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Abstract

Chain-of-thought (CoT), tree-of-thought (ToT),
and related techniques work surprisingly well
in practice for some complex reasoning tasks
with Large Language Models (LLMs), but
why? This work seeks the underlying rea-
sons by conducting experimental case studies
and linking the performance benefits to well-
established sample and computational complex-
ity principles in machine learning. We exper-
imented with 6 reasoning tasks, ranging from
grade school math, air travel planning, . . . , to
Blocksworld. The results suggest that (i) both
CoT and ToT benefit significantly from task de-
composition, which breaks a complex reasoning
task into a sequence of steps with low sample
complexity and explicitly outlines the reasoning
structure, (ii) for computationally hard reason-
ing tasks, the more sophisticated tree structure
of ToT outperforms the linear structure of CoT,
and (iii) explicitly annotating important vari-
ables is important for good performance. These
findings provide useful guidelines for the use
of LLM in solving reasoning tasks in practice.

1 Introduction

Reasoning and planning tasks are often challenging
due to their inherently multi-step processes. Com-
pared with the Direct approach that prompts the
model to provide immediate answers, large lan-
guage models (LLMs) showed surprising results
on reasoning problems when they were asked to
explain their reasoning step-by-step through a chain-
of-thought (CoT) (Wei et al., 2022; Kojima et al.,
2022) before providing their answers. This was
followed by improvements of the tree-of-thought
(ToT) (Yao et al., 2023; Xie et al., 2023), combining
LLMs with a search algorithm to structure reason-
ing steps into a tree and selecting promising next
steps by self-evaluation. Other variants include
CoT with self-consistency (CoT-SC) (Wang et al.,
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Figure 1: An illustration of LLM reasoning methods on the
Game of 24. Given four poker cards, the player combines the
cards using basic arithmetic operations, (+,−,×,÷), to reach
the target number of 24.

2022), which generates multiple CoTs and responds
with the most common answer.

However, evidence shows that the relative perfor-
mance of CoT, ToT, and their variants may vary from
task to task. For example, CoT and its variants,
such as self-consistency (CoT-SC) (Wang et al.,
2022), have been successful in solving grade school
math problems (GSM). Our experiments show that
ToT is only marginally better than CoT and even
performs worse than CoT-SC on GSM when using
the same token budget. However, in the Game of
24 shown in Fig 1, where four numbers need to be
manipulated with arithmetic operations to obtain
the number 24, using CoT to provide a solution
with a short reasoning chain fails badly. In addi-
tion, CoT-SC did not show significant improvement
while using more tokens at inference. In contrast,
ToT significantly outperforms CoT and CoT-SC on
Game of 24 (Yao et al., 2023). These pieces of
evidence raise an important question: what are the
underlying factors that affect the effectiveness of
different LLM reasoning methods in various tasks?

To answer this question, we investigate when
and why CoT and ToT are effective in reasoning
and planning problems from the viewpoint of sam-
ple complexity and computational complexity in
machine learning. Sample complexity captures
the amount of data needed for learning predictors,
which we measure by description length (Shai and
Shai, 2014), the number of bits required to describe
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the learnable part of the predictor. The predictors
take an input, e.g., a sequence of words, and produce
a prediction, e.g. a label that may be used directly or
as a component of a larger reasoning process (Wei
et al., 2022). Predictors with a small description
length can be shown to require less training data, i.e.
a small sample complexity (Shai and Shai, 2014),
to achieve low generalisation error. Computational
complexity is relevant in two distinct ways in this
paper: 1) in the amount of computation required
for learning, e.g. finding the correct parameters in
the predictor given the training data, and 2) in the
amount of computation required for reasoning, e.g.
finding the solution given a problem. Learning may
become computationally intractable if the values of
hidden variables are not observed during learning1

(Aloise et al., 2009; Blum and Rivest, 1988), moti-
vating us to consider their presence during learning
of CoT. For problems that are computationally hard
to solve, e.g. NP-hard problems, it is unlikely that
a small predictor producing a short CoT solution
exists in the worst case, which motivates the use of
more complex structures like search trees.

We focus on the reasoning and planning prob-
lems in the context of natural language processing.
A reasoning problem entails deducing the answer to
a question from provided evidence and applicable
reasoning rules. It often requires applying various
rules multiple times to connect different pieces of
evidence and draw a conclusion. Planning, a special
subset of reasoning, requires an action sequence
to achieve a desired goal state from a current state.
Planning often requires reasoning over a long time
horizon, making it computationally harder to solve.

We empirically study these issues through six
case studies: grade school mathematics (Cobbe
et al., 2021), multi-hop question answering
(Trivedi et al., 2022), a simple dynamic program-
ming (DP) problem (Dziri et al., 2023), air travel
planning (Zhao et al., 2023), Game of 24 (Yao et al.,
2023) and Blocksworld (Valmeekam et al., 2023)2.
Grade school math, multi-hop question answering
and DP problems we consider have computationally
efficient reasoning components. Air travel planning
has two different efficient solutions that we compare.
Finally, Game of 24 and Blocksworld appears to be
computationally difficult.

We study the problems under different settings,
including prompting general LLMs, fine-tuning

1Indirectly the values need to be inferred during learning.
2Due to lack of space, we describe the multi-hop question

answering and Blocksworld case studies in Appendix C.

with task-specific data, and in-context learning with
task-specific examples. Our main findings are
consistent over different settings. These findings
suggest a few guiding principles for using LLM to
solve reasoning and planning tasks in practice:

• CoT and ToT enhances LLM reasoning when
problem decomposition lowers the sample com-
plexity. In all six cases, decomposing problems
with chain or tree structures reduces sample
complexity and improves performance.

• Explicitly annotating necessary information im-
proves CoT performance. In the DP problem
and Blocksworld, explicitly demonstrating rel-
evant variables improves learning. For tasks
with small search trees like air travel planning,
CoT that linearizes the search tree and explicitly
describing intermediate computations outper-
forms CoT that directly predicts the next action.

• Tree structures help when generating short-
chain solutions is computationally hard; CoT-
SC is effective otherwise. For tasks like Game
of 24 and Blocksworld, where short-chain so-
lutions are likely computationally hard to find,
ToT works better. In tasks like GSM and multi-
hop QA with efficient algorithms for finding
next steps, CoT-SC performs better.

2 Related Work

LLMs have shown significant progress in tackling
reasoning and planning problems. Initial studies
(Wei et al., 2022; Wang et al., 2022; Kojima et al.,
2022; Chen et al., 2022; Gao et al., 2023) unveiled
various prompting techniques that enable LLMs
to demonstrate reasoning processes step by step,
thereby substantially boosting their reasoning abil-
ities. This approach has been swiftly adapted to
address everyday planning issues (Huang et al.,
2022a,b; Ahn et al., 2022; Song et al., 2023; Wang
et al., 2023; Singh et al., 2023). Subsequent re-
search has integrated LLMs with diverse search
algorithms, further enhancing their capability to
solve complex reasoning and planning challenges
(Zhang et al., 2023; Yao et al., 2023; Zhao et al.,
2023; Xie et al., 2023; Ding et al., 2023; Feng et al.,
2023; Hao et al., 2023; Liu et al., 2023).

Several works explore why CoT improves perfor-
mance. Feng et al. (2024) investigates how CoT
enhances model capacity; Prystawski et al. (2024)
and Wang et al. (2024) examine the training data
distribution that enables CoT to excel; Dziri et al.
(2023) discusses CoT’s limitations in compositional
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reasoning. Our work takes a different approach, we
explore principles that guide LLM behavior across
various reasoning frameworks, and provide insights
into selecting appropriate strategies for different
tasks. While Zhao et al. (2023) discusses the sam-
ple complexity of LLM planning, they overlook the
computational implications.

3 Analysis of LLM Reasoning Methods

We aim to analyze LLM reasoning methods from
the sample and computational complexity perspec-
tive in machine learning. Our goal is to understand
the complexity of problems using simple represen-
tations. However, analyzing LLM learning with
transformer architecture is challenging, and the
effects of pre-training, which we do not control,
are present throughout. Instead, we empirically
observe whether our analysis reflects the practical
behaviour of LLMs and whether the insights from
our analysis are practically useful. Specifically,
when our analysis suggests that a particular method
is preferred, we examine whether it is indeed pre-
ferred empirically.

3.1 Problem formulation
The LLM reasoning approach, e.g., CoT and ToT,
essentially uses a sequential decision approach to
do the reasoning instead of other approaches, such
as converting to a Boolean satisfiability problem
(SAT) and solving it using SAT solvers. Thus, we
formulate reasoning and planning problems using
planning terminology. A planning problem can
be defined using a state space 𝑆, an action space
𝐴, a transition function 𝑇 , and a goal function 𝐺.
The state space 𝑆 defines all possible states (e.g.,
the boolean values of assigned variables for logical
inference or scalar values of assigned variables for
math problems). The action space 𝐴 consists of
possible equations or rules. Each state has appli-
cable actions that can be executed. The transition
function 𝑇 (𝑠, 𝑎) specifies a new state 𝑠′ after ap-
plying action 𝑎 in state 𝑠. The goal function 𝐺
specifies whether the current state is a goal state.

The solution to a reasoning or planning problem
is a sequence of actions in the action space that
transforms the initial state into a goal state. In a
CoT, we directly use the LLM as a policy to map
the current state (as inferred by the LLM from the
context) to the action, while in a ToT, the LLM
is used to specify applicable actions in each state
to construct a search tree. LLM is also used as a

transition function in both methods.

3.2 Decomposition and sample complexity
3.2.1 Description length (DL)
Description length (DL), the number of bits required
to describe the learnable part of the predictor, is
used to analyse the sample complexity in machine
learning. It is used in the minimum description
length (MDL) principle, also known as Occam’s
Razor from the philosophy of science. The MDL
principle suggests that a method with a shorter
description length requires less training data and
is preferred. MDL has been formalized in various
ways. One formal statement of the MDL princi-
ple (from section 7.3 of Shai and Shai (2014)) is
provided in A.1. According to the Theorem, we
can bound the expected loss of a solution by the de-
scription length and the training loss. Thus, when
trained by the same amount of data, predictors
with smaller DL have lower generalisation errors,
indicating a lower sample complexity.

