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Abstract

Extreme multi-label text classification (EMTC)
involves predicting multiple labels from a vast
pool of candidates based on a user’s textual
query. While traditional BERT-based methods
have shown limited success, large language
models (LLMs) have brought new possibili-
ties. It is promising to leverage their remark-
able comprehension ability to understand tex-
tual queries. However, implementing LLMs
is non-trivial for two main reasons. Firstly,
real-world EMTC datasets can be extremely
large, with candidate product pairs reaching up
to ten million in real-world scenarios, which
poses significant challenges in data ingestion.
Secondly, the large size of LLMs makes com-
putation and memory demands prohibitive for
EMTC applications. To this end, we propose
QUEST, a Quantized and Efficient Learning
with Sampling Technique. QUEST includes
a tailored hash sampling module that reduces
the data volume to one-fourth of its original
size. Additionally, we perform compressive
fine-tuning LLMs with only twenty thousand
trainable parameters, largely reducing compu-
tational requirements. Extensive experiments
demonstrate that QUEST outperforms existing
methods while requiring fewer computational
resources, unlocking efficient EMTC on com-
modity hardware such as a single Nvidia RTX
3090 GPU with 24 GB of memory.

1 Introduction

Extreme multi-label text classification (EMTC) has
been widely applied in real-world scenarios, e.g.,
recommendation systems and social networks (Li
et al., 2019; Ding et al., 2021), where each input
query needs to be assigned multiple output labels
from a very large set of candidate labels. As shown
in figure 1, the input consists of text descriptions
of purchased items, and the model is required to
infer potential products from a vast list. Due to
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Figure 1: A real example of directly applying LLMs for
EMTC from the benchmark Amazon dataset.

the complexity brought by its scale, EMTC has
been extensively studied in natural language pro-
cessing from various perspectives (Liu et al., 2017;
Chang et al., 2021; Chalkidis et al., 2020). The ex-
isting standard method of EMTC is training a deep
model to learn representations for input queries and
labels. This process transforms tasks into a sim-
ilarity search problem, where for each query, we
search for its nearest neighbors in the label space.
Early studies design linear models defined on TF-
IDF feature vectors (Ramos et al., 2003). Recently,
plenty of research has been dedicated to sentence
embeddings powered by Bert-based models with
million-scale parameters (Zhang et al., 2022). How-
ever, performance remains unsatisfactory due to its
limited semantic understanding ability.

With the emergence of large language models
(LLMs), which have demonstrated impressive in-
ference capabilities (Dong et al., 2024b; Chen et al.,
2024; Li et al., 2019, 2023), we are motivated to
incorporate LLMs into EMTC to better understand
the semantics in both queries and labels. How-
ever, this task remains challenging for two reasons.
Directly using LLMs to process extremely large
training data is time-consuming, making it diffi-
cult to apply in real-world scenarios. Second, the
extensive size of LLMs requires significant com-
putational resources (Dong et al., 2024a), with a
full llama-7B model consuming 28GB of memory.
Moreover, the pace of our hardware enhancements
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is decelerating (Theis and Wong, 2017). Current
GPU resources can handle lighter frameworks like
Bag-of-words and Bert-based encoders, but fine-
tuning a full LLM on a single machine is impossi-
ble. Furthermore, the average number of labels per
query can reach up to 22.2 (Bhatia et al., 2016), fur-
ther increasing the training pairs. Processing these
extensive texts poses a heavy burden, necessitating
the employment of multiple GPUs for over a week.

To this end, we present a novel quantized
and efficient learning framework with sampling
technique, i.e., QUEST, for extreme multi-label
text classification, taking into account both memory
usage and computation resources. We significantly
reduce the search space of a large number of la-
bels and facilitate efficient model training tailored
for LLMs. (i) We introduce a novel hashing-based
sampling module that selects more representative
and diverse texts as training pairs for contrastive
learning. This is inspired by the observation that
textual descriptions of labels are highly clustered.
We achieve promising performance by using only a
small proportion of the original data. (ii) The model
is optimized through a prompt-based pairwise con-
trastive training algorithm on the quantized LLM.
This effectively reduces the number of trainable
parameters and memory usage.

Contributions:
• We formally define the paradigm of efficient

learning for EMTC with LLMs, addressing both
memory usage and computation resources.

