
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6401–6417
November 12-16, 2024 ©2024 Association for Computational Linguistics

LaCo: Large Language Model Pruning via Layer Collapse

Yifei Yang1,2,3, Zouying Cao1,2,3, Hai Zhao1,2,3∗
1Department of Computer Science and Engineering, Shanghai Jiao Tong University

2Key Laboratory of Shanghai Education Commission for Intelligent Interaction
and Cognitive Engineering, Shanghai Jiao Tong University

3Shanghai Key Laboratory of Trusted Data Circulation and Governance in Web3
{yifeiyang,zouyingcao}@sjtu.edu.cn, zhaohai@cs.sjtu.edu.cn

Abstract
Large language models (LLMs) based on trans-
former are witnessing a notable trend of size
expansion, which brings considerable costs to
both model training and inference. However,
existing methods such as model quantization,
knowledge distillation, and model pruning are
constrained by various issues, including hard-
ware support limitations, the need for exten-
sive training, and alterations to the model inter-
nal structure. In this paper, we propose a con-
cise layer-wise structured pruner called Layer
Collapse (LaCo), in which rear model layers
collapse into a prior layer, enabling a rapid
reduction in model size while preserving the
model structure. Comprehensive experiments
show that our method maintains an average
task performance of over 80% at pruning ratios
of 25-30%, significantly outperforming exist-
ing state-of-the-art structured pruning methods.
We also conduct post-training experiments to
confirm that the LaCo effectively inherits the
parameters of the original model. Additionally,
we perform ablation studies on various settings
of LaCo. Finally, we discuss our motivation
from the perspective of layer-wise similarity
and evaluate the performance of the pruned
LLMs across various pruning ratios1.

1 Introduction

Recently, large language models (LLMs) based on
Transformer (Vaswani et al., 2017) have showcased
impressive capabilities across diverse tasks. How-
ever, the prevailing trend in model development
leans towards larger scales, placing substantial de-
mands on computational resources.

To mitigate the above challenge, various ap-
proaches have been explored to reduce the infer-
ence and training costs of models or to derive a

∗ Corresponding author. This research was supported by
the Joint Research Project of Yangtze River Delta Science and
Technology Innovation Community (No. 2022CSJGG1400),
the Joint Funds of the National Natural Science Foundation of
China (Grant No. U21B2020).

1https://github.com/yangyifei729/LaCo

𝜽𝒍 + ∆𝜽𝟏 + . . . + ∆𝜽𝒎

𝜽𝒍ା𝟏

𝜽𝒍ା𝟐

𝜽𝒎

𝜽𝒍

𝜽𝒍ା𝟏

𝜽𝒍ା𝟐

𝜽𝒎

∆𝜽𝟏

∆𝜽𝟐

∆𝜽𝒎

(a) (b)

Figure 1: An example of Reserving-Differences-while-
Seeking-Common (RDSC) Layer Merge. In (a), we
perform parameter differencing, which we regard as
Reserving-Differences. In (b), we conduct parameter
merging, which we interpret as Seeking-Common.

smaller model from an LLM, including model
quantization (Dettmers et al., 2022; Yao et al.,
2022; Xiao et al., 2023), knowledge distillation
(Liu et al., 2022; Hsieh et al., 2023; Shridhar et al.,
2023), and model pruning (Zhang et al., 2022; Fran-
tar and Alistarh, 2023; Ma et al., 2023). How-
ever, existing solutions exhibit certain notable draw-
backs. Model quantization typically necessitates
specific hardware support and often impacts model
performance. Knowledge distillation often requires
retraining a smaller model, which is costly and task-
specific. Model pruning, whether non-structured
or structured, has its issues. Non-structured prun-
ing often involves model sparsity, which generally
leads to certain performance loss and also relies
on hardware support. Structured pruning entails re-
moving specific modules, often altering the model
structure and diminishing the model portability.

Considering the above issues, we contemplate di-
rectly pruning the model with a new idea: to prune
some layers directly from a well-trained LLM and
substitute the parameters of one layer for multiple
layers, enabling effective model pruning.

Specifically, we observe that merging the param-

6401

https://github.com/yangyifei729/LaCo

eter differentials of certain layers with their sub-
sequent layers often does not significantly impact
model performance, as illustrated in Figure 1. We
term it the Reserving-Differences-while-Seeking-
Common (RDSC) Layer Merge, as it incorporates
parameter differencing and merging. Building
upon this insight, we introduce a streamlined yet
potent layer-wise pruner dubbed Layer Collapse
(LaCo), in which rear layers collapse into a prior
layer, with the objective of preserving the model’s
output representation. In this paper:
• The Layer Collapse can directly remove 30%-

50% of model layers without training while main-
taining the model performance. Experiments on
multiple benchmarks show that our approach out-
performs state-of-the-art structured pruning meth-
ods under equivalent pruning ratios.
• The Layer Collapse preserves the internal

structure of LLMs, such as maintaining intermedi-
ate dimensions. So, the pruned models can be seam-
lessly integrated into existing applications without
any changes to the system’s implementation.
•We conduct post-training to confirm that Layer

Collapse can efficiently inherit parameters and re-
quires only minimal training to restore the pruned
model to the original model’s loss convergence
level. Additionally, we discuss our motivation and
evaluate the performance of pruned models using
LaCo across different pruning ratios. We also per-
form ablation studies on various settings of LaCo.

2 Method

2.1 Reserving-Differences-while-Seeking-
Common Layer Merge

For the l-th layer of an LLM, we denote all
its parameters, including those in self-attention
(SAN) and MLP as θl. For the m consecutive
layers following it, we merge the parameters of
θl+1,θl+2, · · · ,θl+m into θl to form θ∗

l :

θ∗
l = θl + (θl+1 − θl) + · · ·+ (θl+m − θl)

= θl +

m∑

k=1

(θl+k − θl)
(1)

where (θl+k − θl) is the layer-wise parameter dif-
ference. Given identical layer structures, we in-
dependently apply these processes to both SAN
and MLP. Then, these m consecutive layers will be
discarded. Subsequent model pruning will contin-
uously involve RDSC Layer Merge which can be

Algorithm 1 Workflow of Layer Collapse

Require: LLMM; Number of layers combined in
each merge C; Layer range [L,H]; Minimum
interval between two adjacent merged layers I;
Few-shot Calibration Samples D; Threshold
for representation similarity T

Ensure: Pruned LLMM∗

1: M∗ ←M
2: l← H− C
3: while l >= L do
4: K ←Min(C − 1, Layer_Count(M∗)−l)
5: Mtmp ← RDSC_Lay_Merge(M∗, l, K)
6: s← Avg_Cos_Sim(Mtmp,M, D)
7: if s > T then
8: M∗ ←Mtmp

9: l← l − I
10: if l > Layer_Count(M∗) then
11: l←Layer_Count(M∗)−C
12: end if
13: else
14: l← l − 1
15: end if
16: end while
17: returnM∗

regarded as the continual collapse of layers onto
specific layers, hence the name Layer Collapse.

2.2 Layer Collapse

We dynamically merge adjacent layers from the
topmost layer down, ensuring the pruned model’s
output representation on few-shot calibration sam-
ples remains as similar as possible to the original
model to minimize performance loss. Algorithm 1
summarizes the workflow of Layer Collapse:
(1) Preparation

For an LLM M to be pruned, we define the
number of layers to be merged during each merg-
ing operation as C. We configure the merging to
operate within a certain range of layers, denoted as
[L,H]. As the layer merging operation inevitably
leads to a performance loss, to prevent consecutive
layer merging from causing a sharp decline in the
model performance, we set a minimum interval of
layers between two merging operations as I. Few-
shot calibration samples D, typically a few plain
sentences, are used during the pruning process. We
perform forward computations on D with both the
pruned and original models to obtain the output
representations and ensure that the similarity of
representations is not less than the threshold T .