3.2.2 DL analysis of LLM reasoning methods
For each reasoning method, we can analyze the
description length of its policy and transition. Note
that here we are not counting the description length
of the parameters of the LLM, instead, we are
counting the description length of the tabular pre-
dictors which approximates the LLM’s behaviours
in different reasoning methods.
Direct Direct answering method does not involve
explicit steps of reasoning, all reasoning is per-
formed internally in the neural network. This
method may have a low sample complexity if the
neural network architecture closely aligns with the
reasoning algorithm (Xu et al., 2020). Analysing
whether the algorithm fits the inductive bias of
the network is complex, so we mostly explore a
tabular representation for simplicity. In problems
with 𝑁 variables, each taking 𝐾 values, direct an-
swers require learning a table of size 𝐾𝑁 , which
exponentially increases with more variables.
CoT With |𝐴| number of possible actions, each
depending on 𝑎𝑖 variables, the description length
for transition functions of these actions is propor-
tional to

∑ |𝐴|
𝑖=1 𝐾

𝑎𝑖 . We also need a policy function
predicting action to select based on observations
with its description length of 𝐾𝑀 if it depends on
𝑀 variables. If the policy depends only on whether
the variables have been observed rather than their
values, then a binary table of size 2𝑀 is sufficient.
CoT-SC runs CoT multiple times and responds
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with the most common answer – this reduces the
prediction variance and, consequently, the sample
complexity at the cost of more computation.

ToT The learnable parts of a ToT predictor are
its transition function, value function (via self-
evaluation). The complexity of transition func-
tions in ToT is analysed similarly to CoT. The self-
evaluation module, which evaluates whether the
current state or selected action is promising to reach
the final answer. It acts as a search heuristic: the
highly promising branches will more likely be se-
lected for the next search steps. This self-evaluation
module is essentially a classifier. Similar to the
policy for next-step prediction, the classifier can be
described by a table with a size of 𝐾𝑀 if it depends
on 𝑀 variables to determine the next actions. If
the policy depends only on whether the variables
have been observed rather than their values, then a
binary table of size 2𝑀 is sufficient. For NP-hard
problems, the computational graph of a ToT predic-
tor is unlikely polynomial-sized. However, from
this analysis we see that the learnable parts of the
ToT predictor, i.e. the transition and value function,
can be polynomial-sized.

Our analysis is mostly done assuming a tabular
representation. This is further complicated by two
factors: the amount of pre-training of the LLMs,
which we do not control, and possible failures in
training, e.g. due to the presence of local minimums.
Empirical observations in our case studies assess
whether the transformer architecture used in LLM
resembles table-filling behaviour for each case or
successfully learns a better algorithm, taking into
account the effects of pre-training.

3.3 Reasoning structure and computational
complexity

The computational complexity of solving (versus
learning) a reasoning or planning problem is a key
factor in choosing between CoT and ToT. Some
problems, e.g. NP-complete problems, have short
solutions that are verifiable in polynomial time,
but efficient policies to find such solutions are
unlikely to exist. ToT, with its search algorithm,
presents a viable approach for such hard problems
by allowing the use of more computation during the
search process. However, for simple problems with
low computational complexity, a complex search
algorithm may not produce additional improvement.

4 Case Studies3

4.1 Grade School Maths
GSM8K (Cobbe et al., 2021) consists of grade
school math problems in natural language. LLMs
solve these problems effectively with CoT (Achiam
et al., 2023). The dataset is widely used to evaluate
the reasoning ability of language models. We
analyze the dataset and find that it is well-suited for
CoT, as most problems can be solved with a linear-
time policy. We also empirically show that CoT is
usually sufficient, and ToT offers little improvement.
In a subset of 50 randomly selected problems, we
found that 49 can be solved with a chain-style
algorithm where each step involves selecting an
equation with all but one variable known, allowing
the remaining variable’s value to be inferred. The
remaining problem, solvable with simultaneous
equations, is ignored in the rest of the study.

4.1.1 Analysis
Direct Consider a problem with 𝑁 variables each
can take 𝐾 values. A tabular representation re-
quires a table of size 𝐾𝑁 and description length
of 𝑂 (𝐾𝑁 log𝐾) for each question type, assuming
answers also take 𝐾 possible values (thus log𝐾
bits to represent). The description length can be
large (we manually analyze a subset of GSM8K
problems and show statistics in Appendix D.1).
CoT In a math word problem, the action can be
selecting the next applicable rule, and the transition
would be deriving the next value of an intermediate
variable based on the rule and the value of the input
variables. Assuming 𝐴 different actions whose
transition functions require 𝑎𝑖 variables, the total
description length of the learnable transitions would
be 𝑂 (∑𝐴

𝑖=1 𝐾
𝑎𝑖 log𝐾). This is more manageable

than Direct (see Appendix D.1 for details). As for
the policy, we can select an equation where the
values of all except one variable are known. There
exists a linear time forward chaining algorithm
to do that (Appendix D.3), which translates to a
relatively small policy that needs to be learned.
The components of the decomposed problems are
relatively simple and suggest that decomposition
with CoT may be reasonable for this problem.
ToT As discussed in CoT, there is a simple policy
for deciding the next equation to solve. If the policy
is learned reasonably well by the LLM, a search
may give limited improvement.

3See Appendix B and J for experimental details and com-
plete prompts.
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Figure 2: (a) Results of GPT-3.5 and GPT-4 on GSM8K Test
set; (b) Fine-tuning results on Llama2-7b

4.1.2 Experiments
In-context Learning Our experimental results are
shown in Fig. 2a. We see that GPT-3.5 and GPT-4
give lower performance than CoT due to the higher
sample complexity, which aligns with our analysis.

An unanalysed factor is that LLMs still need to
learn to extract the equations from the question,
learn the world knowledge that is not included in
the question, and ground the variables’ values from
the previous observations. The LLMs, particularly
GPT-4, do remarkably well on GSM8K, indicating
that extraction and grounding may not be major
hurdles for LLMs. Some errors are still present and
are discussed in the Appendix D.4.

For ToT, we run a beam search ToT, branching
after each sentence on the choice of the next sen-
tences suggested by the LLM. We prompt the same
LLM to self-evaluate the quality of each proposed
reasoning step. ToT yields similar performance
to CoT, indicating the policy is reasonably well-
learned. We also see that using the same token
budget, CoT-SC performs better than ToT since
it reduces the variance of the predictions. This
suggests that when the problem does not inherently
require search, spending the inference budget on
CoT-SC may be more beneficial than ToT.
Fine-tuning The GPT experiments suggest that
LLMs have difficulties learning to solve GSM-type
questions directly. To check that, we perform fine-
tuning experiments using the GSM8K training set
and compare models fine-tuned with direct answer
completion and CoT completion.

We fine-tune with varying sizes of subsets of the
GSM8K training set and test performance on the
GSM8K test set. The results are shown in Fig. 2b.
Note that each CoT example provides substantially
more information than each Direct example, but CoT
is substantially better even when Direct is provided
with 7 times more training examples (Direct at 7k
vs CoT at 1k). It suggests that the transformer in the
LLM is behaving more like a tabular predictor and
cannot learn to decompose the problem internally

without being trained explicitly to do so.

4.2 Dynamic Programming
We study another problem, the Maximum Weighted
Independent Set problem (MWIS) (Kleinberg and
Tardos, 2005): Given a sequence of integers, find
a subsequence with maximum sum such that no
two elements in the subsequence are adjacent in
the original sequence. The problem can be solved
in linear time using dynamic programming (see
Appendix E.1). MWIS was studied in Dziri et al.
(2023), showing that LLMs trained on short se-
quences generalize poorly to longer sequences. In
this paper, we focus on the amount of annotation pro-
vided in learning where only the answer is provided
in Direct, whereas different levels of explicitness
in annotation can be provided in CoT.

4.2.1 Analysis
Direct Consider a sequence with 𝑁 integers; each
may take 𝐾 values. A tabular representation would
have 𝐾𝑁 entries, where each entry needs 𝑁 bits to
indicate the presence of the 𝑁 number in the subse-
quence, giving a description length of 𝑂 (𝑁𝐾𝑁 ).
CoT Using concepts in planning, we can see CoT
as a combination of selecting which function to
calculate next (policy), and derive the intermediate
results based on the function and input variables
(transition). There are a constant number of unique
function that may take up to 3 variables (see Ap-
pendix J.2 for examples), so the description length
of the transition would be 𝑂 (𝐾3 log𝐾), which rep-
resents a mapping from input variables to the output
value (log𝐾 bits to represent). To decide which
function to apply next, we only need to know what
variables have been calculated and what have not,
so the policy can be represented by a table of size
𝑂 (𝑁). Overall, the description length of CoT would
be 𝑂 (𝐾3 log𝐾 + 𝑁), which appears manageable.

4.2.2 Experiments
In-context Learning In this section, we will com-
pare prompting LLMs to answer the MWIS problem
directly with prompting them to answer using CoT.
We will also study two versions of CoT demonstra-
tions and show that a more explicit demonstration
can improve performance substantially.

Consider the following line from the CoT demon-
stration (see J.3 for the entire demonstration):
Implicit prompt (from Dziri et al. (2023)): ... Since
dp[0] != input[0] + dp[2] (6 != -4 + 5) ...

We can make it more explicit as follows:
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Explicit prompt: ... Since dp[0]=6, input[0]=-4,
dp[2]=5, input[0] + dp[2] = 1 != 6 = dp[0] ...

Both prompts demonstrate steps to use DP to
solve the MWIS problem, but in the Implicit
prompt, when autoregressively generating the to-
ken "!=", the values of dp[0], input[0], dp[2], and
input[0]+dp[2] are not explicitly stated in the im-
mediate context and need to be inferred from all
previous observations.
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Figure 3: In-context learning results on MWIS. 3-shot prompts
have one example each for sizes 4, 5, and 6, while 6-shot
prompts have two examples each. "In-domain" refers sizes 4,
5, and 6, and "Out-of-Domain" refers to sizes from 6 to 10.

As shown in Fig. 3, making the demonstrations
explicit provides more than 20% improvement com-
pared to the implicit demonstrations from Dziri et al.
(2023). This is consistent with the learning prob-
lem becoming computationally easier if all relevant
variables are explicit during learning. The sample
complexity may also be smaller, as explicit demon-
strations decompose the single reasoning steps into
multiple simpler steps, effectively creating a small
CoT. In contrast, we can view deciding between
"!=" and "==" in the implicit demonstration as a
function of all the previously observed variables.
The tabular representation of such a function has
a large description length which suggests that it
would require a larger sample complexity to learn.