• We introduce the QUEST framework to achieve
the selection of more representative textual data,
thus boosting the training process through utiliz-
ing a customized diverse sampling technique.

• We enhance the adaptation of LLMs for EMTC
tasks on commodity hardware with a prompt-
based pairwise contrastive training algorithm on
the quantized LLM, significantly reducing train-
able parameters and memory usage.

• Extensive experiments demonstrate the superior-
ity of QUEST in both efficiency and accuracy.
QUEST outperforms all state-of-the-art methods
within only 46.89 training hours on datasets con-
taining over one million labels, using a single
Nvidia RTX 3090 GPU with 24 GB of memory.

2 Preliminaries

Notations. The dataset includes queries and la-
bels, with each consisting of the title and con-
tent of the item description. In this paper, X =

{(t1, c1), ..., (t|x|, c|x|)} is denoted as a collection
of input documents, where each pair (ti, ci) rep-
resents the title and content respectively. We de-
note Y = {y1, ..., y|y|} as the set of labels, each
of which is characterized by a piece of sentence.
The original documents are split into the training
dataset Xtrain and the validation dataset Xtest.

Different from ordinary classification tasks that
only consider a limited number of labels (Zhou
et al., 2023), the presence of millions of distinct
choices makes using softmax classifiers difficult.
Therefore, these issues are transformed into a
nearest-neighbor search problem, where the model
seeks to match the representations of queries with
relevant tags. Another important aspect is its zero-
shot capability. In reality, numerous newly released
items are introduced to customers, making it im-
practical to have access to all potential labels during
the training process. Providing accurate recommen-
dations for unseen products holds great realistic
significance.

3 Overall Framework

As mentioned in the introduction, this paper aims to
achieve a more efficient and faster learning process.
The approaches are mainly divided into two lines:
increasing batch size and reducing parameters to
improve model efficiency; and using diverse sam-
pling to increase data efficiency. In this section,
we will offer an overview of the motivation and
intuitive explanations for each module.

3.1 Structural Text Representation

The first step is to obtain embeddings for both in-
put queries and labels. In numerous instances, they
are not merely a corpus but rather comprise vari-
ous components, including titles and content. The
current methods can be summarized in two lines:
1) generate embeddings of each component and
merge piecewise vectors together (Ramos et al.,
2003; Lee et al., 2019). This approach lacks a com-
prehensive understanding of the overall meaning.
2) use data augmentation by generating various
chunk-level texts from different structures (Zhang
et al., 2022). However, it will produce a large
volume of augmented data, adding to the training
burden. Given GPT’s expertise in processing cor-
pora (Zhou et al., 2024), we design a simple tem-
plate to help integrate both the title and content into
a complete paragraph:
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Figure 2: The overall framework of our proposed QUEST. First, we select representative query-label pairs from the
training set using diverse sampling. These pairs will pass through an encoder in Llama-7b, and the embeddings
extracted will be trained through contrastive learning to maximize the similarity between positive pairs. During the
inference stage, all labels, including unseen ones, will be processed by a fine-tuned LLM to extract representations,
followed by the nearest neighbor search with the target query to choose the top-K items as recommendations.

The title of the product is Lord of the Rings.
Its content is about the Two Towers action-
adventure game that allows players to take
control of the trilogy heroes.

The obtained paragraph is first tokenized to form
the input sequence and then passed into the large
language model denoted as T = (t1, t2, ..., t|n|).
One conventional approach is to use the cls token
or the average of the last layers as the sentence rep-
resentation. In contrast, due to the autoregressive
nature of generative models, where each predicted
word is generated based on the preceding sequence,
we extract the last token vector from the final hid-
den layer as the embedding for the entire sentence.

3.2 Utilizing Massive Labels

Clustered Query-Label Pairs. The current EMTC
pipeline performs CRL (Oord et al., 2018; Gao
et al., 2021) to generate representations for input
queries and labels. CRL would like to maximize
the embedding similarities between relevant pairs
and minimize the similarity of irrelevant pairs. Be-
cause of the one-to-many matching property in
EMTC, it is impractical to train all relevant pairs.
Therefore, it is necessary to use sampling tech-
niques. A straightforward solution would be uni-
form sampling. However, we observe that the
ground truth labels are highly clustered. We chose
a subset of the training labels based on certain
queries. As described in figure 3, it reveals a no-
table pattern indicating that rather than being ran-
domly distributed, there are several distinct clusters.
Hence, we have to perform diversified sampling
that deliberately selects representative individuals
from diverse subgroups. However, diversified sam-

pling can be computationally intensive in grouping
the labels into clusters, especially when we have
million-scale labels. Thus we have to explore an
effective and efficient diversified sampling strategy
to select representative query-label pairs for CRL.

