a relatively low-resource lan-
guage due to limited amounts of data available for
TTS training. Our results show that while it is pos-
sible to train models using our framework with less
than 20 hours of speech in total, more data is al-
ways better for maximizing performance in both
ASR and TTS tasks. Our results are the first to
report multi-task ASR/TTS in the Arabic language,
showing promising results in low-resource settings,
and potential for improvement with additional data.
For English, a few other models have been recently
proposed; our comparative analysis with the only
publicly available model of this variety, named
VoxtLM (Maiti et al., 2024), favors STTATTS in
both performance and parameter efficiency. We
experimented with different parameter-efficient ap-

proaches to jointly learn ASR and TTS tasks and
we find using the task-fusion module strikes a per-
fect balance in performance between both tasks
with the least amount of parameters. It’s also worth
noting that the task-fusion module makes incorpo-
rating more tasks and output modalities feasible as
the module aligns latent representation to match
the desired output modality. Furthermore, the in-
tegrated multi-task approach, in addition to being
more efficient in model size, is more efficient in
training as it requires fewer updates in total. Future
work will explore the possibility of integrating ad-
ditional text output tasks within the framework and
improving synthesized speech naturalness.

We believe that the proposed model, being
trained on publicly available data with the code
and checkpoints publicly available6, can serve as a
strong baseline for multi-task speech processing.

Limitations. Our experiments focus on three key
aspects: language generalization, scalability (in
terms of training data requirements and tasks), and
parameter efficiency. Although we explored two
languages separately, we did not experiment with
a joint multilingual models. Additionally, we used
VoxLM as our only baseline for multi-task models.
While other models have recently been proposed,
their code and models are not yet publicly avail-
able for comparison. We did not explore increasing
model size, as it would require pre-training from
scratch, which is computationally expensive. How-
ever, slightly larger models could potentially en-
hance performance in the multi-task setting by bet-
ter embedding the diverse input and output modali-
ties. Finally, we found that subjective MOS evalua-
tion was rather difficult to conduct as most outputs
were intelligible but somewhat noisy and unnatural.
For Arabic, the small data size and lack of diacritics
does result in degraded intelligibility due to mis-
matched pronunciation of short vowels. Therefore,
the reported TTS results provide some signal of
quality, but may not be informative of the actual
quality of the synthesized speech.
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