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Abstract

Social media data exhibits severe redundancy
caused by its noisy nature. It leads to increased
training time and model bias in its processing.
To address this issue, we propose a novel Gener-
ative Deduplication framework for social media
data selection by removing semantically dupli-
cate data. While related work involves data se-
lection in task-specific training, our model acts
as an efficient pre-processing method to uni-
versally enhance social media NLP pipelines.
Specifically, we train a generative model via
self-supervised learning to predict a keyword
to capture the semantics of noisy social me-
dia text for deduplication. Meanwhile, time-
dimensional Gaussian noise is added to im-
prove training complexity and avoid learning
trivial features. Extensive experiments suggest
that our model can better reduce training sam-
ples while improving performance than base-
lines. The results show our model’s potential
to broadly advance social media language un-
derstanding in effectiveness and efficiency. 1

1 Introduction

Social media is an abundant resource with vast real-
time user-generated content, providing valuable
insights into the world and society. It has bene-
fited various applications, such as stance detection
(Glandt et al., 2021) and content recommendation
(Zeng et al., 2020), taken advantage of cutting-edge
NLP practices. However, a common challenge
NLP models may face is the severe redundancy of
social media data (Tao et al., 2013) caused by its
noisy nature (Zhang et al., 2023). Here, we define
redundancy as semantically similar content that
leads to information overload and model bias.

The redundant data not only increases the train-
ing cost of a model (in time and resources) but also
results in the redundancy bias adversely affecting

∗Corresponding author
1Code is available at: https://github.com/4AI/

generative_deduplication.
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Figure 1: An redundancy example on TweetEval (Bar-
bieri et al., 2020) sentiment analysis. The green trees
denote training costs. The duplicated tweets biased the
models to connect “pumpkin” to “neutral” sentiment.

its performance (Lee et al., 2022). To illustrate this
point, we show some TweetEval examples in Fig-
ure 1. The duplicated tweets containing “pumpkin”
and “neutral” sentiment labels bias the model to
connect “pumpkin” to “neutral wrongly” sentiment,
meanwhile rendering unnecessary training costs.

To tackle the redundancy problem, we explore
the solution from data selection (Liu et al., 2019a;
Paul et al., 2021; Lee et al., 2022; Xie et al., 2023).
The goal is to select a subset of relevant data from
a larger dataset to benefit the model training. It
has profoundly affected the performance of large
language model pretraining (Xie et al., 2023) and
its downstream task finetuning (Yu et al., 2023).

In data selection, most work focuses on how
to find useful data via augmentation or retrieval
for “data addition” (Axelrod et al., 2011; Ruder
et al., 2017; Liu et al., 2019a; Xie et al., 2023). In
contrast, others center on “data deduplication” to
remove semantically duplicated data and show its
positive effects in pretraining (Lee et al., 2022).

Our work aligns with the “deduplication” line.
Previous work has shown its help in social media
NLP, such as shingles (Broder, 1997) and simhash
(Manku et al., 2007). However, these efforts rely
on surface linguistic features rather than semantics.
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While textual semantic similarity models (Reimers
and Gurevych, 2019; Gao et al., 2021; Li and Li,
2023) can be easily applied to the deduplication,
the pairwise comparison would render high com-
plexity. Moreover, our work differs from existing
efforts (Xia et al., 2024) to engage data selection in
task-specific training. Instead, we aim to provide a
pre-processing method for social media data, which
can be easily plugged into various NLP pipelines.

To that end, we propose a novel semantic dedu-
plication approach, Generative Deduplication, for
social media data selection. Specifically, we adopt
a generative model as the generative backbone and
train it with a self-supervised task to generate a key-
word from the input text. Here, we train the gener-
ative backbone for only one epoch. Duplicate text
undergoes multiple optimizations, enabling more
accurate keyword prediction than non-duplicate
text with a single optimization. Moreover, we im-
prove the training difficulty with Time-dimensional
Gaussian Noise (TGN) to prevent trivial feature
learning in one epoch, limiting keyword predic-
tion for non-duplicates. Hence, we can consider
samples with correct keyword prediction as dupli-
cations and remove them. This way, we allow a
computational complexity of O(n), where n is the
data size, and avoid pairwise comparison.