Figure 3: Based on the embeddings produced by Sen-
tenceTransformer, the t-SNE visualization of the label
distribution indicates that serial books tend to cluster
together while others separate apart.

Diversity-Aware Sampling with Hashing. We
notice a token-level similarity among the various
labels for the same query, indicating that label
descriptions can be closely clustered. On the
other side, for some of the EMTC datasets, we
observe that the average number of labels per
query is also significant. Given this intensive
and clustered label information, we would like to
perform a diversity-aware sampling to reduce the
data redundancy in CRL for EMTC. Moreover,
to address the computational challenges in
diversity-aware sampling, we propose an algorithm
based on MinHash (Broder, 1997; Broder et al.,
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1998), which is a locality-sensitive hashing
function for Jaccard similarity. MinHash function
h maps a set X into an integer in [B], where
B is the range of a hash value. Furthermore,
we have Pr[h(X) = h(Y )] = |X∩Y |

|X∪Y | for set X
and Y . Given a dataset of query-label pairs, our
algorithm ( see Algorithm 1) first concatenates
each query-label pair (x, y) ∈ S into a single
string s. Next, we apply R independent MinHash
functions to generate R hash values for every s.
Next, we initialize a zero array with size R × B.
For every s and every MinHash function hj , we
increment the jth row and hj(s)th column with
1. Next, we score each s with its corresponding
counts in the array. Finally, we sample k elements
from S with the probability defined on the inverse
of counts. In practice, R and B have values of
4 and log n respectively, where n represents the
size of training pairs following the theoretical
support from (Datar et al., 2004). Intuitively,
LSH functions are more likely to map similar
text inputs into the same bucket. Thus, buckets
with higher counts bring together clustered pairs.
Inversely, increasing the probability of searching
within minority groups by taking the inverse of
counts achieves diversity sampling. As shown in
below, Algorithm 1 has a linear time complexity
to the size of S, outperforming clustering-based
approaches with exponential time complexity over
the size of S. Moreover, the memory complexity is
constant. As a result, QUEST provides an efficient
algorithm to generate a representative subset of
query-label pairs for training.

Theoretical Justifiaction. LSH is a randomized
function family (Indyk and Motwani, 1998; Datar
et al., 2004; Andoni et al., 2014; Andoni and Razen-
shteyn, 2015; Andoni et al., 2017). Each function
in this family maps one input vector into a hash
value, usually a binary code or an integer. When
vectors are similar, they will likely have the same
hash value. The LSH function is defined as:

Definition 3.1 (Locality-sensitive Hash Family).
We define a function familyH to be (D, cD, p1, p2)-
sensitive with respect to distance function d : Rd×
Rd → R if for any two vector x, y ∈ Rd, any
h ∈ H chosen uniformly at random satisfies:

d(x, y) ≤ D → Pr[h(x) = h(y)] ≥ p1, (1)

d(x, y) ≥ cD → Pr[h(x) = h(y)] ≤ p2. (2)

The occurrence referred to as a "collision" hap-
pens when both x and y end up with an identi-
cal hash value. For example, in the case of a se-
ries of books, there might be slight variations be-
tween versions, but they still maintain similar titles
and content, leading to a reduced Euclidean dis-
tance. The likelihood of a collision between x and
y steadily diminishes following a distance function
d : Rd × Rd → R. This is formally depicted as:

Pr[h(x) = h(y)] ∝ f(d(x, y)). (3)

In this work, we would like to design a sketch of
training pairs set S that can represent the diversity
of each query-label pair s ∈ S. Here we define this
"diversity" as the density of the Jaccard kernel. For
every query-label pair q ∈ S, we define its Jaccard
Kernel Density as follows: J (q) as

J (q) =
∑

s∈S

|ϕ(q) ∩ ϕ(s)|
|ϕ(q) ∪ ϕ(s)| . (4)

where ϕ defines the function that tokenized the
query-label pair in text into a set of tokens, however,
it is infeasible to compute the precise Jaccard ker-
nel density following the expressions above since it
requires O(|S|2NNZ(S)) time to compute. Here
|S| is the size of set S and NNZ(S) is the maxi-
mum number of elements in set ϕ(s) for any s ∈ S.
To address this challenge, we efficiently estimate
the Jaccard kernel density through the fact that
E[Sumq] = R · J (q). The full derivation of this
formula can be checked in the appendix A.2.