6402

𝜽𝒍

𝜽𝒍ା𝟏

𝜽𝒍ା𝟐

𝜽𝒍ା𝓚

𝜽𝓛

𝜽𝓗

𝓜∗

𝜽𝒍 + ∆𝜽𝟏+. . . +∆𝜽𝓚

𝜽𝒍ା𝟏

𝜽𝒍ା𝟐

𝜽𝒍ା𝓚

𝜽𝓛

𝜽𝓗

𝓜𝒕𝒎𝒑

Given the model ℳ before pruning,
evaluate ℳ௧ on 𝒟

𝓚 = 𝑀𝑖𝑛(𝓒 − 1, 𝐿𝑎𝑦_𝑐𝑛𝑡(𝓜∗))

𝓜∗ = 𝓜𝒕𝒎𝒑

𝒍 = 𝑀𝑖𝑛(𝒍− , 𝐿𝑎𝑦_𝑐𝑛𝑡(𝓜∗) − 𝓒)

𝒔 = 𝐴𝑣𝑔_𝐶𝑜𝑠_𝑆𝑖𝑚(𝓜𝒕𝒎𝒑, 𝓜, 𝓓)

𝒍 = 𝒍 − 𝟏

𝒍 ≥ 𝓛 𝒍 < 𝓛

𝒔 > 𝒔 ≤

Pruned LLM
Next Iteration

Try RDSC layer merging
the following 𝓚 layers of 𝒍

RDSC Layer Merge Calculate Similarity

Merge Evaluation
and Adjustment

Figure 2: An illustration of Layer Collapse.

(2) Pruning (line 1-17)
We present an illustration of Layer Collapse in

Figure 2. We begin by initializing the modelM∗

with the modelM and set a layer pointer l to start
fromH− C. Then, the iterative process begins:

RDSC Layer Merge (line 4-5) During each iter-
ation, our approach involves merging the K layers
following layer l into layer l itself and then discard-
ing the redundant K layers, where K is the mini-
mum of C − 1 and the total layer count ofM∗ − l,
implying merging either the subsequent C − 1 lay-
ers or all layers following l, thus to prune the model
M∗, resulting in the interim modelMtmp.

Calculate Similarity (line 6) We process each
sentence in D using forward computations with
Mtmp andM to derive their representations which
are the output hidden-states of the last layer of
the model. For every sentence, we then calculate
the cosine similarity between these representations
from both models, averaging these values to obtain
the overall similarity score s.

Merge Evaluation and Adjustment (line 7-
15) Then, we evaluate s against the threshold T .
Should s exceed T , the current merge is considered
successful. Then,Mtmp is updated toM∗ for the
next iteration, and the pointer l is adjusted down-
wards by I layers. Conversely, l is simply reduced
by a single layer. It is important to highlight that
the instances may occur where l falls below the
total layer count ofM∗ after a series of successive
merges. Consequently, it is required to reset l to
the layer count inM∗ − C, as illustrated in line 11.

We iterate through the above process until l is
less than L and output the pruned LLM.

2.3 Complexity Analysis
The complexity of LaCo primarily depends on
model inference. In the worst-case scenario, with
L set to 0 and H to the total number of layers,
if in each iteration the similarity s is less than T ,
all layers will be traversed. Thus, the worst-case
time complexity is O(H× ||D||). For example, for
Llama2-13B with 40 layers and ||D|| consisting of
10 sentences, the maximum number of inference
steps would be only 400 sentences, which can be
completed within minutes on a single GPU.

3 Experiments

3.1 Models
To assess the effectiveness of the proposed LaCo,
we conduct experiments on popular English LLMs,
Llama2-7B and 13B (Touvron et al., 2023). Ad-
ditionally, we test the effectiveness on bilingual
LLMs, specifically Baichuan2-7B and 13B (Yang
et al., 2023), which support both Chinese and En-
glish. We leverage the base versions of these LLMs.
All these models are decoder-only models based
on the transformer architecture.

3.2 Benchmarks
To comprehensively evaluate the pruned model’s
capabilities, we utilized the OpenCompass eval-
uation framework (Contributors, 2023). Specifi-
cally, following OpenCompass categorization, we
conduct evaluations in five aspects: Reasoning,
Language, Knowledge, Examination and Under-
standing. We select several benchmarks from each
category. Reasoning: CMNLI (Xu et al., 2020),
HellaSwag (HeSw) (Zellers et al., 2019), PIQA

6403

(Bisk et al., 2019). Language: CHID (Zheng et al.,
2019), WSC (Levesque et al., 2012). Knowledge:
CommonSenseQA (CSQA) (Talmor et al., 2018),
BoolQ (Clark et al., 2019). Examination: MMLU
(Hendrycks et al., 2021), CMMLU (Li et al., 2023).
Understanding: Race-High/Middle (H/M) (Lai
et al., 2017), XSum (Narayan et al., 2018), C3
(Sun et al., 2020).

We conduct evaluations using official scripts
from OpenCompass, all zero-shot or few-shot,
without additional training. Two evaluation modes
are utilized: perplexity (PPL) and generation
(GEN) 2. For CHID and XSum, we use the GEN
mode. For the WSC dataset, we use both PPL
(WSCP) and GEN (WSCG) modes. The remain-
ing benchmarks are evaluated using the PPL mode.
The evaluation results on each benchmark are con-
verted to a score by OpenCompass, where a higher
score indicates better performance. OpenCom-
pass provides official evaluation results for the
Baichuan2 and Llama2 series. However, to avoid
discrepancies resulting from hardware and software
environments, as well as potential errors in official
results, we reproduce all results to ensure fairness.

3.3 Baselines

Since LaCo involves structured pruning, which di-
rectly removes components from LLMs, we se-
lect two state-of-the-art (SOTA) structured pruning
methods, LLM-Pruner (LLMPru.) (Ma et al., 2023)
and SliceGPT (Ashkboos et al., 2024), as our base-
lines. These methods have surpassed the previous
SOTA sparsity method, SparseGPT (Frantar and
Alistarh, 2023). In our experiments, we set the
pruning ratios of baselines to be equivalent to or
slightly smaller than LaCo to ensure fairness.

3.4 Settings

Since previous work mostly set pruning ratios be-
low 30%, we heuristically adjust the hyperparame-
ters to bring the model pruning ratio close to 30%,
as shown in Appendix A Table 8. We randomly se-
lect 5 sentences from both the English and Chinese
Wikipedia datasets for Baichuan2 and 10 sentences
from English Wikipedia for Llama2 as few-shot cal-
ibration samples. All experiments are conducted
on a server with 8 Nvidia A100 80GB GPUs.

2opencompass.readthedocs.io/en/latest/get_started/faq.html

3.5 Main Results

In Table 1, we present the results of four LLMs un-
der different pruning methods across various bench-
marks. “Dense” represents the official results of
the unpruned LLMs in OpenCompass leaderboards,
while “Dense∗” represents our reproduction of the
“Dense” results. "LLMPru." and "SliceGPT" corre-
spond to the two baselines, respectively. “Ratio"
refers to the overall pruning ratio, namely the pro-
portion of the total number of pruned parameters
to that of the unpruned model. “Lay.” denotes the
total number of layers in the model.

Comparing Dense and Dense∗, the results show
not much difference, with most discrepancies
within 5%. This indicates our experimental setup
is error-free. To ensure fairness, we compare the
results against Dense∗ in the subsequent analyses.