To the best of our knowledge, we are the first to
propose Generative Deduplication for social media
data selection and study its broad impact on down-
stream social media language understanding.

In experiments, the deduplication experiment
indicates that our model enables the best data qual-
ity with less training time. Then, the results on
the TweetEval benchmark show that our selected
data allows performance gains with much shorter
training time on varying downstream models and
tasks. For example, for LLaMA on sentiment anal-
ysis, our model reduces the training set (50.9%)
and training time (42.9%) yet improves the macro
recall from 73.0 to 73.5. Next, the ablation study
shows the positive contributions of varying mod-
ules. The general short text classification experi-
ments suggest that our method also benefits general
scenarios. Lastly, we interpret our model’s superi-
ority with more analyses.

In summary, our contributions are as follows:
• We explore the redundancy issue in social me-

dia data and disclose its effects on biasing models.
• We propose a novel generative deduplication

model to shortlist data and tackle redundancy bias.
• Extensive experiments reveal generative dedu-

plication can help reduce redundancy and broadly
improve social media language understanding.

2 Related Work

The proposed Generative Deduplication is in line
with data selection. It is an essential technique
for selecting helpful data to benefit the training of
downstream tasks. Many previous studies center on
domain adaptation (Moore and Lewis, 2010; Feng
et al., 2022; Xie et al., 2023), where they selected
data that aligns with the target distribution from
vast data, aiming to improve performance in spe-
cific domains. More recently, deep learning tech-
niques (Coleman et al., 2020; Mindermann et al.,
2022) have been used for better data selection.

Given recent language model advances, some
work, such as (Yao et al., 2022; Schoch et al., 2023),
explored retrieval and augmentation to “select and
add” relevant data from external resources for task-
specific training. However, prior work observed
these practices may result in a significant amount
of duplicate data, which introduces redundancy
(Xie et al., 2023) and adversely affects performance
(Hernandez et al., 2022). To mitigate this redun-
dancy issue, deduplication (Tirumala et al., 2023)
can be applied to shortlist duplicate data to allow
more effective and efficient training.

Our work aims to adopt deduplication to address
redundancy bias (Tao et al., 2013; Zhang et al.,
2023) in social media data. However, existing
deduplication methods (Broder, 1997; Manku et al.,
2007; Hajishirzi et al., 2010) mainly rely on surface
linguistic features, unable to handle semantic-level
duplication prevalent in noisy social media data.
Meanwhile, directly applying models based on tex-
tual semantic similarity (Reimers and Gurevych,
2019; Li and Li, 2023, 2024b) may involve pair-
wise comparison and result in high deduplication
cost. In addition, existing methods engage data
selection in end-to-end task-specific training (Xia
et al., 2024). In contrast, our work focuses on data
selection for pre-processing, which can be seam-
lessly integrated into various NLP pipelines.

3 Generative Deduplication

This section will elaborate on the proposed gen-
erative deduplication with an overall framework
in Figure 2. We will first introduce the problem
formulation in Section 3.1. Then, we describe the
generative training in Section 3.2, followed by the
inference as the deduplication stage in Section 3.3.
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Figure 2: The generic framework of the proposed generative deduplication (GD). It includes two parts. 1) The
left part shows the detailed GD process. In the self-supervised training stage, the model encodes input text and
learns to generate the corresponding keyword. The Time-dimensional Gaussian Noise (TGN) will be applied to
increase training difficulties and avoid trivial feature learning in the training stage. In the inference as deduplication
stage, text with correct keyword prediction is identified as a duplicate. 2) The right part depicts the downstream
applications. First, the training set is deduplicated using GD. Then, the deduplicated training set is used for training
and inference. By doing so, It can reduce training samples and resource consumption while improving accuracy.

3.1 Problem Formulation

Given a corpus C consisting of n texts, {t1, ..., tn},
generative deduplication aims to identify semanti-
cally duplicate texts using generative models. The
identified duplicate texts are then removed, form-
ing a smaller corpus SC comprising m texts, where
m ≤ n. To achieve this, two stages are involved:
generative training and inference. We will discuss
them in subsequent sections.

