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Abstract

Neural Machine Translation (NMT) models
are trained on parallel corpora with unbal-
anced word frequency distribution. As a re-
sult, NMT models are likely to prefer high-
frequency words than low-frequency ones de-
spite low-frequency word may carry the cru-
cial semantic information, which may hamper
the translation quality once they are neglected.
The objective of this study is to enhance the
translation of meaningful but low-frequency
words. Our general idea is to optimize the
translation of low-frequency words through
knowledge distillation. Specifically, we em-
ploy a low-frequency teacher model that excels
in translating low-frequency words to guide
the learning of the student model. To remain
the translation quality of high-frequency words,
we further introduce a dual-teacher distillation
framework, leveraging both the low-frequency
and high-frequency teacher models to guide the
student model’s training. Our single-teacher
distillation method already achieves a +0.64
BLEU improvements over the state-of-the-art
method on the WMT 16 English-to-German
translation task on the low-frequency test set.
While our dual-teacher framework leads to
+0.87, +1.24, +0.47, +0.87 and +0.86 BLEU
improvements on the IWSLT 14 German-to-
English, WMT 16 English-to-German, WMT
15 English-to-Czech, WMT 14 English-to-
French and WMT 18 Chinese-to-English tasks
respectively compared to the baseline, while
maintaining the translation performance of
high-frequency words.

1 Introduction

Neural machine translation models typically re-
quire large amounts of parallel corpora (Kalchbren-
ner and Blunsom, 2013; Cho et al., 2014; Bahdanau
et al., 2014; Sutskever et al., 2014; Gehring et al.,
2017; Vaswani et al., 2017). While such data nor-
mally have an unbalanced word distribution, the
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translation models trained on the data usually tend
to favor high-frequency words while ignoring low-
frequency words. Gu et al. (2020) point out the se-
vere imbalance issue between high-frequency and
low-frequency words, and that translation models
rarely have the opportunity to learn the true labels
of low-frequency words during training. As a result,
NMT models rarely have the opportunity to learn
and generate those ground truth low-frequency to-
kens, even though these low-frequency words often
carry important semantic information, typically rep-
resenting specific concepts or emotions found in
certain domains, literary work, or dialects.

To improve the translation of rare words, Luong
et al. (2015); Jean et al. (2015); Li et al. (2016);
Pham et al. (2018) maintain a phrase table or low-
frequency word table, and Gulçehre et al. (2016);
Zhao et al. (2018) introduce additional components
to the model. However, these approaches brought
additional inference complexity and computational
costs. The imbalance word distribution issue can be
alleviated by segmenting low-frequency sub-words
into high-frequency ones while applying Byte Pair
Encoding (BPE) (Sennrich et al., 2016; Wu et al.,
2016), but the problem remains. Gu et al. (2020)
explore target token-level adaptive objectives based
on token frequencies to assign larger weights to
meaningful but relatively low-frequency words.

Li et al. (2021) have shown that knowledge distil-
lation is effective for long-tailed visual recognition.
In this paper, we utilize knowledge distillation to
optimize the translation of low-frequency words.
We obtain a low-frequency teacher model by fine-
tuning on the low-frequency part of the training set.
Then we use knowledge distillation to guide the
learning of the student model for low-frequency
word translation while retaining its performance
on high-frequency words. Furthermore, we pro-
pose using dual teacher models to guide the student
model in learning both high-frequency and low-
frequency words, to further ensure the translation
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Figure 1: Knowledge distillation with low-frequency teacher model.

performance of high-frequency words of the stu-
dent model. Our main contributions are as follows:

• We propose to improve the performance
of low-frequency word translation through
knowledge distillation, transferring the trans-
lation knowledge of low-frequency words
effectively from the low-frequency teacher
model to the student model.

• To further ensure the performance of high-
frequency word translation on very large
datasets, we introduce a dual-teacher knowl-
edge distillation framework. It utilizes two
teacher models to simultaneously guide the
learning of both high-frequency and low-
frequency words.