Upon comparing LaCo with the baselines, from
Table 1, it can be observed that LaCo achieves the
best results on most benchmarks, despite our prun-
ing ratio being slightly higher than the baselines.

To provide a more intuitive presentation of the
results in Table 1, we compute the average scores
of each pruner across all benchmarks (Avg.), the
average scores per category (Reas., Lan., Know.,
Exam., Unde.), and the average performance per-
centages relative to Dense∗ across all benchmarks
(Per.) in Table 2. Overall, our average scores are
significantly higher than the baselines. LaCo shows
superior performance in four out of five categories.
Though there is a slight dip in Reasoning, it re-
mains comparable. Additionally, LaCo’s average
performance percentage across all datasets, relative
to Dense∗, is far superior to the baselines. The aver-
age percentage surpasses 80% in three out of four
models, with the lowest being 73% on Baichuan2-
7B. In contrast, none of the baselines exceed 70%.

To demonstrate the stability of the pruned mod-
els by LaCo, we compute the performance percent-
age relative to Dense∗ (Appendix D.4 Table 22).
LaCo-pruned models maintain performance above
70% on most benchmarks and do not experience
crashes, with no performance dropping below 30%.

Notably, on three benchmarks evaluated through
GEN mode, CHID, XSUM, and WSCG, the LLMs
pruned by LaCo maintain relatively stable perfor-
mance, while models pruned by baselines exhibit
poorly, with even multiple results becoming 0.00.
GEN mode scores are based on the model’s gen-
erated sentences, and the models pruned by base-
lines are prone to producing meaningless repeti-

6404

LLM Pruner Ratio/Lay. Reasoning Language Knowledge Examination Understanding
CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Llama2
-7B

Dense 0%/32 34.90 74.00 78.30 46.50 - 66.30 66.50 74.90 46.80 31.80 37.50 40.20 19.70 42.80

Dense∗ 0%/32 32.98 71.35 78.18 46.04 37.50 38.46 66.67 70.67 45.92 31.86 35.51 33.15 19.68 43.78

LLMPru. 27.0%/32 34.33 56.46 71.22 25.25 36.54 0.96 42.51 55.20 23.33 25.25 22.56 22.35 11.51 25.64

SliceGPT 26.4%/32 31.70 50.27 66.21 20.79 36.54 19.23 41.36 38.32 28.92 25.37 21.07 21.66 4.89 39.78

LaCo 27.1%/23 34.43 55.69 69.80 36.14 40.38 25.00 45.70 64.07 26.45 25.24 22.61 23.61 15.64 39.67

Llama2
-13B

Dense 0%/40 41.40 77.50 79.80 53.00 - 66.30 66.70 82.40 55.00 38.40 58.90 63.00 23.40 46.10

Dense∗ 0%/40 32.99 74.83 79.71 52.97 50.96 63.46 66.91 71.50 55.63 38.74 58.03 60.24 23.56 47.51

LLMPru. 24.4%/40 33.03 67.76 76.66 35.64 40.38 0.00 50.86 56.42 25.21 24.71 22.47 22.08 19.17 32.33

SliceGPT 23.6%/40 29.82 55.71 69.04 19.31 36.54 36.54 47.26 37.86 37.14 25.79 23.41 24.03 5.27 41.92

LaCo 24.6%/30 32.86 64.39 74.27 40.10 52.88 35.58 52.66 63.98 45.93 32.62 54.49 56.55 14.45 44.93

Baic2.
-7B

Dense 0%/32 32.90 67.00 76.20 82.70 - 66.30 63.00 63.20 54.70 57.00 52.50 50.90 20.90 64.50

Dense∗ 0%/32 33.37 67.56 76.17 82.67 41.35 63.46 63.14 63.30 54.25 56.95 52.63 51.04 20.84 64.55

LLMPru. 24.2%/32 32.28 53.66 71.82 69.80 53.85 0.00 47.83 61.19 24.93 25.69 21.96 22.28 15.98 41.64

SliceGPT 22.2%/32 32.07 25.29 50.33 14.85 36.54 0.00 19.57 39.30 25.18 25.25 23.53 22.49 0.00 26.58

LaCo 24.2%/23 33.00 52.28 68.50 76.24 42.31 26.92 47.26 56.15 31.53 31.24 28.99 27.72 12.03 50.85

Baic2.
-13B

Dense 0%/40 32.70 70.80 78.10 83.20 - 63.20 65.60 67.00 59.50 61.30 67.20 68.90 25.20 65.60

Dense∗ 0%/40 33.21 71.10 78.07 83.17 41.35 63.46 65.60 67.00 58.81 61.27 67.27 68.94 24.95 65.64

LLMPru. 24.3%/40 33.80 53.57 71.82 72.77 37.50 0.00 38.82 56.54 23.19 25.18 21.17 21.61 13.67 39.89

SliceGPT 22.8%/40 32.07 25.85 51.03 10.40 36.54 0.00 18.02 37.83 22.95 25.26 21.56 21.52 0.00 24.99

LaCo 24.7%/30 33.03 60.71 68.88 76.73 44.23 60.58 55.45 62.35 51.35 53.65 56.92 57.80 12.32 61.10

"

Table 1: The main results of our experiments. Lay. is the number of model layers. Dense is the official LLM results
in OpenCompass and Dense∗ is our reproduction. LLMPru. and SliceGPT are two baseline comparisons.

tive outputs. In Appendix D.5 Table 23, we show-
case an example from the Xsum benchmark, where
Llama2-7B, pruned by baselines, produces nonsen-
sical repeated outputs, whereas our LaCo yields
outputs resembling normal sentences.

We also conduct experiments with Llama2-
70B on several benchmarks. The results in Ap-
pendix D.1 Table 19 show that LaCo still outper-
forms the baseline on larger-scale model.

In summary, LaCo is a superior pruner that pre-
serves model performance and demonstrates excep-
tional stability across various benchmarks. It relies
solely on parameter differences and additions, with-
out altering the model’s internal structure, resulting
in a concise and efficient pruning solution.

3.6 Comparison of Perplexity

Since PPL is also a commonly used metric for eval-
uating model performance, we want to compare
how LaCo differs from the baseline in maintain-
ing the model’s PPL. We evaluate the PPL of the
Llama2-7B model with 27% sparsity using differ-
ent pruners. The evaluation is performed on 500
sentences selected from Wikipedia, each with a

LLM Pruner Avg. Per. Reas. Lan. Know. Exam. Unde.

Llama2
-7B

Dense∗ 46.55 100% 60.83 40.67 68.67 38.89 33.03

LLMPru. 32.36 67.79% 54.00 20.92 48.86 24.29 20.52

SliceGPT 31.87 67.37% 49.39 25.52 39.84 27.15 21.85

LaCo 37.46 80.28% 53.30 33.84 54.89 25.85 25.38

Llama2
-13B

Dense∗ 55.50 100% 62.51 55.80 69.20 47.18 47.34

LLMPru. 36.19 65.87% 59.15 25.34 53.64 24.96 24.01

SliceGPT 34.97 61.78% 51.52 30.80 42.56 31.46 23.66

LaCo 47.55 85.21% 57.17 42.85 58.32 39.28 42.60

Baic2.
-7B

Dense∗ 56.52 100% 59.03 62.49 63.22 55.60 47.26

LLMPru. 38.78 69.65% 52.59 41.22 54.51 25.31 25.46

SliceGPT 24.36 44.27% 35.90 17.13 29.44 25.22 18.15

LaCo 41.79 73.26% 51.26 48.49 51.70 31.38 29.90

Baic2.
-13B

Dense∗ 60.70 100% 60.79 62.66 66.30 60.04 56.70

LLMPru. 36.40 60.70% 53.06 36.76 47.68 24.18 24.08

SliceGPT 23.43 40.33% 36.32 15.65 27.92 24.10 17.02

LaCo 53.94 87.94% 54.21 60.51 58.90 52.50 47.04

Table 2: The average scores and the percentages com-
parison with the Dense∗.

fixed length of 512 tokens.
The results in Table 3 show that the model

pruned by LaCo also achieves a lower PPL com-

6405

Pruner Dense LaCo LLM-Pruner SliceGPT

PPL 4.46 13.93 17.30 14.51

Table 3: PPL for different pruners.

pared to other baselines, further highlighting the
advantage of our LaCo.