3.2 Generative Training

The generative deduplication involves two impor-
tant designs: generative self-supervised training
to predict keywords and adding time-dimensional
Gaussian noise to increase training difficulty.

Generative Self-supervised Training. We em-
ploy a novel self-supervised learning task of key-
word generation for social media texts. We are
motivated by the noisy nature of social media data,
and the inherent data sparsity can limit the explicit
indicators of semantic similarity (Zeng et al., 2018).
Keywords as condensed post-level representations
can bridge the gap and enable better exploration of
semantic similarity for deduplication purposes.

To implement this, we first apply the popular
toolkit KeyBERT (Grootendorst, 2020) for key-

word extraction. Then, the extracted keyword
serves as the target. Specifically, the contextual
representations of text tj in C is obtained as fol-
lows: H = g(tj), where g(·) represents the gener-
ative backbone. For each training sample in C, the
objective is to minimize the sum of the negative
likelihood of keyword tokens {k1, ..., kl}, where l
is the length of the keyword tokens, as follows:

Lg = −
l∑

i=1

log gθ(ki|tj ; k0, k1, ..., ki−1). (1)

Here, θ is the learnable parameters, tj is the j-th
input text in C, k0 denotes the pre-defined start to-
ken, and g(·) represents the generative backbone.
Notably, the self-supervised training runs only one
epoch for a sufficiently large prediction gap of du-
plicate and non-duplicated data (see Section 3.3).

TGN: Time-dimensional Gaussian Noise. Ac-
cording to the scaling law (Kaplan et al., 2020),
large generative models possess exceptional lan-
guage understanding capabilities due to the large-
scale pre-training. However, this can negatively
affect deduplication performance because even non-
duplicate texts might have accurate keyword pre-
dictions in one-epoch training, hindering the sepa-
ration of duplicate and non-duplicate data.
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To address this concern, we propose a novel
TGN to add noise and increase training difficulties.
It aims to avoid learning trivial features to limit
the keyword prediction for non-duplicate data. It
first generates binary masks M using the Bernoulli
distribution, where each time step is assigned a
value of 0 or 1 based on a given probability p:

M ∼ Bernoulli(p) (2)

Then, the time steps with a mask value of 1 are
selected, and their corresponding features are en-
tirely replaced by Gaussian noise. This process is
shown in Figure 2, and the equation as follows:

Ĥ = H⊙ (1−M) +M⊙G

G ∼ N (µ, σ2),
(3)

where G denotes the standard Gaussian distribu-
tion, which has the mean µ and standard deviation
σ.

3.3 Inference as Deduplication
After the one-epoch self-supervised training with
TGN, the model makes inferences to predict key-
words for deduplication. The trained generative
backbone generates keywords for all texts in C us-
ing beam search during this stage. Specifically, for
text ti in C, its keyword is generated as follows:

K̂ = g(ti; b), (4)

where b is the beam size for beam search. Here, we
consider the text duplicates if they can accurately
replay the target keyword through the trained gen-
erative backbone. Our intuition is that the model
is more likely to comprehend semantically dupli-
cate texts than non-duplicates because of the mul-
tiple optimizations to the former. Consequently,
the duplicate text will result in higher chances for
the model to replay the keywords after one-epoch
training. Based on this, we compare the generated
keyword with the target keyword for deduplication:

IsDup(t) =

{
1 if K̂ = K
0 otherwise

(5)

K is the target keyword for t, K̂ is its predicted
keyword from the generative backbone g(·), and 1
and 0 indicate “yes” and “no” for deduplication.

4 Experimental Setup

Datasets. For the deduplication experiment, we
use the MRPC dataset (Dolan and Brockett, 2005),

Dataset Train Valid. Test Labels

Emoji 45, 000 5, 000 50, 000 20
Hate 9, 000 1, 000 2, 970 2
Offensive 11, 916 1, 324 860 2
Sentiment 45, 389 2, 000 11, 906 3
Stance 2, 620 294 1249 3
Irony 2, 862 955 784 2
Humor 8, 000 1, 000 1, 000 2

Table 1: Number of labels and instances in training,
validation (valid.), and test sets for the adopted datasets.