• Our single-teacher distillation method already
achieves +0.64 BLEU improvements over
the state-of-the-art method on the WMT
16 English→German translation task on
the low-frequency test set without ham-
per the performance on the high-frequency
test set. While our dual-teacher frame-
work leads to +0.87, +1.24, +0.47, +0.87
and +0.86 BLEU improvements on the
IWSLT 14 German→English, WMT 16
English→German, WMT 15 English→Czech,
WMT 14 English→French and WMT 18
Chinese→English tasks respectively com-
pared to the baseline, while maintaining the
performance on the high-frequency test set
even on very large datasets.

2 Our Method

2.1 Low-frequency Word Translation based
on Knowledge Distillation

We fine-tune the NMT model on the low-frequency
part of the training set to obtain the low-frequency
teacher model, and use the prediction probability
of the teacher model to supervise the training of the
student model together with the original translation
loss, as shown in Figure 1.

For the input sentence X = (x1, x2, ..., xn)
and the corresponding target translation Y ∗ =
(y1, y2, ..., ym) in a training instance. The Trans-
former encoder takes the the sum of the correspond-
ing word vectors of X and position encodings as
input, and transforms it into a sequence of contex-
tual representations.

The output of the encoder is fed into the de-
coder for the computation of cross-attention lay-
ers. The output of the last decoder layer Hdec =
[[Hdec,1], [Hdec,2], ..., [Hdec,m]] is to predict the
probability of each token with the softmax func-
tion.

However, the probabilities of many tokens are
close to zero after softmax, especially with the large
vocabulary size of the machine translation task.
It can be difficult for the student model to learn
from the probability distribution which is almost
full-filled very small probabilities. To address this
issue, we employ a temperature hyper-parameter
T to smooth the probability distribution following
Hinton et al. (2015), as shown in Equation 1.

OutT = Softmax(
Ys

T
) (1)
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Figure 2: Dual-teacher knowledge distillation teacher model guides student model.

The training loss is the weighted combination
of the original translation loss and the knowledge
distillation loss with α and γ as corresponding
weights. The knowledge distillation loss is com-
puted by minimize the distance function Dist be-
tween the probability distribution of the teacher
model with temperature Pt,T and that of the stu-
dent model Ps,T . The machine translation loss
is computed by minimize the negative log likeli-
hood loss NLL given the probability of the student
model without temperature Ps and the reference
translation Y ∗, as shown in Equation 2.

Loss = α ∗NLL(Ps, Y
∗) + γ ∗Dist(Ps,T , Pt,T ) (2)

2.2 Dual-teacher Knowledge Distillation
With the growing size of the training set and the lim-
ited capacity of the student model, distilling only
with the low-frequency teacher may take up the ca-
pacity for high-frequency word translation and dete-
riorate the performance of high-frequency words on
very large datasets. We employ a high-frequency
teacher in addition to the low-frequency teacher to
preserve the translation quality of high-frequency
words while improving that of the low-frequency
words. The dual-teacher distillation framework is
shown in Figure 2.

The knowledge distillation loss for high fre-
quency words optimizes the probability distribu-
tion distance between prediction probability distri-
bution Pth,T of the high-frequency teacher model
th and that of the student model. The training loss
is the weighted combination of the machine trans-
lation loss and low-frequency and high-frequency

distillation losses with α, γ and β as corresponding
weights, as shown in Equation 3.

Loss = α ∗NLL(Ps, Y
∗)+

γ ∗Dist(Ps,t, Pt,T )+

β ∗Dist(Ps,t, Pth,T )

(3)

2.3 Distillation Loss
Huang et al. (2022) show that when a more power-
ful teacher model exhibits significant differences
from the student model in knowledge distillation,
the performance of the student model may decline,
and can even be worse than training from scratch
without knowledge distillation. To address this,
Huang et al. (2022) propose a method that focuses
only on the preferences of the teacher model with
pearson correlation, which refers to the relative
ranking of predicted results. Instead of asking the
student model to exactly mimic absolute values
with the Kullback-Leibler (KL) divergence loss,
pearson correlation focuses on the relative relation-
ships between different categories predicted by the
teacher model.