We observe that prompting LLM to directly give
an answer performs comparably to the implicit CoT
method (Fig. 3). This suggests that while we prompt
the LLM to "directly" give an answer, the underlying
transformer model is not necessarily learning it by
populating a table of size 𝐾𝑁 as it is unlikely to
encounter a very large number of examples of the
MWIS problem during pre-training. This suggests
that the transformer used in the LLM may align
well with the reasoning algorithm used here. We
explore this further in fine-tuning experiments.
Fine-tuning We perform fine-tuning experiments
to study both in- and out-of-domain performance.

To examine the generalizability of the fine-tuned
model to OOD examples, we define two types of
Domain: 1) Problem size: Fine-tune with problems
of sizes 4, 5, and 6. Test with problems of size

ranging from 4 to 10. All numbers in the input
array are uniformly sampled from [−100, 100] 2)
Number range: Fine-tune and test with problems
of sizes 4, 5, and 6. For fine-tuning data, num-
bers in the input array are uniformly sampled from
[−100, 100], while for OOD test examples, num-
bers are uniformly sampled from [−1000, 1000].
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Figure 4: Results of fine-tuning Llama2-7B-chat on MWIS.

Results For in-domain test examples, CoT Explicit
outperforms CoT Implicit and Direct with the same
number of training examples. Interestingly, with
more fine-tuning data, Direct can achieve perfor-
mance similar to CoT Explicit. This contrasts with
math word problems, where Direct is not compa-
rable to CoT even with 10 times more fine-tuning
data. Training the transformer to directly approxi-
mate a DP algorithm seems easier than to compute
the result of a multivariate equation in math word
problems. However, it is unclear if this difficulty
is due to computational complexity in learning or
poor alignment of the transformer with solving the
equation; see Appendix F for more discussion.

As shown in Dziri et al. (2023), CoT struggles to
generalize to reasoning lengths longer than the train-
ing data, performing worse than Direct, likely due to
LLMs relying on pattern matching rather than com-
positional learning (Dziri et al., 2023; Kharitonov
and Chaabouni, 2020). However, all methods gen-
eralize well to different ranges of numbers, possibly
because the solution structure remains the same,
making pattern matching less of an issue.

4.3 Air Travel Planning
Consider the problem of planning an air trip: given
the starting city and destination, provide the flight
route using direct flights between cities. For exam-
ple, What is the flight route from Singapore to New
Orleans? A valid answer might be Singapore-San
Francisco-Houston-New Orleans. This is a typical
graph search problem where nodes are cities and
edges are direct flights, and we aim to find a valid
path that connects the start and target cities. To
solve it, we can either use an LLM to predict the
route directly or leverage the LLM’s knowledge
of the flight graph for a graph search. Zhao et al.
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(2023) studied this using prompting. In this paper,
we go further and linearize the graph search algo-
rithm into a CoT to study fine-tuning and learning
of the graph search algorithm.

4.3.1 Analysis
Assume there are 𝑁 cities. We randomly select two
cities as the current and target cities. We repeat the
description length analysis in Zhao et al. (2023),
then extend it to a linearized ToT.
Direct & CoT Generating the path directly is essen-
tially the same as CoT, as we generate the cities on
the path autoregressively. A concise representation
of it is a table, where rows and columns are the
current and goal cities, and each entry records the
next city to fly to reach the goal. This table has 𝑁2

entries, each taking log 𝑁 bits to describe, resulting
in a description length of 𝑂 (𝑁2 log 𝑁) bits.
ToT In ToT, LLM acts as the graph, i.e., predicts
the direct flight from the current city, together with
a hand-coded breadth-first search (BFS) algorithm
to find the valid route. Assuming that the total num-
ber of edges grows proportionally to the number of
cities, describing a sparse graph with 𝑁 nodes takes
approximately 𝑂 (𝑁 log 𝑁) bits, with log 𝑁 bits to
describe each city in the adjacency list. The graph
describes the transition functions; thus, ToT can be
described using 𝑂 (𝑁 log 𝑁) bits if the other com-
ponents are hand-coded. We can linearize the BFS
algorithm into a CoT which is entirely generated by
the LLM. Other than providing the adjacent cities
to each city, the components include being main-
taining a first-in-first-out queue, checking whether
a city has been visited and recognizing the goal
city. For a sparse graph as described, the runtime
of BFS is 𝑂 (𝑁), which translates to the existence
of relatively small predictors for all the functions.

4.3.2 Experiments
Since Direct and CoT are essentially the same, we
compare CoT with ToT experimentally. For ToT,
the LLM is used only in the expansion step of BFS,
when it is queried to generate the neighbour of a
city. In addition, we linearize the ToT process into
a CoT by generating all the intermediate steps in
the BFS computation in ToT-linear.

We evaluate the settings of travelling between
large cities (with a population of more than 5 mil-
lion) and mid-sized cities (with a population be-
tween 1 million and 5 million). Details of the
dataset can be found in Appendix G .
In-context learning The result for in-context learn-
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Figure 5: Results of GPT-3.5 and GPT-4 in air travel planning.

ing is shown in Fig. 5. For GPT-3.5, ToT outper-
forms CoT slightly in large cities and substantially
in mid-sized cities. This is consistent with the
analysis where the description length of CoT and
ToT are 𝑂 (𝑁2 log 𝑁) and 𝑂 (𝑁 log 𝑁) respectively:
the gap between CoT and ToT would be larger when
𝑁 is larger. Surprisingly, ToT-linear is comparable
to ToT, even for zero-shot, where the steps in the
BFS algorithm are briefly described in the prompt
without any examples of its execution, indicating
that there is some pre-training of the BFS algo-
rithm in GPT-3.5. GPT-4 generally does better than
GPT-3.5 for ToT and CoT, possibly because it has
been trained with more data. Interestingly, GPT-4
does not do so well for ToT-linear, particularly for
zero-shot, indicating that its pre-training for the
BFS algorithm is possibly poorer than GPT-3.5.
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Figure 6: Results of fine-tuning Llama2-7b using different
dataset sizes. The CoT no FT and ToT no FT means using the
pre-trained Llama2-7b with CoT and ToT.

Fine-tuning We perform fine-tuning experiments
which allows us to better control the amount of
training data used in the experiments. The results
of our fine-tuning experiments are in Fig. 6. Each
ToT-linear example is longer than a CoT example;
hence, we plot the results based on the number
of edges observed in training. The results are
consistent with the complexity analysis, with ToT-
linear performing better than CoT. ToT-linear can
also be viewed as a CoT where the intermediate
computations are explicitly described instead of
being left for the LLM to learn implicitly.
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4.4 Game of 24
Many puzzles like Game of 24 are designed to be
hard and unlikely to be efficiently solvable (Kendall
et al., 2008), although we are not aware of results
on the computational complexity of the Game of
244. We use the Game of 24 shown in the intro-
duction: given four numbers, the player must use
basic arithmetic operations (+,−,×,÷) and all four
numbers to reach 24. These types of puzzle games
are often designed to be hard to solve .

The results in Yao et al. (2023), obtained with
in-context learning, show that CoT fails while ToT
does substantially better. We extend the results by
showing that CoT fails in fine-tuning as well, sug-
gesting that the failure is likely due to the mismatch
between the computational structure of CoT and
the problem. We also consider the decomposition
of the actions for in-context learning and show that
the decomposition of complex actions into a se-
quence of simpler actions within a ToT can lead to
substantial improvement in performance.

4.4.1 Analysis
We provide a general form of Game of 24 for
analysis. Assume 𝑁 numbers are given, and each
number can take 𝐾 different values. The goal is
to use those numbers with arithmetic operations
(+,−,×,÷) to reach 𝑇 . For the standard Game of
24, 𝑁 = 4, 𝑇 = 24.
Direct Represented as a table, there are 𝐾𝑁 in-
puts. A solution is an expression consisting of
the 𝑁 numbers together with 𝑁 − 1 operations and
corresponding parentheses. Assuming log𝐾 bits
to represent numbers, this can be represented us-
ing 𝑂 (𝑁 log𝐾) bits, giving a total table size of
𝑂 (𝐾𝑁𝑁 log𝐾) bits.
CoT For CoT, the 𝑁 − 1 operations are produced in
a step-by-step manner. Each step has 𝑁 (𝑁 − 1)/2
ways to select two numbers and 6 distinct opera-
tions (two orderings for − and ÷), giving 3𝑁 (𝑁−1)
possible actions. The transition of each operation
can be represented with a table with 𝐾2 entries us-
ing 𝑂 (𝐾2 log𝐾) bits, although pre-training likely
has learned these operations for small 𝐾. This
gives a total description length of 𝑂 (𝑁2𝐾2 log𝐾)
if each action is learned using its own table. If
we decompose the selection of two numbers and

4A modified version with 𝑁 rather than four numbers,
arbitrary target number instead of 24, and only addition and
multiplication with zero allowed is the same as subset-sum, an
NP-complete problem. This suggests that similar puzzles are
computationally difficult to solve.

the arithmetic operation into two steps, then the
total description length is 𝑂 (𝑁2 + 𝐾2 log𝐾), and
we consider this decomposition in our experiments
(see Appendix J.5.1 for examples). Like other com-
putationally difficult problems, there is no simple
known policy for selecting the next action. A sim-
ple tabular policy would have 𝑂 (𝐾𝑁 ) entries, each
described using 𝑂 (log 𝑁) bits.
ToT ToT uses the same actions as CoT but does
not need a policy. Instead, we have a goal recog-
nizer and an evaluation function that decides which
nodes to expand. Verifying whether a solution is
correct can be done in 𝑂 (𝑁) time, hence a goal
recognizer with a small representation exists. Diffi-
cult computational problems typically do not have
a simple evaluation function for intermediate steps;
a tabular evaluation function would have 𝑂 (𝐾𝑁 )
entries. However, a ToT may use a larger computa-
tion budget to search a larger part of the search tree
when the evaluation function is weaker, compared
to CoT, where the next action is selected with a
fixed learned policy.

4.4.2 Experiments
We perform fine-tuning with 1200 solution trajec-
tories of Game of 24 to demonstrate the difficulty
of learning a small chain solution. Both CoT and
Direct failed in all test cases, indicating that moder-
ate amounts of data are insufficient for learning in
these settings. For in-context learning, the success
rate of the 100 games is reported in Fig. 7.
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Figure 7: Results of Game of 24. 5s, 3s and 1s means 5, 3,
and 1 examples in the prompt for few-shot in-context learning.