3.7 Pruning Time

Pruner LaCo LLM-Pruner SliceGPT

Pruning Time 14.7s 15.9s 313s

Table 4: Pruning time for different pruners.

To verify that LaCo has lower time complexity
and faster pruning speed than the baselines, we
compare LaCo with them for 27% sparsity pruning
of Llama2-7B on a single A100 GPU. For fairness,
we only measure the main pruning process, exclud-
ing the time for loading models, loading data, and
storing models. The results in Table 4 show LaCo
pruning is more efficient compared to the baselines.

3.8 Memory Usage and Inference Speed

We also aim to investigate whether the model
pruned by LaCo offers advantages in memory us-
age and inference speed compared to the models
pruned by the baselines. In Table 5, we present the
average memory consumption and inference speed
of the Llama2-13B pruned models from Table 1 on
the English Wiki dataset (The results for all models
are in Appendix D.2 Table 20). All models are
loaded in Bf16 on a single A100 GPU.

Pruner LaCo Dense LLMPru. SliceGPT

Memory 19422 25902 19874 22506

Infer. 38.65 29.98 27.15 (↓) 35.16

Table 5: Memory usage (MB) and inference speed (to-
kens/s) of the Llama2-13B pruned by different pruners.
↓ indicates performance worse than the Dense model.

The results indicate that the LaCo-pruned mod-
els consume less memory and achieve faster infer-
ence speeds. Moreover, while existing baselines
may decrease inference speeds compared to the
dense model, LaCo does not have this issue.

4 Further Analysis

4.1 Post-training and Re-pruning

4.1.1 Post-training

Due to the inevitable performance loss caused by
pruning, we investigate whether models pruned us-
ing our LaCo can effectively inherit parameters
from the original model and quickly recover per-
formance through post-training on the full param-
eters. Specifically, we select the pruned Llama2-
7B and Baichuan2-7B models obtained through
LaCo in the main experiments and post-train them.
For training pruned Llama2-7B, we utilize approx-
imately 1.0 billion tokens from the English dataset,
while for pruned Baichuan2-7B, we employ ap-
proximately 1.25 billion tokens, with a 50% from
English and Chinese. The detailed implementation
can be found in the Appendix C.

In Figure 3, we present the loss curves. It can be
observed that both models converge rapidly during
training, with the loss showing a sharp decline af-
ter about 250 steps, then stabilizing. The pruned
Llama2-7B and Baichuan2-7B models, both ap-
proximately 5 billion parameters, exhibit final con-
vergence losses around 1.6 and 2.0, which are
quite comparable to the reported values of 1.75 for
Llama2-7B and 1.9 for Baichuan2-7B in their tech-
nical reports. The post-training of pruned Llama2-
7B and Baichuan2-7B on 4 Nvidia A100 80GB
GPUs takes approximately 28 hours and 35 hours,
respectively. Training a 5B LLM from scratch
requires at least 500 billion tokens on hundreds
of A100 GPUs for several months. However, we
achieve a loss-converged model of similar size with
only one-thousandth of their cost. This indicates
that the pruned models have effectively inherited
the parameters of the original models, enabling
them to rapidly recover performance with minimal
post-training and achieve convergence.

We also evaluate the post-trained models on
multiple benchmarks with detailed results in Ap-
pendix E Table 24. The average scores for each
category and the overall average are in Table 6.

From the tables, it is evident that the post-
training of pruned Llama2-7B significantly im-
proves its performance across various benchmarks.
However, the performance of pruned Baichuan2-
7B after post-training shows mixed results, with
some benchmarks showing improvement while oth-
ers exhibit a decrease and there is also a slight
decrease in the overall score. We speculate that

6406

0 500 1000 1500
step

1.6

1.8

2.0

2.2

2.4

lo
ss

Pruned Llama2-7B + Post training
original
smoothed

0 500 1000 1500 2000
step

2

3

4

5

6

7

8

lo
ss

Pruned Baichuan2-7B + Post training
original
smoothed

Figure 3: Loss curves for post-training.

LLM Method Avg. Reas. Lan. Know. Exam. Unde.

Llama2
-7B

Dense∗ 46.55 60.83 40.67 68.67 38.89 33.03

LaCo 37.46 53.30 33.84 54.89 25.85 25.38

LaCo
+post train 40.33 56.66 36.43 61.85 27.40 26.70

LaCo
+post train
+re prune

32.40 48.07 20.26 49.46 25.72 24.56

Baic2.
-7B

Dense∗ 56.52 59.03 62.49 63.22 55.60 47.26

LaCo 41.79 51.26 48.49 51.70 31.38 29.90

LaCo
+post train 40.46 51.67 40.82 53.97 27.98 31.28

Table 6: Average scores across all categories and the
overall average score of pruned models, post-trained
models, post-trained models followed by re-pruning.

the pre-training data of Baichuan2-7B includes a
variety of sources, resulting in a data distribution
different from that of our post-training data, hinder-
ing the effectiveness of post-training. However, the
consistent score improvement on pruned Llama2-
7B indicates that models pruned using our LaCo
indeed effectively inherit the parameters and can
regain performance through low-cost post-training.

LaCo achieves excellent performance through
post-training, prompting us to compare its effective-
ness with the SOTA LLM-Pruner on the same train-
ing data. Our results, shown in the Appendix D.3
Table 21, indicate that the model pruned by LaCo
outperforms the one pruned by LLM-Pruner after
post-training. Meanwhile, LaCo also significantly
reduces training resource consumption.

4.1.2 Re-pruning
Since it is possible to partially restore performance
using post-training on an LLM with approximately
25%-30% of its parameters pruned, it raises the
question of whether we can further prune the post-
trained model to obtain one with only around 50%
parameters while still maintaining relatively good

performance. Thus, we further prune the previously
post-trained pruned Llama2-7B model using LaCo,
resulting in a model with 17 layers, retaining 55%
of the parameters of the original Llama2-7B model.
We evaluate the re-pruned model. The detailed
results are shown in Appendix E Table 24 and the
average results are in Table 6.

The tables show that even with only 55% param-
eters, the model still retains about 70% of the orig-
inal 7B model performance. However, our train-
ing data quality and scale are limited. With more
and better training data, LaCo should demonstrate
even greater utility in the pruning+post-training+re-
pruning pipeline on larger models.

4.2 Layer-wise Similarity

This section discusses our motivation for merging
adjacent layers. Our primary motivation comes
from observing that the changes in parameters and
output representations between adjacent layers in
the LLMs are not particularly significant.

In Figure 4, we show the L2 similarities between
the SAN q, k, v matrices of each layer and their
counterparts in the subsequent layer, as well as the
upscaling and downscaling matrices of the MLP
for both Llama2-7B and Baichuan2-7B. The re-
sults indicate that the maximum L2 values between
corresponding matrices in adjacent layers are gen-
erally no more than 200. Given the large sizes of
the MLP upscaling (11008x4096) and SAN q, k, v
(4096x4096) matrices, the change in each element
between adjacent layers is minimal.