3.3 Quantized-Prompt Training
Current commodity hardware cannot support the
training and fine-tuning requirements for LLMs.
The memory cost of storing a LLaMA-7B model’s
weight in FP16 format is already about 14G, tak-
ing over half of the memory capacity of an RTX
3090 GPU. As a result, we have limited resources
to perform CRL for EMTC on commodity hard-
ware. A variety of memory-efficient fine-tuning
(MEFT) methods have emerged for LLMs’ adap-
tation to different tasks on commodity hardware.
MEFT strives to fine-tune only a small subset of the
model’s parameters, achieving desired performance
while significantly reducing memory requirements.

QUEST performs a quantized-prompt training
with CRL objective defined in Eq (5). In this ap-
proach, the pre-trained LLM parameters are quan-
tized into lower bits. Next, QUEST inserts soft
prompt tokens before the input query tokens to
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Algorithm 1 Diversity-Aware Sampling

Input: Training pairs set S with size N , Sam-
ple size k, R independent MinHash functions
{h1, h2, · · · , hR}, each with range B
Output: k elements from S.
Initialize: C ← 0R×B

Initialize: p← ∅
for query-label pair s ∈ S do

for r = 1→ R do
C[r, hr(s)]+ = 1

end for
end for
for query-label pair s ∈ S do
Sums ← 0
for r = 1→ R do
Sums ← Sums + C[r, hr(s)]

end for
ps ← N ∗R/Sums

p← p ∪ {ps}
end for
Sample k pairs Sk from S, each s ∈ S has the
sampling probability ps.
return Sk

control the embedding produced by LLM. Dur-
ing the training, only the soft prompt tokens adap-
tively update while all other quantized parame-
ters in the network remain unchanged. We argue
that quantized-prompt training is more memory-
efficient so that QUEST can perform CRL for
EMTC on commodity hardware such as RTX-3090.
We also conduct a quality comparison of QUEST
with Q-LoRA (Dettmers et al., 2023) to suggest the
difficulty in tuning adapters for EMTC.

Given the sampled pairs generated from the last
section, we match the representations of queries
and labels and then maximize the cosine similarity
between corresponding pairs. Let H(·), chosen
as a LLaMA-7B model, represent the embedding
function of the text, with h(xi) and h(yi) as the
embedding vector of the query element and label
set element, respectively. As shown in Eq.(5), the
objective of the model is to maximize the cosine
similarity between h(xi) and h(yi).

ℓ = − 1

N

N∑

i=1

log
expsim(h(xi),h(yi))

∑N
j=1 exp

sim(h(xi),h(yj))
. (5)

After completing the training, we implement the
nearest neighbor search. We follow the same pro-

cess as in the text representation section, concate-
nating the title and content of the query using a
template. Then we input them into the trained
model and retrieve the k-nearest embeddings in the
set H(Y ) as the recommended items. The search
process is carried out by the FAISS engine.

4 Experiments

We conduct extensive experiments on four real-life
datasets. Our study aims to address the follow-
ing research questions: Q1: Can QUEST achieve
superior prediction performance than current state-
of-the-art frameworks? Q2: How effective is hash
sampling in reducing dataset size without sacrific-
ing performance and consuming excessive time,
compared to random sampling and other cluster-
ing techniques? Q3: How quickly can QUEST
address the EMTC issue in comparison to existing
baselines, and to what extent can QUEST be com-
pressed by utilizing various quantization methods?

4.1 Experimental Settings

Datasets. We evaluate QUEST’s performance us-
ing the following four datasets: Amazon-131K,
Amazon-1M, Wikipedia-500K, and WikiAlsoSee-
320K. These four are for product recommenda-
tions, scientific terms, and article categorization.
All datasets are derived from real-life scenarios,
and the details are presented in table 2.