For ToT, we use a beam search with a beam
width of 5 and the same action and self-evaluation
prompts as Yao et al. (2023). We also constructed
a more decomposed version of ToT, ToT-Decomp,
where we decompose the action into two steps:
the selection of two numbers and the arithmetic
operation. Also, ToT-Decomp uses a small CoT
that provides the steps for constructing the final
equation from the sequence of actions and states
in the solution, whereas ToT directly generates the
final equation from the action-state sequence.
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From the results we see that ToT clearly out-
performing CoT and Direct. Additionally, ToT-
Decomp significangly outperforms ToT, demonstrat-
ing the advantages of decomposition even within
the components of ToT. Error analysis (Fig. 7) cate-
gorizes the errors into four types: 1) transition error
– the next state (remaining numbers) is generated
incorrectly; 2) proposal error – the LLM does not
generate the correct numbers in the action expres-
sion; 3) missing actions – there are valid actions but
are not proposed by the LLM; and 4) answer error
– the search is correct but the final expression is
incorrect. ToT-Decomp notably reduces each error
type compared to ToT.

5 Conclusion
This paper provides a detailed empirical study to
understand the effectiveness of CoT and ToT reason-
ing in planning and reasoning tasks using notions of
sample and computational complexity in machine
learning. We view CoT and ToT as decomposition
methods for the underlying problem and study the
complexity of the component predictors in the de-
composed problems. Our study finds that when the
solution can be decomposed as a chain of reasoning
steps where predicting the next step is not difficult,
explicitly demonstrating the reasoning chain during
learning can be helpful. Leaving out important vari-
ables for deciding the next reasoning step instead of
making all relevant variables explicit in the demon-
strations will make learning more difficult. Finally,
when algorithmic analysis indicates that predicting
the next reasoning step in a CoT is computationally
hard, a ToT structure can be helpful.

Limitations The suggested methodology from
this paper is to analyse the chain-of-thought as
a decomposition of the problem and to analyse
the complexity of its components. If learning the
components has low sample complexity and the
computational complexity of predicting the next
reasoning step is low, then learning to solve the
problem using a chain-of-thought would be rea-
sonable. On the other hand, if the computational
complexity of predicting the next reasoning step is
high, it may be reasonable to consider learning the
components and using a tree-of-thought to solve
the problem. This oversimplifies various aspects
of the problem. Even though the components have
low sample complexity, it may be difficult to learn
them in practice as the computational complexity of
learning may be high, although this may be allevi-

ated by overparameterization of the predictors used
to learn the components. Another issue is out-of-
domain generalization. As shown in the MWIS case
study, generalization in-domain does not mean that
the method will generalize out-of-domain, which
may be further exacerbated by overparameteriza-
tion. Further limitations may apply when doing
in-context learning where very few examples are
used. Performance may depend heavily on the pre-
trained LLM used in this setting. Nonetheless, our
case studies suggest that the proposed methodology
may still be useful in the in-context learning setting.
We would suggest using the guidelines proposed in
this paper in a similar way that the Occam Razor
principle in the philosophy of science is used. Oc-
cam’s Razor suggests that simple explanations for
a scientific phenomenon be preferred until shown
otherwise by observations. The suggestions we
proposed may not work all the time but should
similarly be preferred until empirical observations
suggest otherwise.

Ethics Statement This paper studies reasoning
and planning in LLMs from a general perspective.
While we do not focus on ethics issues, reasoning
and planning techniques can potentially be useful
in ensuring that AI agents behave ethically through
the use of appropriate reward or goal functions
that may possibly be learned from data. They may
also be used in harmful ways in planning more
sophisticated attacks against others. Research on
both the use of reasoning and planning for ensuring
ethical AI agent behaviour and in mitigating the use
of reasoning and planning in performing harmful
attacks should be encouraged.
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A Occam’s Razor
Theorem A.1 (Occam’s Razor) (Shai and Shai,
2014) LetH be a hypothesis class and let 𝑑 : H →
{0, 1}∗ be a prefix-free description language for
H . Then, for every sample size, 𝑚, every con-
fidence parameter, 𝛿 > 0, and every probabil-
ity distribution, 𝐷, with probability greater than
1 − 𝛿 over the choice of 𝑆 ∼ 𝐷𝑚 we have that,
∀ℎ ∈ H , 𝐿𝐷 (ℎ) ≤ 𝐿𝑆 (ℎ) +

√︁
( |ℎ| + ln (2/𝛿))/2𝑚,

where 𝐿𝑆 (ℎ) is the empirical loss of ℎ on the 𝑆,
𝐿𝐷 (ℎ) is the expected loss of ℎ, and |ℎ| is the length
of 𝑑 (ℎ).

B Experimental Details
All prompting experiments are done with gpt-3.5-
turbo-1106 and gpt-4-1106-preview. All fine-
tuning experiments are done with Llama2-7B-chat
(Touvron et al., 2023) with LoRA 𝑟 = 64, 𝛼 =
16 (Hu et al., 2021) applied to query and value
matrices, and uses 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 1 and gradient
accumulation steps= 32. MWIS and Game of
24 are fine-tuned for 5 epochs with a learning
rate of 3𝑒 − 4. Travel planning is fine-tuned for
300 gradient optimization steps with a learning
rate of 3𝑒 − 4. The fine-tuning data is wrapped
in the template "<s> [INST] {{prompt}} [/INST]
{{completion}} </s>" and the loss is calculated on
completion tokens.

C Additional case studies
C.1 Multi-hop Question Answering
We study the MusiQue dataset (Trivedi et al., 2022),
where the task is to identify the answer given a
question and a context of up to 20 paragraphs.
The question may look like "Who did the hitman
from The Hitman’s Bodyguard play in Star Wars?",
which can be solved by decomposing the question
and answering each decomposed question to get
the answer.

C.1.1 Analysis
This question answering task requires both natural
language processing and reasoning. We describe
the reasoning process as follows: the paragraphs in
the context provide a set of relation triplets, and the
question can be translated to a logical expression
which is a conjunction of some relation triplets,
with several unknown entities in it, one of which
is the target answer. The reasoning process would
require finding the unknown entities in some order
and to derive the final answer. The natural language

processing part is common to different reasoning
methods, while the complexity of reasoning can be
different.
Direct The set of relation triplets represented
by the context can form a knowledge graph, with
head and tail entities in the triplets being vertices
and relations being edges. Consider a problem
where there are 𝑉 vertices and 𝐸 edges in the
context knowledge graph and question, each vertex
and edge may take 𝐾 different values. To answer
the question directly would require memorizing a
table of size 𝐾 (𝑉+𝐸 ) log𝐾 , representing a mapping
from possible configurations of the question and
graph to an answer. Thus the description length
of learning Direct in a tabular manner would be
𝑂 (𝐾 (𝑉+𝐸 ) log𝐾).
CoT Similar to the Grade School Maths problem,
the reasoning process in this task can be seen as
a sequence of actions and transitions. The action
here would be to select a triplet in the question with
unknown entities, and the transition is to infer the
unknown entity. The unknown entity can be found
by matching the known entity and relation from
the question triplet to the appropriate triplet in the
context. The same entity can be named differently
in the question and the context triplets. A table
of size 𝐾2 can be learned to specify whether two
entities match. Matching relations is similar. This
suggests that learning the transition is manageable
with reasonable complexity, although extracting
the entity using natural language sentences adds
additional complexity. A policy for this problem
can simply be selecting a triplet in the question that
has two known element and one unknown element.
As in the Grade School Maths problem, this can
be done via forward chaining in time linear in the
size of the knowledge graph. The small policy
representation suggests that learning the policy
would not have high sample complexity.
ToT The description length of the transition func-
tions of ToT is the same as CoT and as in the CoT
case, performance of the transition likely depends
more on the natural language processing compo-
nent. In addition, all single hop questions in the
dataset have one unique answer. Hence, there is
no real need for branching if the transition is well
learned, and search may offer little improvement.

C.1.2 Experiments
We are not able to fit each question which is paired
with 20 paragraphs into the context window of
Llama-2 for fine-tuning. Instead, we perform in-
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Figure 8: F1 score of GPT-3.5 and GPT-4 on MusiQue Dev
set. (a) is using natural language context, (b) is using LLM
parsed relation triplets as context.

context learning studies with GPT models. We use
6-shot demonstrations consisting of the question
and answer (which includes the reasoning steps
for CoT) but did not include the contexts of the
6 questions in the demonstrations as the length
would be too long. Results are shown in Figure 8.
The experimental results align with our analysis.
We make the following observations: 1) CoT con-
sistently outperforms Direct but the gap between
them is smaller when using GPT4. One possible
explanation is that, the policy for reasoning, i.e.
selecting the next triplet to infer its unknown entity,
is relatively simple, and the more powerful GPT-4
may have been able to learn this directly during
training. Extracting the correct entities from the
context becomes a common bottleneck for the two
methods. 2) ToT performs similarly to CoT when
using GPT-4. This aligns with our analysis that ToT
may give little improvement as there is no branch-
ing in the reasoning trajectories. Surprisingly, ToT
is worse than CoT when using GPT-3.5. When
prompted with an incomplete reasoning trajectory
(i.e. some sub-questions are answered, some not
asked yet), the GPT-3.5 model tends to give a final
answer to the original question instead of generating
the next sub-question5. 3) CoT-SC is slightly better
than ToT. While ToT does not improve over CoT,
CoT-SC can still bring some improvement through
variance reduction.
Comparison with GSM8K From our analysis, we
see that math word problem (GSM8K) and multi-
hop question answering (MusiQue) have simple
policies. However, the in-context learning perfor-
mance of GPTs on GSM8K is substantially higher
than that of MusiQue. We believe there are two

5We further explored this issue with the following exper-
iment: instead of generating the response all the way to the
end (standard CoT), stop the generation when a newline is
generated. And then use the original input together with previ-
ous generated text as input to prompt the model again to get
a new line. This is equivalent to the CoT, only that we are
stopping every line. This method for GPT-3.5 has f1 score
41.09 indicating that GPT3.5 is not behaving as expected.

main reasons: 1) Retrieving the appropriate infor-
mation from the context to answer a sub-question,
i.e. the transition, is hard in MusiQue. After man-
ual analysis of 20 failed examples, we found that
16 of them are due to retrieval mistake, where the
correct sub-question is proposed, i.e. the policy is
easy, but the proposed sub-answer is incorrect. To
validate this hypothesis, we did an ablation study
by replacing every natural language sentence in the
context with a relation triplet automatically parsed
by GPT-4 with appropriate prompting. We be-
lieve this should reduce the difficulty of retrieving
information. Using the parsed context improved
performance substantially as shown in Figure 8b.
Interestingly, CoT-SC no longer improves on CoT
– the variance in the problem may mostly be com-
ing from the difficulty of retrieval and is probably
substantially reduced in the parsed version. 2)
Understanding the complex natural language ques-
tion in MusiQue is hard. Some of the complex
composed question in the dataset look like "How
were the same people who the Somali Muslim Aju-
ran Empire declared independence from expelled
from the natural boundary between Thailand and
the country where Nam Theun is found?", which
can be hard for the language model to understand.
From our analysis, we see that it is easy to de-
termine which incomplete relation triplet to infer
next, however, understanding the natural language
and translate it into a logical expression which is a
conjunction of relation triplets can be difficult. In
the 20 failed examples we analyzed, 4 of them are
due to wrong decomposition, i.e. the sub-question
proposed is not helpful in answering the composed
question.