In Figure 5 (a), we randomly select 20 sentences
from Wikipedia and calculate the cosine similar-
ity between the hidden-states of adjacent layers
outputs. The results show that for both Baichuan2-
7B and Llama2-7B, the representation similarity
between adjacent layers from layers 3 to 28 is typi-
cally very close to 1. The high similarity in param-
eters and representations between adjacent layers
leads us to consider that a single layer might re-
place multiple subsequent layers.

Moreover, the similarity in parameters suggests
focusing on the differences between layers. In-
spired by previous model merging work (Yu et al.,
2023; Matena and Raffel, 2022), we come up with
collecting parameter differences between layers
and merging them into a single layer. To verify that
RDSC Layer Merge can replace multiple layers
with one, we conduct the experiment: we merge
every four consecutive layers into one within lay-

6407

0 10 20 30
Layers

80

100

120

140

160

180

200
L2

 v
al

ue
Baichuan2-7B

q
k
v
up
down

0 10 20 30
Layers

60
80

100
120
140
160
180

L2
 v

al
ue

Llama2-7B

q
k
v
up
down

Figure 4: The L2 similarity of corresponding matrices
between adjacent layers.

0 5 10 15 20 25 30
Layers

0.2
0.4
0.6
0.8
1.0

Co
sin

e
Si

m
ila

rit
y

Llama2-7B
Baichuan2-7B

(a) The cosine similarity of
output representations be-
tween adjacent layers.

10 12 14 16 18
Layers

0.9960
0.9965
0.9970
0.9975
0.9980
0.9985
0.9990
0.9995
1.0000

Co
sin

e
Si

m
ila

rit
y

Llama2-7B
Baichuan2-7B

(b) The similarity of output
representations before and
after RDSC Layer Merge.

Figure 5: The cosine similarity of layer representations.

LLM Ratio/Lay. Avg. Reas. Lan. Know. Exam. Unde.

Llama2
-7B

0%/32 46.55 60.83 40.67 68.67 38.89 33.03

12.0%/28 36.13 44.46 36.31 56.35 26.34 24.54

27.1%/23 37.46 53.30 33.84 54.89 25.85 25.38

45.0%/17 30.00 43.66 19.27 48.06 24.78 21.44

Llama2
-13B

0%/40 55.50 62.51 55.80 69.20 47.18 47.34

14.6%/34 53.89 60.56 54.51 63.58 46.10 47.46

24.7%/30 47.55 57.17 42.85 58.32 39.28 42.60

49.7%/20 38.27 48.20 26.89 49.26 32.82 36.58

Table 7: Model performance at different pruning ratios.

ers 10 to 19 and evaluate the cosine similarity be-
tween the merged layer’s output and the original
last layer’s output, as in Figure 5 (b), where the low-
est cosine similarity on the 4096-dimensional vec-
tors is above 0.996, confirming the effectiveness of
RDSC Layer Merge in preserving representations.

4.3 Varying Pruning Ratio

In this section, we explore the performance of LaCo
at different pruning ratios. We conduct experiments
on Llama2-7B and Llama2-13B, controlling the
pruning ratios at approximately 10%, 25% (our
main experiments), and around 50% by setting dif-
ferent hyperparameters (as shown in Appendix A

Table 9)3. We evaluate pruned models accordingly.
The average results are shown in Table 7 and the
detailed results are shown in Appendix E Table 25.

As the pruning ratio increases, overall model
performance decreases. However, from a pruning
ratio of around 10-15% to about 25%, the perfor-
mance does not significantly decline, indicating our
method’s stability within this range. Furthermore,
at a pruning ratio close to 50%, the model still main-
tains approximately 70% performance, demonstrat-
ing that our method prevents model crashes even
with about half of the parameters removed.

5 Related Work

Model Quantization reduces model size by con-
verting weights from high-precision floating points
to lower-precision floating points or integers.
SmoothQuant (Xiao et al., 2023) quantizes both
weights and activations while smoothing activation
outliers. GPTQ (Frantar et al., 2022) uses approx-
imate second-order information for quantization.
QLoRA (Dettmers et al., 2023a) backpropagates
gradients through a frozen, 4-bit quantized model
into Low Rank Adapters. OmniQuant (Shao et al.,
2023) optimizes various quantization parameters.

Knowledge Distillation transfers knowledge
from a large model to a smaller one. Distilling
step-by-step (Hsieh et al., 2023) trains smaller
models that outperform LLMs. DISCO (Chen
et al., 2023) distills counterfactual knowledge from
LLMs. SOCRATIC COT (Shridhar et al., 2023)
distills the ability of Chain-of-Thought from LLMs.
ZEPHYR (Tunstall et al., 2023) applies distilled di-
rect preference optimization to learn a chat model.

Model Pruning refers to techniques for im-
proving model efficiency by sparsification or pa-
rameter removal. Non-structured pruning often
involves model sparsity. SparseGPT (Frantar
and Alistarh, 2023) reduces the pruning prob-
lem to large-scale instances of sparse regression,
while SpQR (Dettmers et al., 2023b) identifies
and isolates outlier weights during LLM sparsi-
fication. Structured pruning primarily removes
parts of model modules. LLM-Pruner (Ma et al.,
2023) selectively eliminates non-critical structures
based on gradient information. DirectShare (Cao
et al., 2024) uses activation sharing methods to
improve LLM inference efficiency. ShearedL-

3Further ablation study on the hyperparameters C, I, D,
T , different similarity metrics, different merging strategies,
different calibration datasets can be found in Appendix B.

6408

LaMA (Xia et al., 2023) uses targeted struc-
tured pruning and dynamic batch loading to prune
Llama2. FLAP (An et al., 2024) assesses the re-
coverability of the output feature map after weight
removal using the fluctuation pruning metric and
standardizes importance scores to adaptively de-
fine the global compressed model structure. Short-
ened LLaMA (Kim et al., 2024) demonstrates that
depth pruning can efficiently compress LLMs while
matching or surpassing the performance of recent
width pruning methods.

However, model quantization and sparsification
typically require special hardware and usually im-
pact performance. Knowledge distillation is costly
and task-specific. Existing structured pruning meth-
ods often disrupt the model inherent structure.
In contrast, LaCo maintains the model structure,
which is more concise and preserves excellent per-
formance. Although some existing works (Din
et al., 2023; Fan et al., 2019; Belrose et al., 2023)
have utilized layer-skipping/dropping to accelerate
inference, LaCo is fundamentally different. It is the
first pruner based on layer collapse, resulting in a
smaller, faster, more memory-efficient model with
strong performance. Furthermore, those methods
typically require training new parameters to deter-
mine which layers to skip/drop during inference,
whereas LaCo does not require any training.

6 Conclusion

In this paper, we propose a concise layer-wise
structured pruning method called Layer Collapse
(LaCo), which merges rear model layers into pre-
ceding layers for rapid model size reduction. LaCo
does not require special hardware support and pre-
serves the model’s intrinsic structure. Experimental
results show that LaCo significantly outperforms
current SOTA structured pruning methods, also re-
vealing potential parameter redundancy in existing
LLMs. We conduct ablation studies on various
settings of LaCo. We also post-train the pruned
models, confirming that LaCo effectively inher-
its the original model parameters. Additionally,
we discuss our motivation from the perspective of
layer-wise similarity and explore the performance
of LaCo-pruned models at different pruning ratios.

Limitations

Due to LaCo’s pruning process primarily relying on
layer-wise iterations, it cannot directly control the
pruning ratio like previous methods. Instead, it re-

quires tuning hyperparameters such as the represen-
tation similarity threshold T for control. In future
work, we will summarize additional experimental
patterns regarding how to set hyperparameters to
achieve a specific pruning ratio.