Table 2: Statistics of the datasets. The table shows the
number of training data, testing data, and labels.

Dataset Xtrain Xtest Y

Amazon-131K 294,805 134,835 131,073
Amazon-1M 914,179 1,465,767 960,106
Wikipedia 1,813,391 783,743 501,070
WikiSeeAlso 693,082 177,515 312,330

Evaluation Metrics. To evaluate the recommen-
dation performance of the framework, we adopt
precision and recall rate as the main indicators,
which are defined as:

P@p =

∑n
i=1

∑
y∈Y pred

i
1
top-p
i (y)

np
,

R@r =
1

n

n∑

i=1

∑
y∈Y pred

i
1
top-r
i (y)

∑
y∈Y 1

top-r
i (y)

,

(6)

where n represents the number of evaluated
items, Y pred

i denotes the target query’s label set,

3933



Table 1: Performance comparison on four public datasets.

Dataset Metric GloVe SimCSE TF-IDF MPNet ICT MACLR RTS QUEST
L

F-
A

m
az

on
-1

31
K

P@1 3.67 10.13 12.38 13.94 13.82 18.13 18.74 25.48
P@3 2.78 8.61 11.50 11.41 11.41 15.42 15.30 17.69
P@5 2.15 6.69 9.14 8.82 8.90 11.93 11.96 13.40
R@1 2.05 5.61 6.91 7.82 7.76 10.35 10.64 14.61
R@3 4.33 13.39 18.14 18.08 18.09 24.45 24.16 27.73
R@5 5.44 16.84 23.21 22.58 22.80 30.43 30.45 33.99
R@10 7.23 21.27 29.32 27.91 28.94 37.28 38.19 41.96

R@100 14.17 35.81 45.04 43.39 47.40 54.99 59.34 64.30

L
F-

W
ik

ip
ed

ia
-5

00
K P@1 2.19 14.32 20.30 22.46 17.74 28.44 30.67 32.94

P@3 1.52 6.84 12.98 12.87 9.67 17.75 19.03 20.44
P@5 1.23 4.55 9.96 9.49 7.06 13.53 14.34 15.60
R@1 0.85 4.24 7.25 8.74 7.35 10.40 10.58 12.05
R@3 1.66 8.03 12.91 14.07 11.60 18.16 18.48 20.44
R@5 2.18 11.26 15.98 16.76 13.84 22.38 22.51 25.52
R@10 3.10 14.35 20.31 20.64 17.19 28.52 28.23 32.36

R@100 8.52 27.68 38.16 34.72 31.08 50.09 48.00 57.07

L
F-

W
ik

iS
ee

A
ls

o-
32

0K P@1 3.86 9.03 10.71 13.75 10.76 16.31 18.64 26.69
P@3 2.76 6.64 8.90 11.93 10.05 13.53 15.14 18.65
P@5 2.21 5.22 7.15 9.58 8.12 10.78 12.07 14.71
R@1 2.12 4.99 5.92 8.14 6.12 9.71 10.86 14.16
R@3 4.11 9.89 13.03 17.77 14.32 20.39 22.68 26.44
R@5 5.22 12.34 16.48 22.21 18.05 25.37 28.29 33.02
R@10 6.95 15.93 21.60 28.11 23.01 32.05 35.47 42.28

R@100 15.33 30.11 42.55 45.91 39.77 53.83 57.30 71.05

L
F-

A
m

az
on

-1
M

P@1 4.05 3.33 7.68 8.29 8.66 9.58 10.00 18.49
P@3 4.07 3.69 9.20 8.87 9.26 10.41 10.95 11.71
P@5 3.07 2.74 7.23 6.80 7.13 8.03 8.41 8.68
R@1 2.91 2.38 5.61 6.04 6.30 7.38 7.34 13.48
R@3 8.42 7.66 19.30 18.64 19.45 22.01 23.09 24.49
R@5 10.44 9.38 24.92 23.51 24.60 27.72 29.14 29.97
R@10 12.90 11.43 31.76 29.35 30.73 34.48 36.30 37.35

R@100 21.18 18.54 51.79 46.15 48.42 55.23 55.84 60.59

and the indicator function 1 counts the instances
where the retrieved item belongs to the ground truth
recommendations set.
Implementation Details. We utilize a server
equipped with six 24 GB NVidia RTX 3090 GPUs.
Our approach involves employing the Adam opti-
mizer with a learning rate set at 0.001 and imple-
menting early stopping based on the validation set
accuracy. The hyperparameter (sampling ratio) ρ is
fine-tuned through a grid search, with the optimal
hyperparameter selected for each dataset.