ToT is not useful in this dataset likely because the
sub-questions mostly have a single correct answer.
Unlike GSM8K where each equation have only one
correct answer, it is possible for sub-questions to
have multiple acceptable answers that need to be
refined with additional sub-questions. For datasets
where this is common, ToT may be more effective.
And if the knowledge graph representing the con-
text is small, it may also be possible to linearize
the search tree into a CoT of reasonable size, as
demonstrated in the Air Travel Planning case study.

C.2 Blocksworld
Blocksworld is a planning task motivated by robot
manipulation. It has a table with blocks in different
colours. Given a set of preferred constraints for the
configuration of blocks, the agent needs to output
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(a)

(b)
Figure 9: We take stacking 5 blocks in 4 stacks (shown in a)
and 3 stacks (shown in b) as examples. (a) shows that stacking
5 blocks in 4 stacks is equivalent to choosing 3 out of 4 margins.
(b) shows that stacking 5 blocks in 3 stacks is equivalent to
choosing 2 out of 4 margins.

a sequence of actions to rearrange the blocks into
the target state that satisfies those constraints. The
agent can only pick up the block if it has no blocks
on its top and place it in an open space or stack on
a top block. For example, with a starting state of
blocks stacking in a specific order, the goal could
be “the red block is on top of the yellow block, and
the blue block is at the bottom.” The goal provides
constraints of the goal state, and the agent should
find a sequence of pick and place operations on
the blocks to satisfy the constraints. It is a typical
planning problem with constraint satisfaction in a
finite domain, which is NP-complete to find the
shortest plan (Gupta and Nau, 1992).

In this section, we conduct an empirical study
based on Hao et al. (2024) with some new contri-
butions: 1) We conduct finetuning experiments to
verify the difficulty of learning the shortest plan
solution for this problem. 2) We use a more realistic
version of ToT where we replace the ground-truth
action list in branches and perfect goal recogni-
tion in Hao et al. (2024) with possibly unreliable
LLM-based action proposal and goal recognition.
3) We show that further decomposing the direct
action proposal which does not reveal the satisfied
pre-conditions into a CoT that reveals the those pre-
conditions before proposing the actions improves
performance.

C.2.1 Analysis
We first upper bound the number of states. Assume
there are 𝐾 blocks on the table. The blocks can be
stacked arbitrarily on the table. Since the state is de-
scribed in natural language, there must be a specific
order in describing each stack of blocks. Therefore,
the stacks of blocks in this state description are
permutative. We first count the total number of
stacking ways and their permutations, assuming the

blocks are all in the same colours, i.e., without con-
sidering the order of blocks. For example, 5 blocks
can be placed in 4 stacks, where one stack has two
blocks while the other stacks have one block. In
that case, there will be four stacking cases: (2, 1,
1, 1), (1, 2, 1, 1), (1, 1, 2, 1), and (1, 1, 1, 2).
This is equivalent to choosing 3 out of 4 margins
demonstrated in Figure 9 (a). 5 blocks can also be
placed in 3 stacks, a choice of 2 in 4 margins, which
is shown in Figure 9 (b). Thus, for 𝐾 blocks, there
will be

∑𝐾−1
𝑘=0

(𝐾−1
𝑘

)
is the total number of different

stacking ways. Now, when the blocks are unique in
colours, there will be 𝐾! different ways of arranging
the order of the blocks. Thus, the total number of
states is 𝐾!

∑𝐾−1
𝑘=0

(𝐾−1
𝑘

)
= 𝐾!2𝐾−1, where 𝐾! is

the total number of permutation of all blocks, and∑𝐾−1
𝑘=0

(𝐾−1
𝑘

)
is the total number of different stack-

ing ways. There are four types of actions available:
pick up a block, unstack a block from on top of
another block, put down a block, or stack a block
on top of another block. The goal can be up to 3
pairwise spatial relation constraints. If the state
satisfies the constraints, the task is considered a
success.
Direct Learning to directly predict the sequence of
actions can be represented as a table. The rows and
columns of the table are the starting states and goal
state constraints. Each entry records a sequence of
actions. Assume the maximum number of actions
is proportional to the number of blocks. The total
size of the table is 𝑂 (𝐾!𝐾32𝐾−1 log𝐾) bits.
CoT For CoT, the actions are generated step by step.
In each step, the LLM generates the next action and
predicts the next state, given the action and current
state. The LLM needs to learn the precondition and
effect of each action. The total number of grounded
actions is 2𝐾 + 2𝐾 (𝐾 − 1) = 2𝐾2. Each action
needs to learn its pre-conditions and effects. The
state can be described using 𝑂 (𝐾2) propositions
such as On(A,B) and Clear(A). The pre-condition
is a subset of these propositions that needs to be
true. The effects consist of the add effect, which
is a subset of propositions that will become true
upon the execution of the action, and the delete
effect, which is a subset of propositions that will
become false. Assuming that the subsets in the pre-
condition, add effects and delete effects have size at
most 𝑘 , we need to describe the choice of 𝑘 propo-
sitions from 𝑂 (𝐾2) possible propositions, which
requires 𝑂 (𝑘 log𝐾) bits. With 𝑂 (𝐾2) actions, the
total description length for describing the action
preconditions and effects is 𝑂 (𝑘𝐾2 log𝐾) bits. In
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Blocksworld, the value of 𝑘 is a small constant and
the complexity of the transitions seems reasonable.

Given the current state and goal constraints, we
also require a policy to predict the next action. This
can be represented as a look-up table whose rows
and columns are the current state and goal con-
straints, and the entry is the next action. Describing
one action requires 𝑂 (log𝐾) bits. Thus, the total
size of the table is still 𝑂 (𝐾!𝐾22𝐾−1 log𝐾) bits,
suggesting that a policy in tabular form may be
difficult to learn.
ToT Unlike CoT, ToT does not require a policy
for predicting the next correct actions, although
it needs to learn the pre-condition and effects of
each action. The LLM needs to behave as a world
model that proposes valid actions, predicts the next
state, and recognizes the goal. ToT uses the same
actions as CoT, and our analysis has reasonable
sample complexity. Verifying whether the solution
is valid takes 𝑂 (𝐾) time; hence, a small represen-
tation of the goal recognizer is possible. Similar
to the game of 24, the self-evaluation (heuristic)
could be complex, requiring𝑂 (𝐾!𝐾22𝐾−1) entries.
However, ToT spends more computational costs to
conduct look-ahead searches; hence, we expect that
its performance may be better than that of CoT.

C.2.2 Experiments
We test the performance of Direct, CoT, CoT-SC,
and ToT using four-block-stacking tasks. We test the
in-context learning (ICL) performance of GPT-3.5
and GPT-4 and fine-tune the Llama-2-7b (Touvron
et al., 2023) using Direct and CoT. We use the
same testing dataset as (Hao et al., 2024)6. As
for the fine-tuning experiments, we generate 1000
trajectories for block stacking using the same distri-
bution of the testing data. Our in-context learning
experiment is adapted from Hao et al. (2024), but
we have modified the reasoning methods: 1) The
CoT in Hao et al. (2024) is essentially Direct in
our definition, while our CoT keeps tracking the
state changes in each step. 2) Our ToT modified the
RAP method in Hao et al. (2024) to use LLM to
propose all the actions in the branches, predict the
next state after applying one action, and recognize
the goal. In comparison, the RAP only use LLM
for next-state prediction and uses the ground truth
admissible actions. 3) We provide two versions
of ToT: ToT and ToT-Decomp. ToT uses LLM to
propose possible actions directly given the current

6https://github.com/maitrix-org/llm-reasoners
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Figure 10: Results of the Blocksworld experiments. ICL
stands for in-context learning.

state. ToT-Decomp uses a CoT prompt to propose
possible actions. Instead of proposing possible
actions directly from the current state, ToT-Decomp
first explains the reasons that each proposed ac-
tion is admissible (pre-conditions satisfied) before
generating the possible action branches. For exam-
ple, ToT-Decomp would explain that Holding(x)
and Clear(y) are both be true before proposing
Stack(x,y) as a possible action. This can also be
viewed as making the pre-conditions that are hidden
in the direct prompt visible via CoT prompting.

The experimental results are reported in the Fig-
ure 10. Both the Direct and CoT do not perform
well in the fine-tuning experiments. It suggests that
learning the short-chain solution for this planning
problem is not sample-efficient. This is because
finding the short-chain solution for this problem
is likely computationally hard. It is also reflected
by the description length analysis: Direct and CoT
have similar, very large tabular description lengths,
suggesting that their sample complexities are both
very high.

For the in-context learning (ICL), we also found
that Direct and CoT have very similar performance
in both experiments using GPT-3.5 and GPT-4.
When using CoT-SC with 10 samples and 100
samples, the performance improved a bit in gen-
eral, but not very much. CoT-SC achieves higher
performance than CoT because it spends more on
computation by sampling more reasoning trajec-
tories and performing a majority vote, effectively
decreasing the variance and improving the perfor-
mance. Simple ToT performs even worse than
Direct. This is because the LLM was not able
to learn the pre-conditions directly from the small
number of examples and the invalid actions compro-
mised the entire performance. On the other hand,
using ToT-Decomp achieved the best performance.
This is because using a reasonable decomposition
which makes the hidden pre-conditions of the ac-
tions visible produced actions that are almost all
admissible, enabling the lookahead search of ToT
to be effective. Even though the self-evaluation is
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inaccurate, ToT searches larger areas using the more
accurate reward model and transitions, making it
more effective than CoT and its variants.