Our motivation comes from current model merg-
ing techniques, but like existing baselines (LLM-
Pruner (Ma et al., 2023) and SliceGPT (Ashkboos
et al., 2024)), our method lacks a complete theoret-
ical proof. We consider this as future work.

Additionally, there may be better merging meth-
ods, even though our experimental results demon-
strate that LaCo’s current merging approach is ef-
fective. We will continue to search for improved
layer merging methods in the future.

References
Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao

Wang. 2024. Fluctuation-based adaptive structured
pruning for large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 10865–10873.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-
nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piqa: Reasoning about
physical commonsense in natural language.

Zouying Cao, Yifei Yang, and Hai Zhao. 2024. Head-
wise shareable attention for large language models.
arXiv preprint arXiv:2402.11819.

Zeming Chen, Qiyue Gao, Antoine Bosselut, Ashish
Sabharwal, and Kyle Richardson. 2023. Disco: dis-
tilling counterfactuals with large language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5514–5528.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

6409

http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. arXiv preprint
arXiv:2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023a. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Al-
istarh. 2023b. Spqr: A sparse-quantized representa-
tion for near-lossless llm weight compression. arXiv
preprint arXiv:2306.03078.

Alexander Yom Din, Taelin Karidi, Leshem Choshen,
and Mor Geva. 2023. Jump to conclusions: Short-
cutting transformers with linear transformations.
arXiv preprint arXiv:2303.09435.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323–10337. PMLR.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened llama: A simple depth
pruning for large language models. arXiv preprint
arXiv:2402.02834.

Sosuke Kobayashi. 2018. Homemade bookcorpus.
https://github.com/soskek/bookcorpus.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International
conference on machine learning, pages 3519–3529.
PMLR.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv:1704.04683.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023. Cmmlu: Measuring massive multitask
language understanding in chinese.

Chang Liu, Chongyang Tao, Jiazhan Feng, and Dongyan
Zhao. 2022. Multi-granularity structural knowledge
distillation for language model compression. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1001–1011.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. arXiv preprint arXiv:2305.11627.

Michael S Matena and Colin A Raffel. 2022. Merging
models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–
17716.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2023. Omniquant:
Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2023. Distilling reasoning capabilities into
smaller language models. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
7059–7073.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2020.
Investigating prior knowledge for challenging chi-
nese machine reading comprehension. Transactions
of the Association for Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di-
rect distillation of lm alignment. arXiv preprint
arXiv:2310.16944.

6410

https://github.com/soskek/bookcorpus
http://arxiv.org/abs/2306.09212
http://arxiv.org/abs/2306.09212
http://arxiv.org/abs/1808.08745
http://arxiv.org/abs/1808.08745
http://arxiv.org/abs/1808.08745
https://arxiv.org/abs/1904.09679v3
https://arxiv.org/abs/1904.09679v3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2023. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv
preprint arXiv:2310.06694.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie
Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. 2020. Clue: A chinese language
understanding evaluation benchmark. arXiv preprint
arXiv:2004.05986.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, et al. 2023. Baichuan 2: Open large-scale
language models. arXiv preprint arXiv:2309.10305.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168–
27183.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2023. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
arXiv preprint arXiv:2311.03099.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence?

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander
Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. 2022. Platon: Pruning large transformer mod-
els with upper confidence bound of weight impor-
tance. In International Conference on Machine
Learning, pages 26809–26823. PMLR.

Chujie Zheng, Minlie Huang, and Aixin Sun. 2019.
ChID: A large-scale Chinese IDiom dataset for cloze
test. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
778–787, Florence, Italy. Association for Computa-
tional Linguistics.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, and Yongqiang Ma. 2024. Llamafac-
tory: Unified efficient fine-tuning of 100+ language
models. arXiv preprint arXiv:2403.13372.

6411

http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
https://doi.org/10.18653/v1/P19-1075
https://doi.org/10.18653/v1/P19-1075
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

A Hyperparameter Settings

LLM C L H I T
Llama2-7B 4 1 32 2 0.65

Llama2-13B 6 1 40 2 0.75

Baichuan2-7B 4 1 32 2 0.70

Llama2-13B 6 1 40 2 0.70

Table 8: Hyperparameter settings for main results.

LLM (Ratio/Lay.) C L H I T
Llama2-7B (12.0%/28) 5 1 32 2 0.85
Llama2-7B (27.1%/23) 4 1 32 2 0.65
Llama2-7B (45.0%/17) 6 1 32 2 0.45

Llama2-13B (14.6%/34) 7 1 40 2 0.85
Llama2-13B (24.7%/30) 6 1 40 2 0.75
Llama2-13B (49.7%/20) 7 1 40 2 0.45

Table 9: Hyperparameters for varying pruning ratios.

B Ablation Study

B.1 Impact of Number of Layers Merged per
Operation C

We conduct an ablation study on the number of
layers to be merged during each merging operation
C, as it is one of the key parameters that control
the compression rate. The results are shown in
Table 10, where the experiment is based on the
Llama2-7b with a 27% compression rate.

BoolQ PIQA HeSw

C = 1 (Result in Table 15) 52.57 68.17 48.61

C = 2 63.12 68.93 54.98

C = 3 63.98 69.71 55.34

C = 4 (Result in Table 1) 64.07 69.80 55.69

C = 5 64.15 70.02 55.76

C = 6 64.00 69.89 55.49

Table 10: Ablation study on C.

When C is too small, the model’s performance
degrades. When C is between 3 and 6, the perfor-
mance remains relatively good. If C is too large,
it causes the cosine similarity of the hidden-states
to drop quickly below the threshold, stopping the
pruning loop prematurely and resulting in a lower
compression rate. Therefore, we recommend set-
ting C between 4 and 7.

B.2 Impact of Minimum Interval I
To explore the impact of different values of I, we
also conduct an ablation study. The experiment is
based on the Llama2-7b model with a 27% sparsity.
The results are shown in Table 11.

BoolQ PIQA HeSw

I = 1 63.99 68.90 55.79

I = 2 (Result in Table 1) 64.07 69.80 55.69

I = 3 64.05 69.57 55.48

I = 4 62.29 68.92 54.87

Table 11: Ablation study on I.

The results indicate that the model performs well
when I is between 1 and 3. However, when I is set
to 4, the model’s performance declines. This obser-
vation aligns with our empirical findings: modify-
ing the parameters of layers closer to the input end
(such as layers 1-12) can lead to performance drops.
Setting I to 4 causes the merge operations to oc-
cur closer to the input end. Therefore, we choose
I = 2, as it relatively maintains better model per-
formance.

B.3 Impact of Dataset D
To understand the impact of different datasets D
on LaCo’s effectiveness, we conduct an ablation
study using Llama2-7B. We perform three rounds
of pruning, each time selecting different sets of 10
sentences as D, with a 27% compression ratio to
match Table 1. The results are shown in Table 12.

BoolQ PIQA HeSw

Result in Table 1 64.07 69.80 55.69

Round1 64.50 70.28 56.14
Round2 63.70 69.14 54.92
Round3 63.90 69.66 55.18

Table 12: Ablation study on D, where the model is
Llama2-7B with compression ratio of 27%.

We can find that the results are all on nearly the
same scale, indicating that the random selection of
sentences inD has no notable impact on the results.

B.4 Impact of Threshold T
We also aim to understand the impact of threshold
T on the model pruned by LaCo. For the results of
Llama2-7B in Table 1, we keep other parameters
unchanged and set T to 0.85, 0.45, and 0.25 (T =
0.65 corresponds to the results in Table 1). We

6412

evaluate the pruned models on several datasets. The
results, shown in Table 13, indicate that a smaller
threshold leads to a larger compression ratio and
poorer performance, which aligns with intuition.