4.2 Baselines
We utilize several classical techniques for embed-
ding text. These methods encode textual descrip-
tions initially and then retrieve the most similar
items from the label set. Here are previews of the
baselines that are incorporated:

• TF-IDF (Ramos et al., 2003) selects words based

on their frequencies in the text.

• GloVe (Pennington et al., 2014) makes dense
vector representations of words instead of one-
hot encoders.

• SimCSE (Gao et al., 2021) is a contrastive learn-
ing framework for generating sentence embed-
dings. It takes an input sentence and predicts
itself in a contrastive objective, with only stan-
dard dropout used as noise.

• MPNet (Song et al., 2020) pre-trains language
models by combining masked language modeling
(MLM) and permuted language modeling (PLM)
into a single approach.

• Inverse Cloze Task (ICT) (Lee et al., 2019)
retrieves evidence candidates to answer open-
domain questions using a Bert-based model.
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• MACLR (Xiong et al., 2021) leverages the raw
text using techniques such as Multi-scale Adap-
tive Clustering, Label Regularization, and self-
training with pseudo-positive pairs.

• RTS (Zhang et al., 2022) is a framework used for
handling titles and content through conducting
augmentation from chunk-level texts.

4.3 Main Results

The comparison of prediction performance on four
datasets between QUEST and other baseline meth-
ods is shown in Table 1. To assess the effective-
ness of QUEST, we conduct extensive experiments
using various text-embedding approaches and the
latest methods. The best result for each baseline
group is highlighted by underlining.

• QUEST exceeds all benchmarks in precision and
recall rates across all datasets. This success is at-
tributed to the utilization of state-of-the-art large
language model frameworks. Prompt-tuning and
diverse sampling collectively help alleviate the
training workload, thereby enabling the training
of such a massive framework on a single device.

• Among all the baseline methods, GloVe embed-
dings fail to produce satisfactory results, while
Bag-of-words performs better due to its large di-
mension and sparse characteristics. Fine-tuned
Bert learns a more superior task-specific than
pre-trained language models. Our study demon-
strates that the remarkable comprehension ability
of contemporary generative large language mod-
els can be reproduced in the field of embedding
learning.

4.4 Effectiveness of Diverse Sampling

We compare the average P@1, R@10, and R@100
indicators of hash sampling with random sampling
to validate its effectiveness. As depicted in Fig-
ure 4, the prediction performance of the training
dataset selected by hash sampling surpasses the
baseline across different sampling proportions. It
is noticeable that the smaller the sampling propor-
tion, the greater the advantage, confirming the sig-
nificant superiority of our method, especially in
scenarios where computational resources are lim-
ited. Furthermore, the marginal benefit from in-
creasing the dataset is diminishing, verifying the
findings mentioned in the design space section that
many training labels are highly similar. Therefore,

using all training pairs can only result in little im-
provement. In practice, the sampling ratio ρ for
an extremely large dataset (1M) is selected to be
0.25. K-means clustering proves to be challeng-
ing in this task as it has a quadratic time com-
plexity and it grows significantly as K increases,
making it unavailable for processing millions
of data points. In our experiments, we failed to
obtain a response using the K-means algorithm.
Conversely, our Hash-sampling approach can yield
results within minutes.

Figure 4: The comparison between hash sampling and
random sampling. All y-axis units are in % proportions.