The Pearson’s distance metric dp is shown in
Equation 4.

dp(u,v) = 1− ρ(u,v) (4)

where ρ(u,v) is the Pearson correlation coefficient
between two random variables u and v.

The computation of the Pearson correlation co-
efficient is based on the the covariance Cov(u,v)
of u and v and their standard derivations, as shown
in Equation 5.
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ρ(u,v) =
Cov(u,v)

Std(u)Std(v)

=

∑C
i=1(ui − ū)(vi − v̄)√∑C

i=1(ui − ū)2
∑C

i=1(vi − v̄)2

(5)
where ū and Std(u) denote the mean and standard
derivation of u respectively.

By optimizing the pearson correlation instead of
the KL divergence, the learning difficulty of the
student model regarding the teacher model is effec-
tively reduced, resulting in more stable distillation
results.

3 Experiment

3.1 Settings
We conducted our experiments on the following
tasks to test the effectiveness of our approach:

• IWSLT 2014 De→En To evaluate the perfor-
mance of the model on low-resource datasets,
we selected the German-English dataset from
IWSLT 2014. The training data consists of
about 174K sentences pairs.

• WMT 2016 En→De The training set contains
approximately 4.5M sentence pairs. The vali-
dation set and test set are newstest 2013 and
newstest 2014 respectively.

• WMT 2015 En→Cs The training data con-
sists of about 10M sentences pairs. We chose
newstest 2013 and newstest 2015 as the vali-
dation and test sets respectively.

• WMT 2018 Zh→En To evaluate the ap-
plicability of the model across different re-
gional languages, we utilized a preprocessed
Chinese-English dataset from WMT18. The
training set consists of about 19M sentences
pairs.

• WMT 2014 En→Fr This task is chosen to
test performance on large-scale datasets. The
training data is from WMT 2014 which con-
sists of about 36M sentence pairs. We chose
newstest 2013 and newstest 2014 as the vali-
dation and test sets respectively.

We tokenized and truecased sentences using the
Moses scripts for all languages except Chinese,
and applied shared Byte-Pair Encoding (BPE) with

32K merge operations to address the unknown
word issue for the WMT 2016 EN→DE, WMT
2015 EN→CS and WMT 2014 EN→FR tasks,
shared BPE with 16k merge operations for the low-
resource IWLST 2014 DE→EN task, independent
BPE with 32k merge operations for the WMT 2018
Zh→EN task.

Following Gu et al. (2020), we score data in-
stances of the training set and test set based on
word frequencies using Equation 6.

Freqsentence = − 1

L

L∑

i=0

log
Count(yi)∑|Vt|

k=1 Count(yk)
(6)

where L represents the sentence length, and 1
L

is to eliminate the influence of sentence length.
Count(yi) represents the frequency of word yi in
the sentence, while Count(yk) represents the fre-
quency of word yk in the training set.

A higher score for a sentence indicates that the
sentence contains more low-frequency words. Af-
ter sorting the training set and test set accord-
ing to the scores, we divided them into three
parts of equivalent number of sentence pairs,
denoted as {Trainhigh, T rainmiddle, T rainlow}
and {Testhigh, T estmiddle, T estlow}.

We followed the Transformer Base setting of
Vaswani et al. (2017) for all tasks except for the
low-resource IWSLT 2014 De→En. We adopted
the Transformer with 6 encoder and decoder lay-
ers, 512 as the embedding dimension and 4 times
of embedding dimension as the number of hidden
units of the feed-forward layer, a dropout proba-
bility of 0.1. The number of warm-up steps was
set to 8k. We used a batch size of around 25k tar-
get tokens achieved by gradient accumulation, and
trained the models for 100k steps. For the low-
resource IWSLT 2014 De→En, we followed the
experiment settings of Araabi and Monz (2020).

As the student model of knowledge distilla-
tion is initialized with the converged Transformer
Base model, we also fine-tune the converged base
model for another 100k training steps to obtain the
BaseFT model as our baseline for fair comparison.
The learning rate for both knowledge distillation
and BaseFT’s fine-tuning is 10−5.