D GSM8K
D.1 Statistics
In the GSM8K dataset, the variable values (𝐾) are
usually from 1 to 6 digits and the average number
of variables per question (𝑁) is 3.93. The average
number of variables (𝑎𝑖) is 2.19, the average number
of reasoning steps is 3.17, so each step is relatively
simple and the number of steps are also small. We
also find that the number of rules that need to be
learned as world knowledge appears to be relatively
small (see Appendix D.2). Overall, we see that
the decomposed components in CoT are relatively
simple, and suggest that decomposition with CoT
may be reasonable for GSM problems.

D.2 Common Rules in GSM8K
We analyzed 50 problems from the GSM8K training
set and identified a set of rules. The first five
are general rules that can be inferred from the
questions and are applicable to multiple problems.
The last four are question-specific rules, involving
commonsense knowledge that are not mentioned in
the questions.

1. Amount A = Amount B * multiplier

2. Amount A = Amount B + difference

3. Total = N_unit * Amount per unit

4. Total = Sum of components

5. Current Amount = Initial Amount - Amount
Given + Amount Received

6. Question-specific (implicit): One hour = 60
Minutes

7. Question-specific (implicit): one sandwich
has two slices of bread

8. Question-specific (implicit): face has two eyes

9. Question-specific (implicit): 1 quarter = 25
cent; 1 dime = 10 cent; 1 nickel = 5 cent

D.3 An Efficient Algorithm for GSM8K
Based on our analysis of the GSM8K problems
in 4.1.1, we give a formulation of the GSM8K
problems, and show that there exists an algorithm
that has runtime linear to the total input length.

Problem Formulation
Input: A set of 𝑁 variables {𝑉1, ..., 𝑉𝑁 }, where

the values of some variables are known (from nat-
ural language input), while some are unknown (to
be inferred); A set of 𝑀 equations {𝑅1, ..., 𝑅𝑀 },
where all equations have exactly one variable on
LHS; A target variable 𝑉𝑡 whose value we want to
know.

Output: The value of 𝑉𝑡 .
The solvability of the problem ensures that for

all variables, if the value is not given in the natural
language question, will appear on the LHS of some
equation.
An Efficient Algorithm :

Inspired by Dowling and Gallier (1984), we
design an algorithm whose runtime is linear to the
size of the problem (total length of all equations).

We maintain a list numvars[𝑀] which stores
the number of unsolved variables on RHS for
each equation; a list lhslist[𝑀] which stores
which variable is on LHS of an equation; a list
equationlist[𝑁] which stores the index of the
equations where the corresponding variable appears
on RHS. We say an equation 𝑅𝑖 is ready to be pro-
cessed if numvars[𝑖] = 0. We maintain a queue
that will contain the equations that are ready to
be processed, and it is initialized to contain the
equations that are ready to process given the known
variables from natural language input.

Then we loop over the queue. Let
equation1 be the current head of the queue
and let nextvar=lhslist[equation1] be the
variable on the LHS of of equation1. Pop
the head of the queue, and iterate over
equationlist[nextvar], for every equation2
in it, reduce numvars[equation2] by 1, and if
numvars[equation2] becomes 0, add equation2
to the queue.

Loop until the queue is empty, we would have
solved the values of all 𝑁 variables. Refer to
Algorithm 1 for a more concise representation of
the algorithm.
Complexity of the Algorithm numvars and
lhslist can be initialized in 𝑂 (𝐿), where 𝐿 is
the total length of all equations. When processing
an equation, the decrement of numvars corresponds
to the "deletion" of occurrences of the variable in
an equation, each variable in the equation is looked
only once, thus processing all equations also runs
in 𝑂 (𝐿). Overall, the runtime of the algorithm is
𝑂 (𝐿), i.e. linear to the total length of the equations.
If we assume each variable appears only once on the
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Algorithm 1 Forward Chaining Algorithm for
GSM8K Problems
Require:

𝑁 variables {𝑉1, . . . , 𝑉𝑁 }, with known and
unknown values.
𝑀 equations {𝑅1, . . . , 𝑅𝑀 }, each with one vari-
able on LHS.
Target variable 𝑉𝑡 to find the value of.

Ensure:
Value of 𝑉𝑡 .

1: numvars[1 . . . 𝑀] ← Number of unsolved
variables on RHS of each 𝑅𝑖 .

2: lhslist[1 . . . 𝑀] ←Variable on LHS of each
𝑅𝑖 .

3: equationlist[1 . . . 𝑁] ← Indices of 𝑅𝑖
where 𝑉 𝑗 appears on RHS.

4: Initialize queue readyQueue with indices of
𝑅𝑖 where numvars[𝑖] = 0.

5: while readyQueue is not empty do
6: 𝑖 ← Dequeue from readyQueue.
7: 𝑉 𝑗 ← lhslist[𝑖].
8: for each 𝑘 in equationlist[ 𝑗] do
9: numvars[𝑘] ← numvars[𝑘] − 1.

10: if numvars[𝑘] = 0 then
11: Enqueue 𝑘 into readyQueue.
12: end if
13: end for
14: end while
15: return Value of 𝑉𝑡 .

LHS of equations, and each equation has a number
of variables up to a constant 𝐶 (as we have seen
in 4.1.1, this is often true for GSM8K problems),
the runtime of the algorithm would be 𝑂 (𝑁), i.e.
linear to the number of variables in the problem.

D.4 GSM8K Errors
We observe three types of errors from GPT, namely
grounding error, calculation error, and missing rule.
We provide an example for each type.

Listing 1: Grounding Error
Question:
Annie was given a pack of crayons. The pack contained 21
crayons. She already had a box of 36 crayons in her locker.
Her friend Bobby gave her half the amount she already had in
her locker. She decided to give her sister Mary 1/3 of her
total amount of crayons. How many crayons does she give to
Mary?

GPT-3.5 response:
"Annie originally had 21 crayons in the pack and 36 crayons in
her locker.

So she had a total of 21 + 36 = 57 crayons.
Bobby gave her half the amount she already had, so he gave her
57 / 2 = 28.5 crayons, but since you can’t have half a crayon,
let’s round down to 28.

So she now has 57 + 28 = 85 crayons.
So 1/3 of her total amount of crayons is 85 / 3 = 28.33
crayons, but since you can’t have a fraction of a crayon, let’
s round down to 28 crayons.
So she gives Mary 28 crayons.
So the answer is 28."

In Listing 1, the problem involves using the rule
"Amount A = Amount B * multiplier", which should
be grounded as "Amount from Bobby = Amount in
Locker * 1/2", not "Amount from Bobby = Amount
Annie have in total * 1/2".

Listing 2: Calculation Error
Question:
To get free delivery, Alice needs to spend a minimum of $35.00
online at her favorite grocery store. In her cart she has

1.5 pounds of chicken at $6.00 per pound, 1 pack of lettuce
for $3.00, cherry tomatoes for $2.50, 4 sweet potatoes at $0
.75 each, 2 heads of broccoli for $2.00 each and a pound of
Brussel sprouts for $2.50. How much more does she need to
spend in order to get free delivery?

GPT-3.5 response:
"Alice’s total so far is:
(1.5 * 6) + 3 + 2.50 + (4 * 0.75) + (2 * 2) + 2.50
= 9 + 3 + 2.50 + 3 + 4 + 2 + 2.50
= 26.00

To get free delivery, she needs to spend at least $35.00.
So she needs to spend 35 - 26
= 9.00 more to get free delivery.

So the answer is 9.00."

In Listing 2, the calculation is wrong.

Listing 3: Missing Rule
Question:
A Ferris wheel can accommodate 70 people in 20 minutes. If
the Ferris wheel is open from 1:00 pm until 7:00 pm, how many
people will get to ride?

GPT-3.5 response:
"The Ferris wheel can accommodate 70 people in 20 minutes.
There are 6 periods of 20 minutes from 1:00 pm to 7:00 pm.
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So in total, the Ferris wheel can accommodate 70 * 6 = 420
people.
So 420 people will get to ride the Ferris wheel from 1:00 pm
until 7:00 pm.
So the answer is 420."

In Listing 3, one commonsense knowledge (one
hour has 60 minutes) not mentioned in the question
is not properly used in the solution.

E Dynamic Programming

E.1 Algorithm for MWIS
An algorithm that solves the Maximum Weighted
Independent Set problem and runs in time 𝑂 (𝑁)
where 𝑁 is the number of numbers in the input is
shown in Algorithm 2.

F Inductive bias of Transformers

From the math word problem and dynamic pro-
gramming fine-tuning experiments, we see that
for some tasks (maximum weighted independent
set), the transformer can learn to directly answer
the problem efficiently, while for some other tasks
(word problem), the direct answer is hard to learn.

We conduct two more experiments to study what
might affect the performance of learning to direct
answer other than sample complexity: 1) learn the
max function, where the input is a list of integers,
and the expected output is the maximum value
in the input list. This requires only looping over
the sequence once, and storing one intermediate
value; 2) another dynamic programming problem
called rain water7 that requires looping over the
array three times and storing two one-dimensional
arrays for memorization. These two problems are
similar to MWIS as they all require looping over
the input sequence and maintaining some internal
variables during the iteration. We use them to study
whether the difference between learning to directly
answer the word problem and MWIS is related to
the inductive bias of transformers. To eliminate the
confounding part, the difficulty of language in the
word problem, we perform a modified version of the
problem, where we remove all natural language in
the prompt, and use a fixed formula for ground-truth
answer: (𝑣1𝑣2 + 𝑣1𝑣3 + 𝑣1𝑣3/𝑣5 + 𝑣1𝑣2/𝑣4)𝑣7/𝑣6.
The input would look like "1, 6, 4, 3, 2, 14, 8",
and the expected output for this example would be
"8" ((1 · 6 + 1 · 4 + 1 · 4/2 + 1 · 6/3) · 8/14 = 8).
We randomly sample the values of the variables,