4.5 Efficiency Analysis

Other MEFT methods. In this section, we want to
compare the performance of QUEST and QLoRA
with a similar number of parameters (QUEST:
20,480 vs QLoRA: 32,768). We load the train-
able adapter towards the last transformer layer. An
important finding is that training QLoRA is ex-
tremely challenging, especially when the trainable
parameters are few. The loss is very difficult to con-
verge (the R@1 is merely 0.20%), indicating that
QUEST is much more effective in embedding ex-
traction. Additionally, we tested various quantiza-
tion techniques. While NF-4 quantization is widely
used, there are also alternative variants that employ
fewer bits. The outcomes are presented in Table 3.
GPTQ compresses trained weights to lower bits by
minimizing the mean squared error (Frantar et al.,
2022). Alpha-tuning adopts BCQ-format to divide
weights into a summation of k elements (Kwon
et al., 2022). In a 4-bit scenario, NF-4 performs
the best. If users aim for even smaller compression,
using 3-bit GPT-Q and alpha-tuning will introduce
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Table 3: Comparisons of various quantization methods.

Quantization

Method Bits P@1 R@100

Bfloat16 16-bit 25.86 64.98
NF-4 4-bit 25.48 64.30

GPTQ 4-bit 25.04 62.91
GPTQ 3-bit 24.35 61.41
GPTQ 2-bit 13.83 34.01

AlphaTuning 3-bit 23.34 61.60
AlphaTuning 2-bit 10.47 25.35

some loss, but going down to 2-bit will significantly
decrease performance. For a balance between com-
putational efficiency and accuracy, we are using
NF-4 compression. In the future, we will consider
adopting more advanced compression techniques.
Time consumption. All experiments of QUEST
were conducted on a single Nvidia 3090 GPU with
24GB memory capacity. Our strongest baseline,
RTS, uses 4 cloud V-100 32G GPUs and trains
for 30 hours to get the results on the Amazon1M
dataset. Our approach requires 48 hours of training.
RTS takes higher costs with smaller models due
to the need for expensive augmentation over title
and content pairs, but we utilize templates to better
encode different text structures.

4.6 Hyperparameter Study
In our research, the complexity of our framework
mainly depends on two aspects: the number of
trainable tokens K in the prompt and the length
of the tokenized sequence L for each piece of text.
The ablation study assesses the recall rate under
different combinations of these two variants.

Figure 5: Grid-search results on Amazon-131K.

Figure 5 shows that using a smaller number of
prompt tokens and shorter sequence lengths may
result in relatively lower performance. However,

adding too many tokens or increasing sequence
length does not lead to better performance either.
The best result was achieved with a configuration
of k at 15 and L set to 64. Overall, there is no
significant drop in performance, indicating that our
model is not excessively hyperparameter-sensitive.

5 Related Work

EMTC tasks are prevalent in recommendation sys-
tems, content tagging, and any application where
the set of potential labels is dynamic or extensive. It
can handle cold-start problems in e-commerce sys-
tems (Li et al., 2019; Chang et al., 2021; Zhou et al.,
2020). Existing attempts include using sparse em-
bedding, glove vectors, and transformer-based vari-
ants (Bhatia et al., 2015; Pennington et al., 2014;
Lin et al., 2017; Gao et al., 2021). On the other
hand, efforts have been made from the perspective
of the property of labels. Khandagale et al., 2020
learn the tree structure to generalize and partition
the representations of labels. GROOV (Simig et al.,
2022) employs the sequence-to-sequence model to
map inputs to a collection of textual labels. Wei and
Li, 2019 argue that infrequently occurring tail la-
bels are less significant than commonly seen labels.
Chalkidis et al., 2020 introduce label hierarchy to
tackle skewed label distribution. Others leverage
text information by clustering and label regulariza-
tion(Xiong et al., 2021). Word-level augmentation
has also proven to be effective in enhancing text
embeddings (Luo et al., 2021).

Parameter-efficient training methods are tech-
niques that aim to train models with a limited num-
ber of parameters while maintaining or enhanc-
ing performance. There are several classical al-
gorithms: Low-Rank Approximations reduce the
training load by approximating weight matrices
with lower ranks(Hu et al., 2021; Xu et al., 2023;
Liu et al., 2023; Shengyuan et al., 2024). Knowl-
edge Distillation trains a smaller "student" model
to imitate the predictions of a larger "teacher"
model (Cho and Hariharan, 2019; Sanh et al., 2019).
Quantization decreases the bit-width of model pa-
rameters and has been incorporated in recent stud-
ies to further accelerate training and compress the
model size (Polino et al., 2018; Lin et al., 2023).
QLoRA employs 4-bit quantization and lower-rank
decomposition to achieve a similar effect as the
original model (Dettmers et al., 2023).
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6 Conclusions

In this paper, we validated the effectiveness of large
generative language models in EMTC compared
to traditional methods like bag-of-words vectors
and Bert-based models. Given the fact that many
users cannot afford expensive computational re-
sources, all of our study revolves around this mo-
tivation. We employ prompt-tuning, quantization,
and hash sampling to mitigate the side effects of
the extremely large model size and vast training
pairs, enabling training on a single machine within
a limited time. The QUEST model manages to han-
dle large classification tasks and comprehensive
experiments confirm the efficacy of each module.