Ratio/Layer BoolQ PIQA HeSw

T = 0.65 27.1%/23 64.07 69.80 55.69

T = 0.85 9.0%/29 70.92 76.01 68.15
T = 0.45 48.0%/16 59.82 60.34 36.09
T = 0.25 60.1%/12 41.68 51.74 26.37

Table 13: Ablation study on T . The model is Llama2-
7B. T = 0.65 corresponds to the results in Table 1.

B.5 Different Similarity Metrics

we use the cosine similarity of the representations
from the final layer outputs as a metric for LaCo.
We also aim to explore the feasibility of using com-
mon distribution distances as metrics, such as KL
divergence and kernel/linear CKA (Centered Ker-
nel Alignment (Kornblith et al., 2019)). Specifi-
cally, we replace cosine similarity with distribution
distances to measure the difference in representa-
tions. However, we find that the distribution dis-
tances almost remain constant, as in Table 14.

KL Divergence Kernel CKA Linear CKA

Constant 0.00 1.00 1.00

Table 14: The distribution distances of model output
representations.

KL Divergence being nearly 0 and CKA being
nearly 1 indicate minimal differences in the distri-
butions of the final layer outputs. This suggests that
the LaCo merging process does not significantly
alter the model output. Additionally, due to the
high dimensionality of the representations, the dis-
tribution distances tend to be constant, resulting in
a lack of discrimination. Therefore, we chose the
more discriminative cosine similarity.

B.6 Drop or Merge

As shown in Eq. 1, LaCo merges multiple adjacent
layers into one. This leads us to consider an ex-
treme case: if we set m = 1, LaCo will no longer
merge layers but simply drop a layer. We also aim
to explore the performance differences between the
drop and merge operations in LaCo. Thus, we con-
duct an experiment with m = 1 on Llama2-7B,
setting the compression rate to the same 27% as

in Table 1. The results on some benchmarks are
shown in Table 15.

BoolQ PIQA HeSw

Drop 52.57 68.17 48.61

Mege (Result in Table 1) 64.07 69.80 55.69

Table 15: Results of the drop or merge operation.

The results indicate that the drop operation is
not as effective as the merge operation and m = 1
is not a good hyperparameter setting. The merge
operation aligns better with our intention.

B.7 Iterative-based or Rule-based Merge

LLM Strategy BoolQ PIQA HeSw

Llama2-7B Rule 63.49 68.72 53.16

LaCo 64.07 69.80 55.69

Baichuan2-7B Rule 52.94 67.28 48.78

LaCo 56.15 68.50 52.28

Table 16: The results of using rule-based merging and
LaCo iterative merging.

We want to determine if our iterative search-
based merging strategy is superior to rule-based
merging. To test this, we perform rule-based merg-
ing on Llama2-7B and Baichuan2-7B, both with 32
layers. We merge layers in groups of four, starting
from the top, specifically merging layers (29, 30,
31, 32), (21, 22, 23, 24), and (13, 14, 15, 16). We
avoid merging before the 16th layer due to signif-
icant performance drops observed in those cases.
The resulting models achieved compression rates
equivalent to those in Table 1. The results in Ta-
ble 16 indicate that LaCo performs better than the
rule-based approach. Notably, even simple rule-
based merging can outperform baselines across
multiple datasets, demonstrating the potential of
merging for model compression.

B.8 Effect of Calibration Dataset from
Different Sources

We explore whether calibration datasets from dif-
ferent sources will affect the performance.

Specifically, we select 10 sentences from the
BookCorpus (Kobayashi, 2018) dataset used by
LLM-Pruner as the calibration dataset. We prune
Llama2-7B at a 27% compression rate and evalu-
ate the results on several datasets. We repeat the
experiments three times.

6413

BoolQ PIQA HeSw

Wikipedia 64.07 69.80 55.69

BookCorpus-Round1 64.15 69.60 55.87

BookCorpus-Round2 63.80 69.45 55.61

BookCorpus-Round3 64.30 70.08 55.98

Table 17: Results of calibration datasets from different
sources.

The results in Table 17 are at the same level as
those in our paper. This demonstrates that, given
high-quality corpora, different calibration datasets
have little impact on the performance of the models
pruned with LaCo at the same compression rate.

B.9 Effect of Calibration Dataset Size
We want to explore how the size of the calibration
dataset affects the performance of LaCo. Specifi-
cally, we take 5, 10, 50, 100, and 200 samples from
Wikipedia and prune Llama2-7B at a 27% compres-
sion rate. The results are shown in the Table 18,
and it can be seen that the size of the calibration
dataset has little impact on the results.

BoolQ PIQA HeSw

Result in Table 1 (10 samples) 64.07 69.80 55.69

5 samples 63.89 69.74 55.54

50 samples 64.10 69.69 55.81

100 samples 64.25 69.81 55.59

200 samples 63.98 69.92 55.62

Table 18: Results of different calibration dataset size.

Therefore, we chose a small calibration dataset
to ensure both the pruning effect and the pruning
speed. The size of our calibration dataset is the
same as that used by the LLM-Pruner, which is 10
samples.

C Post-Training Implementation Details

We use the LLaMA-Factory (Zheng et al., 2024)
framework along with DeepSpeed ZeRO-2. The
sequence length is set to 4096, following the default
settings for Llama2-7B and Baichuan2-7B. We use
the Adam optimizer with a learning rate of 2e-4,
setting β1 = 0.9 and β2 = 0.95. The batch size
is 8 per GPU, resulting in a total batch size of
32, with gradient accumulation steps set to 4. We
employ a cosine learning rate scheduler, apply a
weight decay of 0.1, and set the maximum gradient
normalization to 1.0.

D Supplementary Results (Part 1)

D.1 Results on Llama2-70B

We supplement the results using Llama2-70B with
a compression rate set to 30%. We conduct experi-
ments on CMNLI, HeSw, PIQA, and BoolQ, and
Table 19 presents the average results.

Pruner Dense LaCo LLM-Pruner SliceGPT

Average 65.92 57.91 53.78 51.36

Table 19: The average scores on several benchmarks
using different pruners with a 30% compression rate on
Llama2-70B.

The results demonstrate that our method can also
scale up effectively. It performs better than the
baselines even on the 70B model.

D.2 Memory Consumption and Inference
Speed

LLM Pruner Memory (MB) Infer. (tokens/s)

Llama2
-7B

Dense 13410 38.53

LLMPru. 10434 33.22 (↓)

SliceGPT 11770 44.88

LaCo 9894 50.80

Llama2
-13B

Dense 25902 29.98

LLMPru. 19874 27.15 (↓)

SliceGPT 22506 35.16

LaCo 19422 38.65

Baic2.
-7B

Dense 14810 37.13

LLMPru. 11898 38.95 (↓)

SliceGPT 13586 36.67

LaCo 11716 49.15

Baic2.
-13B

Dense 27410 36.93

LLMPru. 22390 31.61 (↓)

SliceGPT 23956 29.35 (↓)

LaCo 21010 47.46

Table 20: The memory consumption and average infer-
ence speed on English Wikipedia dataset for different
pruned models. ↓ means the performance worse than
the Dense model.