7https://leetcode.com/problems/trapping-rain-
water/

Algorithm 2 Dynamic Programming Algorithm for
the Maximum Weighted Independent Set problem
Require: An array 𝑎𝑟𝑟 of integers
Ensure: A sequence of decisions maximizing a

certain criterion based on 𝑎𝑟𝑟
1: 𝑁 ← length of 𝑎𝑟𝑟
2: Initialize 𝑑𝑝 [0 . . . 𝑁 − 1] with zeros
3: 𝑑𝑝 [𝑁 − 1] ← max(𝑎𝑟𝑟 [𝑁 − 1], 0)
4: 𝑑𝑝 [𝑁−2] ← max(𝑎𝑟𝑟 [𝑁−1], 𝑎𝑟𝑟 [𝑁−2], 0)
5: for 𝑖 ← 𝑁 − 3 downto 0 do
6: 𝑑𝑝 [𝑖] ← max(𝑑𝑝 [𝑖 + 1], 𝑎𝑟𝑟 [𝑖] + 𝑑𝑝 [𝑖 +

2], 0)
7: end for
8: Initialize 𝑟𝑒𝑠𝑢𝑙𝑡 as an empty list
9: 𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 ← true

10: for 𝑖 ← 0 to 𝑁 − 3 do
11: if 𝑑𝑝 [𝑖] = 𝑎𝑟𝑟 [𝑖] + 𝑑𝑝 [𝑖 + 2] and

𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 then
12: Append 1 to 𝑟𝑒𝑠𝑢𝑙𝑡
13: 𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 ← false
14: else
15: Append 2 to 𝑟𝑒𝑠𝑢𝑙𝑡
16: 𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 ← true
17: end if
18: end for
19: if 𝑑𝑝 [𝑁 − 2] = 𝑎𝑟𝑟 [𝑁 − 2] and

𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 then
20: Append 1 to 𝑟𝑒𝑠𝑢𝑙𝑡
21: else
22: Append 2 to 𝑟𝑒𝑠𝑢𝑙𝑡
23: end if
24: if 𝑑𝑝 [𝑁 − 1] = 𝑎𝑟𝑟 [𝑁 − 1] and

𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 then
25: Append 1 to 𝑟𝑒𝑠𝑢𝑙𝑡
26: else
27: Append 2 to 𝑟𝑒𝑠𝑢𝑙𝑡
28: end if
29: return 𝑟𝑒𝑠𝑢𝑙𝑡
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ensuring the answer value is integer to construct
the dataset.

Task Accuracy (%)
MWP 58.00
MWIS (𝑛 ∈ [4, 5, 6]) 98.89
MWIS (𝑛 = 200) 0.01
max (𝑛 = 30) 99.50
rain water (𝑛 = 10) 89.00

Table 1: Fine-tuning results of different problems. MWP
stands for the modified word problem where the input
contains only 7 numbers. All tasks are fine-tuned with
10k direct answer examples and evaluated on in-domain
examples.

From the table, we see that MWIS, max, and rain
water perform significantly better than MWP. This
suggests that it might be easy for transformers to
learn this loop type of problem when the problem
size is small. However, when the problem size
of MWIS is large (𝑛 = 200), the model fails to
generalize to unseen test examples. This aligns
with previous findings (Weiss et al., 2021; Zhou
et al., 2024) that suggest that it would consume one
transformer layer to approximate one iteration in
an algorithm. And with a problem size of 200, it
can be hard for transformers to approximate the
algorithm in a generalizable way, thus some other
patterns in the training set may be exploited, leading
to poor generalization.
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Figure 11: Results of fine-tuning word problem.

From Fig. 11 we can see that for the modified
word problem, the transformer can fit the training
set reasonably well, while the test set performance
peaks at 58.0%. This suggests that by learning
to answer directly, the transformer is behaving
similarly to learning by filling a table, instead of
learning the underlying rational function, which
supports our description length analysis.

G Air travel planning
We use the Kaggle World Cities8 database data
and sample 212 cities with more than 1 million
populations. We sampled 58 large cities and 154
mid-sized cities. We use the Virtual Radar Server9

to get the real-time (Jan 13, 2024) flight data as the
ground truth.

H Game of 24
We test the hard games indexed 901-1000 from
4nums.com. An output is considered correct if
the expression evaluates to 24 and uses all input
numbers once.

I Tables

Method GPT-3.5 GPT-4
Direct 28.51 47.16
CoT 79.53 94.09
ToT 81.88 96.00

Table 2: Figure 2a

Dataset size Direct CoT
1000 18.50 88.00
2000 22.50 88.00
3000 30.50 92.50
4000 35.00 93.50
5000 37.50 95.00
6000 46.50 95.00
7000 46.50 96.00
8000 48.50 96.50
9000 48.50 97.50
10000 58.00 96.50

Table 3: Figure 2b

8https://www.kaggle.com/datasets/max-mind/world
-cities-database

9https://github.com/vradarserver/standing-data
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Method InD OoD Total
Direct 0s 38.67 8.75 21.57
Direct 3s 68.67 35.25 49.57
Direct 6s 57.67 30.25 42.00
CoT 0s 59.33 35.25 45.57
CoT Implicit 3s 67.00 41.50 52.43
CoT Implicit 6s 65.00 36.25 48.57
CoT Explicit 3s 85.67 65.00 73.86
CoT Explicit 6s 86.67 66.50 75.14

Table 4: Figure 3 GPT-4

Method InD OoD Total
Direct 0s 26.00 13.50 18.86
Direct 3s 32.33 10.50 19.86
Direct 6s 39.33 20.25 28.43
CoT 0s 24.33 8.75 15.43
CoT Implicit 3s 18.00 6.75 11.57
CoT Implicit 6s 20.33 5.00 11.57
CoT Explicit 3s 56.67 16.00 33.43
CoT Explicit 6s 63.33 28.75 43.57

Table 5: Figure 3 GPT-3.5

Method Large cities Mid-sized cities
CoT 0s 70.76 50.00
CoT 3s 73.10 51.64
CoT 8s 72.51 53.27
CoT-SC 0s 72.51 55.47
CoT-SC 3s 74.56 54.13
CoT-SC 8s 75.43 56.85
ToT-linear 0s 75.43 69.67
ToT-linear 3s 81.29 77.05
ToT-linear 8s 78.36 72.95
ToT 0s 78.36 72.13
ToT 3s 80.70 75.41
ToT 8s 81.29 75.41

Table 6: Figure 5 GPT-3.5 (Accuracy, %)

Method Large cities Mid-sized cities
CoT 0s 71.35 64.75
CoT 3s 76.02 68.03
CoT 8s 85.38 70.49
CoT-SC 0s 74.43 66.21
CoT-SC 3s 79.59 69.67
CoT-SC 8s 87.13 71.12
ToT-linear 0s 54.24 47.54
ToT-linear 3s 87.13 69.67
ToT-linear 8s 84.80 68.85
ToT 0s 76.02 70.49
ToT 3s 88.30 78.69
ToT 8s 88.89 79.51

Table 7: Figure 5 GPT-4 (Accuracy, %)

Num of edges Large cities Mid-sized cities
1069 90.64±2.21 80.32±3.21
2138 93.30±2.02 85.87±3.92
4277 97.07±0.94 90.16±1.45
6415 97.90±1.20 93.79±1.13

Table 8: Figure 6 ToT-linear (Accuracy % ± standard
error)

Num of edges Large cities Mid-sized cities
744 65.50±5.22 58.10±4.91
1489 78.94±3.90 68.85±4.56
2979 80.19±4.12 74.59±4.11
4468 81.52±5.23 77.97±5.10
5958 83.04±3.54 81.98±3.41

Table 9: Figure 6 CoT (Accuracy % ± standard error)

Method GPT-4 GPT-3.5
ToT 5s 58 20
ToT-Decomp 5s 86 47
ToT-Decomp 3s 23 20
ToT-Decomp 1s 19 15
CoT 5s 6 2
CoT-SC 5s 11 7
Direct 5s 10 4

Table 10: Figure 7, main results (Accuracy, %).

Method Transition error Proposal error
TOT-GPT4-5s 7.12 2.04
TOT-GPT4-Decomp-5s 2.80 1.44
TOT-GPT3.5-5s 16.62 3.15
TOT-GPT3.5-Decomp-5s 3.06 0.30
Method Missing action Answer error
TOT-GPT4-5s 12.44 10.04
TOT-GPT4-Decomp-5s 6.63 1.56
TOT-GPT3.5-5s 23.63 19.03
TOT-GPT3.5-Decomp-5s 16.60 2.28

Table 11: Figure 7, main results (Error rate, %).
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Method GPT-4 GPT-3.5
Direct 62.5 42.14
Direct (parsed) 73.7 53.74
CoT 64.33 52.91
CoT (parsed) 76.89 65.62
CoT-SC 66.73 53.79
CoT-SC (parsed) 75.89 65.67
ToT 65.36 45.68
ToT (parsed) 75.72 49.98

Table 12: Figure 8

Method 2-step 4-step 6-step
Direct 47.6 33.2 28.9
CoT 45.2 34.9 30.1

Table 13: Figure 10a, results of finetuning Llama-2-7b
(Accuracy, %).

Method 2-step 4-step 6-step
Direct 42.2 20.2 9.2
CoT 42.7 20.2 8.4
CoT-SC-10 44.7 25.0 11.2
CoT-SC-100 46.7 26.2 11.8
ToT 22.4 13.1 9.8
ToT-Decomp 68.9 38.1 11.8

Table 14: Figure 10b, results of GPT-3.5 for in-context
learning (Accuracy, %).

Method 2-step 4-step 6-step
Direct 53.3 35.7 40.1
CoT 58.9 36.7 42.0
CoT-SC-10 66.7 34.5 44.7
CoT-SC-100 66.2 36.9 45.4
ToT 51.1 26.2 11.7
ToT-Decomp 93.3 72.6 49.3

Table 15: Figure 10c, results of GPT-4 for in-context
learning (Accuracy, %).

J Prompts
J.1 GSM8K Prompts

Listing 4: GSM8K Direct prompt
direct_8s = """Please answer a math word problem given the
following exapmles. Respond only the answer, in the format "
The answer is ###."
Example:
Question: There are 15 trees in the grove. Grove workers will
plant trees in the grove today. After they are done, there
will be 21 trees. How many trees did the grove workers plant
today?
The answer is 6.

Question: If there are 3 cars in the parking lot and 2 more
cars arrive, how many cars are in the parking lot?
The answer is 5.

Question: Leah had 32 chocolates and her sister had 10 more
chocolates than her. If they ate 35, how many pieces do they
have left in total?
The answer is 39.

Question: Jason had 20 lollipops. He gave Denny some lollipops.
Now Jason has 12 lollipops. How many lollipops did Jason give
to Denny?

The answer is 8.