To obtain the teacher model that has better per-
formance on low-frequency words, we fine-tuned
the converged base model on the low-frequency
part of the training set Trainlow. The performance
of the low-frequency teacher gets improved on the
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Testlow Testmiddle Testhigh
Transformer (Vaswani et al., 2017) 25.17 26.72 28.56
BaseFT 25.55 26.97 28.88
Token Weighting
SPL (Wan et al., 2020) 24.46 27.60 31.12
BMI (Xu et al., 2021) 24.08 27.33 30.99
CMBI (Zhang et al., 2022) 23.96 27.60 31.20
SE (Peng et al., 2023) 24.90 27.53 31.07
General KD
SKD (Wang et al., 2021) 24.84 27.86 31.51
TIE-KD (Zhang et al., 2023a) 25.17 28.10 31.50
Low-Frequency Word Translation
ER (Pereyra et al., 2017) 25.74 26.86 28.72
Linear (Jiang et al., 2019) 25.70 27.07 28.88
Exponential (Gu et al., 2020) 26.07 27.33 28.91
Chi-Square (Gu et al., 2020) 25.99 27.28 28.90
Ours
Single teacher 26.71 27.40 28.97
Dual teacher 26.79 27.44 28.99

Table 1: Main results on the WMT 16 English→German
task.

low-frequency test set but decreased on the high-
frequency test set compared to the converged base
model. We used BaseFT as the high-frequency
teacher model, as the fine-tuning further boosts
the performance of the converged base model on
high-frequency words.

In addition to the vanilla Transformer and the
BaseFT model which fine-tunes the pre-trained
Transformer for another 100k training steps, we
compare our method with a series of baselines
related to token weighting (Self-Paced Learning
(SPL) (Wan et al., 2020), adaptive training based
on Bilingual Mutual Information (BMI) (Xu et al.,
2021) and Conditional Bilingual Mutual Informa-
tion (CBMI) (Zhang et al., 2022), Self-Evolution
(SE) training (Peng et al., 2023)), general ma-
chine translation knowledge distillation (Selective
Knowledge Distillation (SKD) (Wang et al., 2021),
Top-1 Information Enhanced Knowledge Distilla-
tion (TIE-KD) (Zhang et al., 2023a)) and machine
translation studies for low-frequency word transla-
tion (Entropy Regularization (ER) (Pereyra et al.,
2017), Linear (Jiang et al., 2019), Exponential and
Chi-Square (Gu et al., 2020)).

3.2 Main Results
We compared our approach to BaseFT and
other baseline models, especially the previous
state-of-the-art method (Gu et al., 2020) on the
WMT 16 English→German task. Results on the
high/middle/low-frequency test sets are shown in
Table 1.

Table 1 shows that: 1) despite previous to-
ken weighting and general knowledge distillation
studies can significantly improve the overall per-

formance, most of their improvements are on
the middle/high-frequency testset and their perfor-
mances on the low-frequence testset even under-
performs the BaseFT baseline, 2) both our method
and Gu et al. (2020) do not hamper the perfor-
mance on the high-frequency test set while im-
proving the performance of both the low-frequency
test set and the medium-frequency test set, 3) our
single teacher method brings about significantly
higher BLEU scores (+0.64) than Gu et al. (2020)
on the low-frequency test set and slightly better
BLEU scores on both the medium and the high-
frequency test sets, and 4) the performance of our
dual teacher model only leads to slightly higher
BLEU scores than the single teacher model on this
task, obtaining +1.24 BLEU improvements on the
low-frequency test set compared to BaseFT. But
as shown in following experiments (Section 3.3),
dual-teacher knowledge distillation is crucial to
maintain the performance on the high-frequency
test set in more challenging settings with larger
training sets than the WMT 16 English→German
task.

3.3 Verification on the other Tasks
To validate the effectiveness of our approach
on various settings, we conducted experiments
on IWSLT 14 German→English, WMT 16
English→German, WMT 15 English→Czech,
WMT 18 Chinese→English and WMT 14
English→French tasks, with training set sizes rang-
ing from 174k sentence pairs to 36M sentence
pairs, covering low-resource, middle-resource and
high-resource cases. Results are shown in Table 2.