where texts are labeled as either equivalent or non-
equivalent based on semantic duplication. For so-
cial media language understanding, we evaluate
our model on 7 widely used Twitter datasets, in-
cluding 6 tasks from TweetEval (Barbieri et al.,
2020): Emoji Predication, Hate Speech Detec-
tion, Offensive Language Identification, Sentiment
Analysis, Stance Detection, and Irony Detection,
and Humor Detection from SemEval-2021 task 7
(Meaney et al., 2021). The statistics of adopted
datasets are listed in Table 1. Due to the limitations
of space and computational resources, we use the
Emoji dataset in the ablation study and discussion.
It is more challenging (with 20 labels) and larger
than other datasets, making it ideal for evaluating
the performance of the proposed model.

Evaluation Metrics. For deduplication, we re-
port the F1 score for equivalent (duplicate text),
marked as F1eq. We also report the deduplication
time in seconds. For social media language un-
derstanding, we follow prior works (Barbieri et al.,
2020; Meaney et al., 2021) to report the same eval-
uation metrics from the original tasks. Specifically,
we report macro F1 for Emoji, Hate, Offensive, and
Humor, report micro-Recall for Sentiment, report
the average of the F1 of against and favor (marked
as F1a+f/2) for Stance, and report the F1 of the
ironic label (marked as F1i) for Irony.

Baselines and Comparisons. For the deduplica-
tion experiment, we compare the proposed gener-
ative deduplication with two widely used dedupli-
cation approaches: shingles (Broder, 1997) and
simhash (Manku et al., 2007). We also com-
pare it with pairwise semantic deduplication us-
ing pretrained sentence embeddings (Li and Li,
2023, 2024a). For social media language un-
derstanding, we adopt three popular backbones:
RoBERTa (Liu et al., 2019b), BERTweet (Nguyen
et al., 2020), and LLaMA (Touvron et al., 2023)
and compare with them using deduplicated data.
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Model Settings. For generative deduplication,
we use the T5-base model as the default genera-
tive backbone with a learning rate of 1e−4, beam
size of 1, and a prediction threshold of 0.5. For
social media language understanding tasks, we use
RoBERTa-base, BERTweet-base, and LLaMA-7B
as backbones. For efficient training, we employ the
LoRA (Hu et al., 2021) technique for LLaMA-7B
fine-tuning with specific parameters (lora_r = 16,
lora_alpha = 16, and lora_dropout = 0.1). The
batch size is chosen from values {16, 32, 64, 128}
on the validation data. The initial learning rate is
2e−5 for BERT/RoBERTa-based models and 2e−4

for LLaMA-based models.

Dataset Deduplication. Here, we first employ
various deduplication approaches, including shin-
gles, pairwise semantic deduplication, and the pro-
posed generative deduplication, to eliminate dupli-
cate training samples from social media language
understanding datasets. Table 2 shows the dedupli-
cated training data size and time consumption of
each dataset. We can see that the proposed gener-
ative deduplication is more effective at removing
redundant data than baselines with fewer training
samples after deduplication. Also, the generative
deduplication is efficient. It achieves competitive
deduplication time with shingles and is highly ef-
ficient compared to pairwise deduplication. More-
over, we perform random deduplication for a com-
prehensive evaluation. We randomly reduce the
dataset size to match that of the generative dedu-
plication. These deduplicated datasets by different
approaches will be used for social media language
understanding in Section 5. Note that we only
deduplicate the train set for model training, while
keeping the validation and test sets for evaluation.

5 Experimental Results

5.1 Deduplication Results

The deduplication results are presented in Table
3. Our proposed generative deduplication outper-
forms the baselines. Notably, the T5-base genera-
tive deduplication achieves a 23.4% improvement
in F1eq compared to shingles. Similarly, the T5-
small generative deduplication shows a 19.8% F1eq

gain and reduces the deduplication time by 6.3 sec-
onds compared to shingles. These improvements
are attributed to the ability of generative deduplica-
tion to understand and remove semantic duplicates.
In contrast, shingles and simhash, which focus on