D.3 Comparison of Post-trained Pruned
Models

We prune Llama2-7B to 55% sparsity using LaCo
and LLM-Pruner, then conduct post-training with

6414

GPU*hour BoolQ PIQA HeSw

LaCo 88 60.26 65.01 45.49

LLM-Pru. 216 58.75 61.26 43.53

Table 21: Results on different datasets for models
pruned to 55% sparsity using LaCo and LLM-Pruner on
Llama2-7B, followed by post-training on the same data.

the same data in Table 6. The results in Table 21
show that LaCo performs better. Additionally, train-
ing the model pruned by LLM-Pruner requires 216
GPU*hours (27 hours on 8 A100 GPUs), while
only 88 GPU*hours (22 hours on 4 A100 GPUs)
for LaCo-pruned model. Thus, LaCo saves more
computational resources for post-training.

D.4 Performance Percentage for Main Results

6415

LLM Pruner Ratio/Lay. Reasoning(%) Language(%) Knowledge(%) Examination(%) Understanding(%)
CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Llama2
-7B

Dense∗ 0%/32 100 100 100 100 100 100 100 100 100 100 100 100 100 100

LLMPru. 27.0%/32 104.09 79.13 91.10 54.84 97.44 2.50 63.76 78.11 50.81 79.25 63.53 67.42 58.49 58.57

SliceGPT 26.4%/32 96.12 70.46 84.69 45.16 97.44 50.00 62.04 54.22 62.98 79.63 59.34 65.34 24.85 90.86

LaCo 27.1%/23 104.40 78.05 89.28 78.50 107.68 65.00 68.55 90.66 57.60 79.22 63.67 71.22 79.47 90.61

Llama2
-13B

Dense∗ 0%/40 100 100 100 100 100 100 100 100 100 100 100 100 100 100

LLMPru. 24.4%/40 100.12 90.55 96.17 67.28 79.24 0.00 76.01 78.91 45.32 63.78 38.72 36.65 81.37 68.05

SliceGPT 23.6%/40 90.39 74.45 86.61 36.45 71.70 57.58 70.63 52.95 66.76 66.57 40.34 39.89 22.37 88.23

LaCo 24.6%/30 99.61 86.05 93.18 75.70 103.77 56.07 78.70 89.48 82.56 84.20 93.90 93.87 61.33 94.57

Baic2.
-7B

Dense∗ 0%/32 100 100 100 100 100 100 100 100 100 100 100 100 100 100

LLMPru. 24.2%/32 96.73 79.43 94.29 84.43 130.23 0.00 75.75 96.67 45.95 45.11 41.73 43.65 76.68 64.51

SliceGPT 22.2%/32 96.10 37.43 66.08 17.96 88.37 0.00 30.99 62.09 46.41 44.34 44.71 44.06 0.00 41.18

LaCo 24.2%/23 98.89 77.38 89.93 92.22 102.32 42.42 74.85 88.70 58.12 54.86 55.08 54.31 57.73 78.78

Baic2.
-13B

Dense∗ 0%/40 100 100 100 100 100 100 100 100 100 100 100 100 100 100

LLMPru. 24.3%/40 101.78 75.34 91.99 87.50 90.69 0.00 59.18 84.39 39.43 41.10 31.47 31.35 54.79 60.77

SliceGPT 22.8%/40 96.57 36.36 65.36 12.50 88.37 0.00 27.47 56.46 39.02 41.23 32.05 31.22 0.00 38.07

LaCo 24.7%/30 99.46 85.39 88.23 92.26 106.96 95.46 84.53 93.06 87.32 87.56 84.61 83.84 49.38 93.08

Table 22: The percentage of each model’s score on each benchmark relative to the score of Dense∗ in the main
results. Models pruned by LaCo maintain performance above 70% on most benchmarks and avoid crashes, with no
performance falling below 30%.

D.5 Examples of Responses

Prompt Document: The 18-year-old scored 88.40 to make
history in what was the fifth and the final stop
of the World Cup season.\nShe came ahead of
Sweden’s Emma Dahlstrom and Swiss Mathilde
Gremaud.\nBoston-born Atkin, who initially com-
peted for the US before switching to Great Britain
aged 15, was making her 15th appearance at a
World Cup event.\nAtkin will be competing at the
Freestyle World Championships in Sierra Nevada,
Spain (9-19 March). The event will be live on
the BBC Sport website, app, connected TV and
red button.\nBased on the previous text, provide a
brief single summary:

Pruner Generated Responses
LLMPru. \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n

SliceGPT of the 19900s of the 1900s of the 1900s of the
1900s.

LaCo Boston-born Atkin, who initially competed for
the US before switching to Britain aged 15, was
making her 15th appearance at a World Cup
event.\nThe 18-year-old scored 88.40 to make his-
tory in what was the fifth and the final stop of the
World Cup season.

Table 23: A response on the Xsum benchmark from
Llama2-7B after pruning with different pruners. In this
case, the models pruned by the baseline pruners generate
repetitive and meaningless text, while only LaCo is able
to smoothly respond with meaningful text according to
the instructions.

E Supplementary Results (Part 2)

6416

LLM Method Reasoning Language Knowledge Examination Understanding
CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Llama2
-7B

Dense∗ 32.98 71.35 78.18 46.04 37.50 38.46 66.67 70.67 45.92 31.86 35.51 33.15 19.68 43.78

LaCo 34.43 55.69 69.80 36.14 40.38 25.00 45.70 64.07 26.45 25.24 22.61 23.61 15.64 39.67

LaCo
+post train 34.92 61.88 73.18 38.12 36.54 34.62 57.49 66.21 29.47 25.33 28.33 29.87 10.02 38.58

LaCo
+post train
+re prune

33.80 45.35 65.07 23.27 36.54 0.96 38.49 60.43 26.07 25.37 23.07 22.98 15.48 36.71

Baichuan2
-7B

Dense∗ 33.37 67.56 76.17 82.67 41.35 63.46 63.14 63.30 54.25 56.95 52.63 51.04 20.84 64.55

LaCo 33.00 52.28 68.50 76.24 42.31 26.92 47.26 56.15 31.53 31.24 28.99 27.72 12.03 50.85

LaCo
+post train 32.92 52.67 69.42 78.22 40.38 3.85 52.01 55.93 28.72 27.25 25.01 26.25 15.82 58.03

Table 24: The detailed scores across all benchmarks of pruned models, post-trained models, as well as post-trained
models followed by re-pruning.

LLM Ratio/Lay. Reasoning Language Knowledge Examination Understanding
CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Llama2
-7B

0%/32 32.98 71.35 78.18 46.04 37.50 38.46 66.67 70.67 45.92 31.86 35.51 33.15 19.68 43.78

12.0%/28 32.99 55.91 74.48 42.57 36.54 29.81 52.58 60.12 25.59 27.10 22.01 21.73 17.97 36.44

27.1%/23 34.43 55.69 69.80 36.14 40.38 25.00 45.70 64.07 26.45 25.24 22.61 23.61 15.64 39.67

45.0%/17 32.58 38.33 60.07 20.30 36.54 0.96 34.73 61.38 23.98 25.59 22.38 23.26 1.28 38.85

Llama2
-13B

0%/40 32.99 74.83 79.71 52.97 50.96 63.46 66.91 71.50 55.63 38.74 58.03 60.24 23.56 47.51

14.6%/34 32.99 71.88 76.82 51.98 63.46 48.08 63.72 63.43 53.97 38.23 59.35 61.49 21.32 47.67

24.7%/30 32.86 64.39 74.27 40.10 52.88 35.58 52.66 63.98 45.93 32.62 54.49 56.55 14.45 44.93

49.7%/20 34.22 46.55 63.82 13.37 56.73 10.58 36.28 62.23 38.41 27.24 51.97 56.41 1.56 36.38

Table 25: The detailed results of models pruned at different pruning ratios using LaCo across all benchmarks. As the
pruning ratio increases, overall model performance decreases. However, performance remains stable from 10-25%
pruning. Even at 50% pruning, the model can maintain about 70% performance.

6417