Table 2 shows that: 1) both single-teacher and
dual-teacher methods can improve the performance
on the low-frequency test sets on all tasks regard-
less of the training set size, demonstrating the ef-
fectiveness of knowledge distillation in improving
the performance of low-frequency word transla-
tion, 2) the single teacher method can also im-
prove the performance on the middle and high-
frequency test sets on low-resource (IWLST 14
German→English) and middle-resource (WMT
16 English→German) tasks compared to the con-
verged base model, obtaining comparable BLEU
scores on the high-frequency test set and sig-
nificantly higher BLEU scores on the middle-
frequency test set compared to BaseFT, 3) the per-
formance of the single teacher method on the high-
frequency test set decreases significantly on WMT
15 English→Czech, WMT 18 Chinese→English
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Task Model Testlow Testmiddle Testhigh Testfull

IWSLT 14 De->En
(174K pairs)

Base 27.66 30.76 35.23 30.97
BaseFT 27.87 30.88 35.70 31.10
Low-frequency teacher 28.85 30.72 34.48 30.58
Single teacher 28.73† ↑ 31.54† 35.67→ 31.56
Dual teacher 28.74† ↑ 31.59† 35.77→ 31.69

WMT 16 EN->De
(4.5M pairs)

Base 25.17 26.72 28.56 27.15
BaseFT 25.55 26.97 28.88 27.21
Low-frequency teacher 26.78 27.43 27.69 27.02
Single teacher 26.71† ↑ 27.40† 28.97→ 27.88
Dual teacher 26.79† ↑ 27.44† 28.99→ 27.93

WMT 15 En->Cs
(10M pairs)

Base 27.74 27.98 30.39 28.48
BaseFT 27.80 28.42 31.40 29.07
Low-frequency teacher 28.82 28.08 29.09 28.64
Single teacher 28.58† ↑ 28.06 29.59↓ 28.68
Dual teacher 28.27† ↑ 28.64 31.49→ 29.33

WMT 18 Zh->En
(19M pairs)

Base 20.95 22.29 25.76 23.22
BaseFT 21.51 22.48 26.45 23.88
Low-frequency teacher 22.50 22.62 23.71 22.92
Single teacher 22.28† ↑ 22.32 24.71↓ 23.16
Dual teacher 22.37† ↑ 22.90‡ 26.67→ 24.05

WMT 14 En->Fr
(35M pairs)

Base 37.16 39.58 41.47 39.65
BaseFT 37.75 40.16 41.93 40.23
Low-frequency teacher 38.67 40.21 40.22 39.76
Single teacher 38.48† ↑ 39.37 40.74↓ 39.26
Dual teacher 38.62† ↑ 40.45‡ 42.01→ 40.65

Table 2: Results of single-teacher and dual-teacher methods with increasing training set size. † and ‡ indicate
p < 0.01 and p < 0.05 respectively in the significance test compared to BaseFT.

and WMT 14 English→French tasks with increas-
ing training set sizes, for many cases the single
teacher method even under-performs the converged
base model, while the dual teacher framework can
effectively address this issue and maintain compa-
rable performance on the high-frequency test set
compared to BaseFT while obtaining stable im-
provements on the low-frequency test sets on these
challenging tasks.

3.4 Effects of Hyper-parameters

We investigate the effects of the weights of machine
translation and distillation losses on performance
in Equation 3 on the WMT 16 English→German
task. Following Gu et al. (2020), we set the weight
of the translation loss (α) to 1 to ensure the learning
of the translation task. As for the weight of the low-
frequency knowledge distillation loss (γ) and the
high-frequency knowledge distillation loss (β), we
experimented γ values ranging from 0.3 to 0.7 with
an interval of 0.1, and used 1− γ as corresponding

β values. Results are shown in Table 3.
Table 3 shows that: 1) increasing the weight

of the low-frequency knowledge distillation loss
(γ) consistently improves the performance on the
low-frequency test set, but at the cost of the per-
formance on the high-frequency test set, with the
performance on the middle-frequency test set im-
proves first and then degrades, and 2) a comparably
wide range of choices can ensure the performance
on the high-frequency test set and all tested values
lead to better performance than BaseFT on the low-
frequency test set. We set α, β, and γ to 1, 0.4, and
0.6 respectively for the other experiments as they
lead to the best performance on average.