Dataset Raw SD PD GD

Sentiment 45, 615 43, 951 35, 605 22, 418
time → 1, 074 29, 212 808

Emoji 45, 000 40, 656 35, 170 31, 425
time → 1, 043 29, 047 901

Offensive 11, 916 11, 013 10, 771 9, 595
time → 78 2, 099 240

Hate 9, 000 8, 810 7, 818 8, 061
time → 50 1, 251 178

Humor 8, 000 7, 720 7, 848 7, 537
time → 39 964 153

Irony 2, 862 2, 841 2, 712 2, 472
time → 9 135 59

Stance 2, 620 2, 554 2, 547 956
time → 11 113 57

Total 125, 013 117, 545 102, 471 82, 464
time → 2, 304 62, 771 2, 396

Table 2: Deduplicated training data size and dedupli-
cation time (in seconds) of different approaches on dif-
ferent datasets. Raw is the original size. SD means
Shingles Deduplication. PD stands for Pairwise Dedu-
plication. GD is the proposed generative deduplication

Model F1eq ↑ Time (s) ↓
shingles 32.9± 0.0 11.9
simhash 24.9± 0.0 1.4
pairwise semantic dedup. 51.7± 0.0 42.7

Generative Dedup. (T5-small) 52.7± 0.3 5.6
Generative Dedup. (T5-base) 56.3± 0.2 18.8

Table 3: Deduplication performance on MRPC dataset.
Bold indicates the best results. ↑ means the higher, the
better. ↓ stands for the smaller, the higher.

surface linguistic features, struggle with semantic-
level duplication. Furthermore, the proposed gener-
ative deduplication outperforms pairwise semantic
deduplication and is more efficient. For instance,
the T5-base generative deduplication is faster, tak-
ing 18.8 seconds compared to 43.7 seconds for
pairwise semantic deduplication.

5.2 Main Results
We show the main experimental results of social
media language understanding tasks in Table 4 and
draw the following observations.

First, we can see that LLaMA-based models out-
perform RoBERTa and BERTweet-based models.
This can be attributed to its larger model scale and
powerful language understanding capability. Sec-
ond, we can find that the performance using ran-
dom deduplication (RD) data is poorer than using
other deduplication data. It negatively impacts per-
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Model Emoji Hate Offensive Humor Sentiment Stance Irony Avg.
Macro F1 ↑ Macro Recall ↑ F1a+f/2 ↑ F1i ↑

RoBERTa
Raw 30.9± 0.2 ♢ 46.6± 1.8 ♢ 79.5± 0.7 ♢ 95.0± 0.6 † 71.3± 1.1 ♢ 68.0± 0.8 ♢ 59.7± 5.0 ♢ 64.4
RD 29.8± 0.3 45.7± 1.6 79.0± 0.9 93.3± 0.5 71.5± 1.3 65.1± 1.2 58.5± 2.1 63.3
SD 31.0± 0.3 47.3± 1.3 79.4± 0.6 93.6± 0.5 71.5± 1.3 67.9± 0.9 61.3± 3.7 64.6
PD 31.1± 0.3 47.7± 1.3 79.7± 0.7 94.0± 0.3 71.5± 1.1 68.1± 0.8 62.0± 2.7 64.9
GD 31.4± 0.2 49.5± 1.1 80.7± 0.7 94.3± 0.4 71.8± 1.1 68.3± 0.6 62.6± 1.8 65.5

BERTweet
Raw 32.3± 0.5 54.9± 0.9 † 80.5± 0.8 † 95.9± 0.3 † 72.3± 1.2 70.3± 0.9 † 78.7± 1.4 † 69.3
RD 31.2± 0.7 54.5± 0.9 80.2± 1.0 94.5± 0.4 71.4± 1.7 65.9± 1.3 77.9± 1.5 67.9
SD 32.4± 0.5 55.0± 0.8 80.5± 0.8 94.5± 0.3 72.1± 1.1 69.9± 1.1 78.7± 1.4 69.0
PD 32.5± 0.4 55.3± 1.0 80.6± 1.0 94.5± 0.5 72.2± 1.3 69.4± 1.0 79.1± 1.5 69.1
GD 32.6± 0.3 55.7± 1.0 80.9± 0.6 95.0± 0.3 72.2± 1.0 69.3± 0.8 80.1± 1.2 69.4