Limitations

In this paper, we observed a significant per-
formance drop with 2-bit quantization. With
new quantization techniques emerging, exploring
smaller models is worthwhile, and we plan to con-
tinue our research in this area. Although GPTQ and
Alpha tuning perform well with 3-bit quantization,
we could only compress the model post-training.
Directly training a 3-bit quantized model proved
difficult, as convergence was hard to achieve. There
is a significant difference between compressing af-
ter training and training with compression. The
latter approach allows individuals to train personal-
ized recommendation models on their own devices,
which greatly enhances privacy protection.

Ethics Statement

We all comply with the ACL Ethics Policy1 in this
study. We used open-resource datasets that have
been extensively used in prior research. Consumer
information has been anonymized and privacy has
been carefully protected.
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A Appendix

A.1 Quantization
Alpha-tuning adopts BCQ format to approximate
w to be summation of q multiplications between α
and b where q is the number of quantization bits,
α is a scaling factor and b ∈ {−1,+1} is a binary
vector.

W ≈
q∑

i=1

diag(αi) ·Bi.

For one-bit quantization, the analytic solution to
minimizing ∥w − αb∥2:

b∗ = sign(w),

α∗ =
w⊤b∗

n
.

For multiple bits quantization, we apply the
greedy approximation method to first produce α1

and b1 from the equation above and then iteratively
update αi and bi through the following functions:

b∗i = sign(w −
i−1∑

j=1

αjbj),

α∗
i =

w −∑i−1
j=1 αjb

⊤
j b

∗
i

n
.

NF4 is a 4-bit data type used in machine learning,
normalizing each weight to a value between -1 and
1 to provide a precise representation of lower pre-
cision weight values in contrast to a standard 4-bit
float. It utilizes a two-step quantization to enhance
memory efficiency for each linear layer.

Y BF16 = XBF16doubleDequant(cFP32
1 , ck−bit

2 ,

WNF4) +XBF16LBF16
1 LBF16

2 ,

where doubleDequant(·) is defined as:

doubleDequant(cFP32
1 , ck−bit

2 ,W k−bit) =

dequant(dequant(cFP32
1 , ck−bit

2 ),W 4bit) = WBF16

GPTQ is a post-training quantization method. It is
built based on the classic OBQ algorithm. In OBS,
the authors hope to find a way to erase a weight
denoted as q, such that the overall error increases
minimally, while simultaneously calculating a com-
pensation δq to apply to the remaining weights so
that the increased error from erasing this weight is

offset. The authors have found such a method, with
the formula:

wq = argminq

w2
q

[H−1
qq ]

,

σq = −
wq

[H−1
qq ]
·H−1

:,q .

Instead of setting timing parameters to zero,
GPTQ aims to round weight wq to the nearest value
on the quantization grid where F denotes the set
of remaining full-precision weights and σF is the
corresponding optimal update.

wq = argminq
(quant(wq)− wq)

2

[H−1
F ]qq

,

σF = −wq − quant(wq)

[H−1
F ]qq

· (H−1
F ):,q.

A.2 Hash Sampling
We show that E[Sumq] = R · J (q).

E[Sumq] = R ·
∑

s∈S
Pr
h∼H

[h(q) = h(s)]

= R ·
∑

s∈S

|ϕ(q) ∩ ϕ(s)|
|ϕ(q) ∪ ϕ(s)|

= R · J (q)

where the first step follows from Theorem 2 in
(Coleman et al., 2019), the second step follows the
definition of MinHash (Broder, 1997). As a result,
we can show that Algorithm 1 is essentially using
an estimated Jaccard kernel density as a measure
of diversity.
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