3.5 Effects of Knowledge Distillation Loss
Functions

We conducted experiments on the WMT 16
English→German task to test the effects of dif-
ferent knowledge distillation loss functions with
the dual-teacher framework. Results are shown in
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γ β Devlow Devmiddle Devhigh Devavg Testlow Testmiddle Testhigh Testavg
BaseFT - - 23.31 25.03 27.71 25.35 25.55 26.97 28.88 27.13

0.3 0.7 24.15 25.42 27.89 25.82 26.31 27.20 29.19 27.56
0.4 0.6 24.42 25.32 27.80 25.85 26.63 27.13 29.16 27.64

Ours 0.5 0.5 24.46 25.22 27.81 25.83 26.65 27.27 29.05 27.65
0.6 0.4 24.55 25.28 27.77 25.87 26.79 27.44 28.99 27.74
0.7 0.3 24.68 25.19 27.56 25.81 26.82 27.32 28.69 27.61

Table 3: Results on the WMT 16 English→German task with different hyper-parameters.

EN->DE
Testlow Testmiddle Testhigh

BaseFT 25.55 26.97 28.88
KL Div 26.34 27.04 28.47
Pearson 26.79 27.44 28.99

Table 4: Results with different distillation loss functions
on the WMT 16 English→German task.

Table 4.
Table 4 shows that: 1) knowledge distillation

with both KL divergence and pearson correlation
can improve the performance on the low-resource
test set, 2) knowledge distillation with pearson cor-
relation leads to more improvements on all test sets
than with KL divergence, and 3) the performance
on the high-resource test set is worse than BaseFT
when distill with the KL divergence loss even
with the dual-teacher framework, while knowledge
distillation with pearson correlation can lead to
slightly higher BLEU scores on the high-frequency
test set compared to BaseFT, showing the advan-
tages of knowledge distillation with relative rank
than absolute values.

3.6 Case Study

Table 5 shows three translation examples in the
IWSLT 14 German→English translation task. In
the first sentence, the BaseFT model failed to gener-
ate the less frequent noun “stuff” (frequency:951),
but used a high-frequency but less proper word
“something” (frequency:4235). In the sencond sen-
tence, our method generated the formal form of the
less frequent adjective ‘liturgical’ (frequency:103),
while the BaseFT model used a more frequent
but incorrect word “liturgic” (frequency:675). In
the third sentence, our method generate the less
frequent but more proper words “favorite” (fre-
quency:265) and “watch” (frequency:446), while
the BaseFT model used more frequent but less accu-
rate words “best” (frequency:1094) and “look” (fre-
quency:3889). These examples can be part of the

evidence to show the effectiveness of our method.

4 Related Work

4.1 Low-frequency Word Translation

In translation tasks, common types of low-
frequency words include rare words, special slang,
and technical terminology, among others. The in-
clusion of low-frequency words in the model’s vo-
cabulary adds diversity but also imposes a signif-
icant computational burden on the model. Trans-
lation models have limitations when dealing with
a large vocabulary. Luong et al. (2015); Jean et al.
(2015); Li et al. (2016) attempt to maintain phrase
tables or fallback words to address the issue of a
large vocabulary. The current mainstream tech-
nique involves the use of subword-based methods
(Sennrich et al., 2016; Luong and Manning, 2016;
Wu et al., 2016), which greatly reduces the vocab-
ulary size and effectively addresses the challenge
of representing rare words. Machine translation
is essentially a classification task, and there are
two main approaches to address the problem of
class imbalance: data-based methods (Baloch and
Rafi, 2015; Sutskever et al., 2014) and algorithm-
based methods (Zhou and Liu, 2005; Lin et al.,
2017). Data-based methods primarily employ over-
sampling and undersampling techniques to address
class imbalance. Algorithm-based methods, on the
other hand, assign different training strategies to
different words. Jiang et al. (2019) propose a linear
weighting approach that assigns different weights
to words in the translation task based on their fre-
quency, thereby addressing the issue of insuffi-
cient translation for low-frequency words. Building
upon this, Gu et al. (2020) further introduce chi-
square distribution function and power function
for weighting, optimizing the translation quality of
low-frequency words, achieving the state-of-the-art
performance on low-frequency word translation.
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Source zwei Frauen , die existieren und miteinander reden , über irgendetwas .
BaseFT two women that exist and talk to each other about something .