LLaMA
Raw 37.4± 0.6 58.2± 1.3 80.7± 1.2 95.3± 0.5 73.0± 1.2 70.1± 0.7 74.5± 1.1 69.9
RD 36.2± 1.1 57.7± 1.8 79.8± 1.3 95.1± 0.8 71.6± 1.6 66.5± 0.9 73.2± 1.6 68.6
SD 37.1± 0.9 58.1± 1.3 80.3± 1.4 95.2± 0.6 73.1± 1.3 70.4± 0.6 75.6± 1.3 70.0
PD 37.3± 1.1 58.3± 1.4 80.8± 1.3 95.2± 0.6 73.0± 1.4 70.8± 0.8 75.9± 1.5 70.2
GD 37.3± 0.8 58.6± 1.4 81.0± 1.3 95.3± 0.6 73.5± 0.9 71.1± 1.1 76.4± 1.2 70.5

Table 4: Results of social media language understanding tasks. ♢: results are from Barbieri et al. (2020). †: results
are retrieved from Tan et al. (2023). We follow previous work to report the average result of five runs. “Raw” refers
to the use of the original train set. “RD”, “SD”, “PD”, and “GD” are trained on the deduplicated training set of
random, shingles, pairwise semantic, and generative deduplication, respectively. The light blue color indicates the
best results for each backbone, while the bold marks the best overall results.
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Figure 3: A bar plot shows the training time of
RoBERTa-based models for each dataset. The percent-
age represents the training time on deduplicated data
compared to the training time on raw data.

formance. This might be because it eliminates non-
duplicate patterns randomly and fails to address
redundancy bias. Third, it can be seen that shingles
deduplication (SD) and pairwise semantic dedu-
plication (PD) slightly improve the performance.
This could be attributed to their ability to remove
duplicate data partially and mitigate redundancy
bias. Fourth, our proposed generative deduplication
(GD) consistently outperforms baselines trained on
raw and other deduplicated training sets in average
scores. Notably, generative deduplication generally
performs better than shingles and pairwise seman-
tic deduplication in various tasks, except for Stance
detection using BERTweet. We will explain this
exception in Section 5.5. Generative deduplica-

tion outperforms shingles because it can identify
and remove semantically duplicate data, effectively
reducing redundancy bias. Also, generative dedu-
plication is more effective than pairwise semantic
deduplication due to its stronger language under-
standing capabilities enabled by generative models.
It can better identify and remove semantically du-
plicate data, further mitigating redundancy bias.

Furthermore, we compare the training time us-
ing different deduplicated datasets in Figure 3. The
generative deduplication can significantly reduce
training time. This highlights generative deduplica-
tion’s superior efficiency.

5.3 Ablation Study

We have demonstrated the overall effectiveness of
generative deduplication in the main results. Here,
we further test its different settings via the ablation
study. The results are presented in Table 5.

T5-base generative deduplication outperforms
T5-small and can reduce more training samples. It
is attributed to T5-base’s more powerful language
understanding capabilities (with a larger model
size), allowing it to handle noisy social media data
more effectively.

The results of generative deduplication with and
without TGN indicate that TGN can improve gen-
erative deduplication performance. This highlights
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Model Train Size Macro F1 ↑
Generative Dedup. (T5-base) 31.4K 31.4
w/o TGN 30.6K 30.1
epoch=2 29.7K 29.8

Generative Dedup. (T5-small) 36.2K 30.0
w/o TGN 34.6K 28.7
epoch=2 34.4K 28.3

Table 5: Ablation study of generative deduplication
on the Emoji prediction task. K represents thousands.
The train size of the raw Emoji is 45K. K stands for
thousand. Bold indicates the best results.

Model AGNews Subj SST-2
data ↓ acc ↑ data ↓ acc ↑ data ↓ acc ↑

RoBERTa 120000 94.88 8000 96.60 6920 94.29
w/ RD 47786 94.31 7127 96.65 6276 94.23
w/ SD 104539 94.91 7925 97.00 6690 94.45
w/ PD 77789 94.80 7930 97.15 6689 95.00
w/ GD 47786 94.83 7127 97.30 6276 95.05

Table 6: Results on general short-text classification.
data represents the training data size. acc denotes the
evaluation metric Accuracy (%). ↓ denotes the smaller
the better, while ↑ means the larger the better.

that TGN effectively limits keyword prediction for
non-duplicate texts by adding training difficulties
and preventing trivial feature learning.

Finally, the results of one- and two-epoch train-
ing show that one-epoch outperforms two-epoch
training. This is because generative models can
replay keyword predictions for non-duplicate texts
after multiple training epochs, resulting in the
misidentification of non-duplicate texts.

5.4 General Short Text Classification

We have shown that our generative deduplication
method effectively challenges social media lan-
guage understanding tasks. To further demonstrate
the generality of our approach, we also evaluate
generative deduplication on three general short-
text classification tasks, including AGNews (Zhang
et al., 2015), Subj (Pang and Lee, 2004), and SST-2
(Socher et al., 2013). The results are presented in
Table 6. The proposed generative deduplication can
reduce the training data size, while keeping even
improving the model performance slightly. Re-
duced training data size and improved performance
demonstrate that the proposed generative dedupli-
cation effectively mitigates redundancy bias and
can benefit general scenarios.

5.5 Further Discussions

Discussion of Self-supervised Task. In previous
experiments, we have proven the effectiveness of
the self-supervised keyword prediction task. Here,
we examine other self-supervised tasks to provide
further insights. The results are presented in Ta-
ble 7. The table shows that predicting a text’s first
or last word significantly reduces the training size.
However, they yield poorer performance than oth-
ers, possibly because they remove too many non-
duplicate patterns. In contrast, we can observe that
the random word prediction task has minimal im-
pact on reducing the training size because it is more
challenging for the model to learn. Notably, sin-
gle keyword (obtained by KeyBERT (Grootendorst,
2020)) and multiple keywords (obtained by Chat-
GPT (Kim et al., 2023)) prediction outperform the
other self-supervised tasks. It is because keywords
convey the main idea of a text and enhance seman-
tic learning, thus improving the text understanding
and deduplication performance. We choose the
KeyBERT-extracted keyword for self-supervised
learning by default since it is more efficient and
cheaper than ChatGPT-generated keywords and
achieves similar performance as ChatGPT.

Discussion of Redundancy Bias. To illustrate
the redundancy bias intuitively, we present a plot
of prediction confidence in Figure 4.

For the top 4 plots, we can see that the predic-
tion confidence distribution of duplicate texts shifts
towards a higher confidence zone than raw texts,
suggesting a possible bias in the model. The bias
can lead to incorrect predictions for input text. For
example, in Figure 1, the model has incorrect pre-
diction biased by the common “Pumpkin” features
with duplicate texts. Results in Table 4 can also
support this claim. The models trained on the gen-
erative deduplication data (less redundancy bias)
outperform those without in these 4 tasks, except
for LLaMA in Emoji prediction.

In contrast, the 3 bottom plots do not display
notable distribution deviations, indicating that re-
dundancy bias is not prominent in these tasks. In
such cases, deduplication may negatively impact
performance. This explains why the performance
using generative deduplication data on BERTweet
is lower than the raw training data for Humor and
Stance detection tasks in Table 4.

Dicussion of Generative Deduplication Quality.
Figure 5a shows the pairwise similarity distribution
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Emoji Hate Offensive

Humor Sentiment Stance

Irony

Figure 4: The Kernel Density Estimate (KDE) plot of the prediction confidence of RoBERTa-based models on the
training set for each task. x-axis indicates the confidence. The top 4 plots present bias in the high confidence zone.
The bottom 3 plots do not show obvious bias.

Model Train Size Macro F1 ↑
single keyword (KeyBERT) 31.4K 31.4
multiple keywords (ChatGPT) 37.6K 31.8
first word 11.4K 21.6
last word 15.1K 24.5
middle word 26.6K 28.9
random word 44.9K 30.6

Table 7: The results of different generative self-
supervised tasks on the Emoji prediction task. K rep-
resents thousands. The train size of the raw Emoji is
45K. T5-base is the generative backbone for generative
deduplication, and RoBERTa-base serves as the down-
stream backbone model. Bold indicates the best results.

for duplicate and non-duplicate texts (identified
through generative deduplication). It is expected
that duplicate texts would display higher similarity
than non-duplicate texts. As observed, the similar-
ity distribution of duplicate texts is shifted towards
higher similarity values, indicating the good qual-
ity of generative deduplication. We also use LLM
Claude Sonnet 3.5 to evaluate the quality of the gen-
erative deduplication. About 66% of the samples
from the Irony dataset were considered semanti-
cally similar by Claude Sonnet 3.5. Table 8 shows
10 random samples of generative deduplication.