Ours two women who exist and talk to each other about stuff .
Reference two women who exist and talk to each other about stuff .

Source ihre Arbeit , so denke ich , ist irgendwie liturgisch .
BaseFT their work , I think , is kind of liturgic .

Ours their work , I think , is kind of liturgical .
Reference their work , I think , is kind of liturgical .

Source wissen Sie , das Beste am Vatersein sind für mich die Filme , die ich schauen kann .
BaseFT you know , the best thing about father is for me , the films I can look .

Ours you know , my favorite part of being a dad is the movies I can watch .
Reference you know , my favorite part of being a dad is the movies I get to watch .

Table 5: Example translations of the BaseFT model and our method.

4.2 Knowledge Distillation

Knowledge distillation is a popular method in re-
cent years to facilitate various transfer learning
tasks. Zhuang and Tu (2023) transfer bidirectional
language knowledge from masked language pre-
training to NMT models. Zhang et al. (2023b)
validate that knowledge can be extracted from pre-
trained translation models and transferred to stu-
dent models using knowledge distillation methods.
However, a stronger teacher model may not always
be beneficial for knowledge distillation, as a signif-
icant disparity between the teacher model and the
student model may harm the overall performance
(Wang et al., 2021). To address this issue, Huang
et al. (2022) preserve the relations between the
predictions of teacher and student, and propose a
correlation-based loss to capture the intrinsic inter-
class relations from the teacher explicitly. The prob-
lem of class imbalance can be observed in various
tasks (Wei et al., 2013; Johnson and Khoshgoftaar,
2019). In the field of image classification, Li et al.
(2021) use knowledge distillation techniques to im-
prove imbalanced long-tailed visual recognition
tasks. In this paper, we employ knowledge distil-
lation to transfer low-frequency word translation
knowledge from the teacher model, aiming at solv-
ing the problems brought by the imbalanced word
distribution, and present a dual-teacher knowledge
distillation framework to preserve the performance
on high-frequency words during knowledge distil-
lation.

5 Conclusion

In this study, we investigate the low-frequency
word translation problem, which may make the

NMT model neglect low-frequency tokens carrying
critical semantic information and affect the transla-
tion quality. We leverage knowledge distillation to
transfer low-frequency word translation knowledge
from low-frequency teacher model to the student
model. We also present a dual-teacher knowledge
distillation framework to ensure the performance
with high-frequency words in challenging settings
with very large training sets.

Experiment results show that our single-teacher
distillation method can already obtain +0.64
BLEU improvements over the state-of-the-art
method on the WMT 16 English→German
translation task on the low-frequency test set
without hampering the performance on the
high-frequency test set. While our dual-teacher
framework leads to +0.87, +1.24, +0.47,
+0.87 and +0.86 BLEU improvements on
the IWSLT 14 German→English, WMT 16
English→German, WMT 15 English→Czech,
WMT 14 English→French and WMT 18
Chinese→English tasks respectively compared
to the fine-tuned baseline, while maintaining
the performance on the high-frequency test set
even on very large datasets. These results prove
the effectiveness of our approach even in very
challenging settings.

Limitations

We only tested a number of settings for hyper-
parameter selection. But the current setting already
shows the effectiveness of our approach, and it is
not among the main concern of our work despite
that more carefully tuning these hyper-parameters
may lead to better performance.
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