Effect of TGN. In Section 5.3, we have shown
the effectiveness of the proposed TGN mechanism.
Here, we further discuss it by comparing it to simi-
lar existing mechanisms.

First, TGN is analogous to the mask mechanism
used in masked language models such as BERT
(Devlin et al., 2019). The key difference is that
we employ Gaussian noise instead of a fixed spe-

Similarity

(a)
Confidence

(b)

Figure 5: (a) The similarity distribution for duplicate
and non-duplicate texts, which are identified by genera-
tive deduplication, for all datasets. (b) The KDE plot of
the generation probability (confidence) with and with-
out TGN on Emoji generative deduplication.

cial mask token. TGN is more difficult than the
mask mechanism. This design effectively limits
the language understanding capabilities, preventing
learning trivial features during generative training.
As a result, it restricts keyword prediction for non-
duplicate texts, thereby reducing misidentification.

Second, TGN also differs from the Dropout
(Srivastava et al., 2014) mechanism. Dropout is
commonly applied to the feature dimension, not
the time dimension, and can potentially improve
language understanding capabilities by addressing
overfitting. Our experiment on the Emoji predic-
tion demonstrates that replacing the proposed TGN
with the Dropout mechanism leads to an inferior
performance of 28.9 compared to TGN’s 31.4.

Third, Figure 5b shows the TGN mechanism lim-
its language understanding capabilities, as shown
the model without TGN has a higher generation
confidence than with.
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Text 1 Text 2 Label

Today is awesome Today is awesome! 1

I have such a loving family Dead supportive family I’ve got. 0

At least I woke up feeling a lot better today.. Yeah this is so good just woke up 1

I absolutely LOVE moving house Dayum, I really got the house to myself while my
brother still has school all week

0

Well, weekend is over!|Now it’s #TwitterTime again
:D|Have a nice monday!|

Nice weekend off but back at work tonight. 1

working on my birthday #yay #sucks Love the fact I’m sick on my birthday 1

Be Blessed friends. Merry Christmas to all! Merry Christmas @user 1

Great start to the day Great way to start of the day 1

Love these cold winter mornings best feeling ever-
rrrrrr!

I love cold winter days cause I never know when my
car decides not to start

0

It’s 8:46 and I’m ready for bed. I am now heading for bed orz 1

Table 8: Ten random samples of generative deduplication from the Irony dataset. The label indicates the duplication
judgment by Claude Sonnet 3.5. A label of 1 means that text 1 and text 2 are duplicates, 0 is non-duplicate.

6 Conclusion

In this paper, we have introduced a novel pre-
processing method called generative deduplication
for social media data selection. It tackles the se-
mantic redundancy bias in noisy social media data.
Extensive experiments have suggested that genera-
tive deduplication can significantly reduce the train-
ing cost of a model (in time and resources) while
improving social media language understanding.

Ethics Statement

In our empirical study, we use publicly available
social media understanding datasets that have been
widely used in previous studies. These datasets
typically do not have direct societal consequences.
Our model introduces a novel paradigm, genera-
tive deduplication, for social media data selection.
The proposed generative deduplication reduces the
number of training samples, resulting in decreased
computational resources, which is beneficial for
the environment.

Limitations

We have initially tested the proposed generative
deduplication method on widely used social me-
dia data, specifically TweetEval. In the future, we
plan to extend our evaluation to additional social
media datasets, such as Reddit TIFU (Kim et al.,
2018) and GoEmotions (Demszky et al., 2020).
Furthermore, generative deduplication is a general
technique that can be applied to different contexts

beyond social media. We will explore its applica-
bility in broader scenarios.
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