Question: Shawn has five toys. For Christmas, he got two toys
each from his mom and dad. How many toys does he have now?
The answer is 9.

Question: There were nine computers in the server room. Five
more computers were installed each day, from monday to
thursday. How many computers are now in the server room?
The answer is 29.

Question: Michael had 58 golf balls. On tuesday, he lost 23
golf balls. On wednesday, he lost 2 more. How many golf balls
did he have at the end of wednesday?
The answer is 33.

Question: Olivia has $23. She bought five bagels for $3 each.
How much money does she have left?
The answer is 8.

Question: {question}
The answer is
"""

Listing 5: GSM8K CoT and ToT prompt
cot_8s = """Please answer a math word problem given the
following example. Respond with reasoning steps, and end with
the answer, in the format "So the answer is ###."
Example:
Let’s think step by step.
Question: There are 15 trees in the grove. Grove workers will
plant trees in the grove today. After they are done, there
will be 21 trees. How many trees did the grove workers plant
today?
Solution: There are 15 trees originally.
And there were 21 trees after some more were planted.
So 21 - 15 = 6 trees were planted.
So the answer is 6.

Let’s think step by step.
Question: If there are 3 cars in the parking lot and 2 more
cars arrive, how many cars are in the parking lot?
Solution: There are originally 3 cars.
And 2 more cars arrive.
So there are 3 + 2 = 5 cars now.
So the answer is 5.

Let’s think step by step.
Question: Leah had 32 chocolates and her sister had 10 more
chocolates than her. If they ate 35, how many pieces do they
have left in total?
Solution: Originally, Leah had 32 chocolates.
And her sister had 10 more chocolates than her.
So her sister had 42 chocolates.
So in total they had 32 + 42 = 74 chocolates.
Then they ate 35 chocolates.
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Therefore they had 74 - 35 = 39 chocolates left.
So the answer is 39.

Let’s think step by step.
Question: Jason had 20 lollipops. He gave Denny some lollipops.
Now Jason has 12 lollipops. How many lollipops did Jason give
to Denny?

Solution: Jason started with 20 lollipops.
Then he had 12 after giving some to Denny.
So he gave Denny 20 - 12 = 8 lollipops.
So the answer is 8.

Let’s think step by step.
Question: Shawn has five toys. For Christmas, he got two toys
each from his mom and dad. How many toys does he have now?
Solution: Shawn started with 5 toys.
And he got 2 toys each from his mom and dad.
So he got 2 + 2 = 4 toys.
Therefore, he has 5 + 4 = 9 toys now.
So the answer is 9.

Let’s think step by step.
Question: There were nine computers in the server room. Five
more computers were installed each day, from monday to
thursday. How many computers are now in the server room?
Solution: There were originally 9 computers.
And 5 more computers were added from onday to thursday.
There are 4 days between monday and thursday.
So 5 * 4 = 20 computers were added in total.
So there are 9 + 20 = 29 computers now.
So the answer is 29.

Let’s think step by step.
Question: Michael had 58 golf balls. On tuesday, he lost 23
golf balls. On wednesday, he lost 2 more. How many golf balls
did he have at the end of wednesday?
Solution: Michael started with 58 golf balls.
And he lost 23 golf balls on tuesday.
So after losing 23 on tuesday, he had 58 -23 = 35.
And then he lost 2 more golf balls on wednesday.
So after losing 2 more on wednesday, he had 35 - 2 = 33 golf
balls.
So the answer is 33.

Let’s think step by step.
Question: Olivia has $23. She bought five bagels for $3 each.
How much money does she have left?
Solution: Olivia had 23 dollars.
And she bought 5 bagels.
And each bagel costs 3 dollars.
So she spent 5 * 3 = 15 dollars.
So she has 23 - 15 = 8 dollars left.
So the answer is 8.

Let’s think step by step.
Question: {question}
Solution:
"""

Listing 6: GSM8K ToT self-evaluation prompts
evaluate_prompt = ’’’
Q: Julie climbed 15 steps up the giant slide. She climbed down
6 steps to talk to her friend, Maria. Then she climbed up 8

steps to get to the top. How many steps does the slide have?

A:
Julie climbed 15 steps up.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
Then she climbed down 6 steps.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
Then she climbed up 8 steps.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
So she climbed 15 + 8 = 23 steps.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect

# The above step of reasoning is (B), because she also climbed
down 6 steps, so she climbed 23 - 6 = 17 steps.

So the slide has 23 steps.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A), but the value of steps
of slides is incorrect.
So the answer is 23.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A), but the value of steps
of slides is incorrect.

Q: Suzanne read the first 15 pages of her book on Monday. She
read 16 more pages than that on Tuesday. Then there were 18
pages left. How many pages are in Suzanne’s book altogether?

A:
Suzanne read 15 pages on Monday.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
Then she read 16 more pages on Tuesday.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
So she read 15 + 16 = 31 pages in total.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (B), because she read 16 more
pages than that on Tuesday, so she read 15 + 16 = 31 pages on
tuesday. So she read 15 + 31 = 46 pages in total.

Then there were 18 pages left.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A), but the value of total
read pages of monday and tuesday is incorrect.
So the book had 31 + 18 = 49 pages.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A), but the value of total
read pages of monday and tuesday is incorrect. So the book had
46 + 18 = 64 pages.

So the answer is 49.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A), but the value of total
read pages of monday and tuesday is incorrect.

Q: Allison brought some CDs online. Each CD cost $7. There was
an additional charge of $4 per order for shipping costs. The

total bill came to $60. How many CDs did Allison buy?

A:
Each CD cost 7 dollars.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
And there was an additional charge of 4 dollars.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
So the total cost of each CD is 7 + 4 = 11 dollars.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (B), because each CD cose 7
dollars.
So 60 / 11 = 5.45.
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# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (B), because it cost 4
dollars for shipping costs. So the cost of CDs is 60 - 4 = 56
dollars. So Allison bought 56 / 7 = 8 CDs.
So the answer is 5.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A), but the value of number
of CDs is incorrect.

Q: Luis and Cameron shared some stickers is the ratio 5:2.
Luis received 15 more stickers than Cameron. How many stickers
were there altogether?

A:
Let’s say there were x stickers.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
Then Luis got 5x/7 and Cameron got 2x/7.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
Luis got 15 more than Cameron, so 5x/7 - 2x/7 = 15.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
So 3x/7 = 15.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
So x = 105.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (B), because 3x/7 = 15. So x
= 15 * 7 / 3 = 35. So there were 35 stickers.
So the answer is 105.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A), but the value of number
of stickers is incorrect.

Q: Alexa has 92 cents in her pocket. She wants to buy 3
pencils at the school supply store. Each pencil costs 8 cents.
How much money will Alexa have left?

A:
Alexa has 92 cents.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
And 3 pencils for 8 cents each will be 3 * 8 = 24 cents.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
So she has 92 - 24 = 68 cents left.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)
So the answer is 68.
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is (A)

Q: {input}

A: {output}
# Is the above step of reasoning:
# (A) Correct
# (B) Incorrect
# The above step of reasoning is ’’’

J.2 MWIS Prompts

Listing 7: Direct prompts
direct_0s = """Given a sequence of integers, find a
subsequence with the highest sum, such that no two numbers in
the subsequence are adjacent in the original sequence.

To indicate the selected numbers, print an array with "1" for
chosen numbers and "2" for unchosen ones. For instance, [1, 2,
2, 2, 2] implies selecting only the first number. If multiple
solutions exist, select the lexicographically smallest.

{prompt}
"""

direct_3s = """Given a sequence of integers, find a
subsequence with the highest sum, such that no two numbers in
the subsequence are adjacent in the original sequence.

To indicate the selected numbers, print an array with "1" for
chosen numbers and "2" for unchosen ones. For instance, [1, 2,
2, 2, 2] implies selecting only the first number. If multiple
solutions exist, select the lexicographically smallest.

Let\’s solve input = [1, 1, -5, -1].
Answer: [1, 2, 2, 2]

Let\’s solve input = [3, 2, 1, -1, 2].
Answer: [1, 2, 1, 2, 1]

Let\’s solve input = [0, 4, -2, 3, -3, -1].
Answer: [2, 1, 2, 1, 2, 2]

{prompt}
"""

direct_6s = """Given a sequence of integers, find a
subsequence with the highest sum, such that no two numbers in
the subsequence are adjacent in the original sequence.

To indicate the selected numbers, print an array with "1" for
chosen numbers and "2" for unchosen ones. For instance, [1, 2,
2, 2, 2] implies selecting only the first number. If multiple
solutions exist, select the lexicographically smallest.

Let\’s solve input = [1, 1, -5, -1].
Answer: [1, 2, 2, 2]

Let\’s solve input = [3, 2, 1, -1, 2].
Answer: [1, 2, 1, 2, 1]

Let\’s solve input = [0, 4, -2, 3, -3, -1].
Answer: [2, 1, 2, 1, 2, 2]

Let\’s solve input = [-3, -4, 4, -1]
Answer: [2, 2, 1, 2]

Let\’s solve input = [3, 4, -3, -1, -4]
Answer: [2, 1, 2, 2, 2]

Let\’s solve input = [-4, 5, 0, 2, 3, -4]
Answer: [2, 1, 2, 2, 1, 2]
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{prompt}
"""

Listing 8: CoT Implicit prompts
cot_implicit_3s = """Given a sequence of integers, find a
subsequence with the highest sum, such that no two numbers in
the subsequence are adjacent in the original sequence.

To indicate the selected numbers, print an array with "1" for
chosen numbers and "2" for unchosen ones. For instance, [1, 2,
2, 2, 2] implies selecting only the first number. If multiple
solutions exist, select the lexicographically smallest.

We will solve any task instance by using dynamic programming.
We define dp[i] as the maximum sum of a subsequence that does
not include adjacent elements, when considering only the
elements of the input from the i-th position onwards.

Let\’s solve input = [1, 1, -5, -1].

dp[3] = max(input[3], 0) = max(-1, 0) = 0
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) = 1
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) = 1

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0] == input[0] + dp[2] (1 == 1 + 0) and
can_use_next_item == True, we store output[0] = 1. We update
can_use_next_item = False.
Since dp[1] != input[1] + dp[3] (1 != 1 + 0) or
can_use_next_item == False, we store output[1] = 2. We update
can_use_next_item = True.
Since dp[2] != input[2] (0 != -5) or can_use_next_item ==
False, we store output[2] = 2. We update can_use_next_item =
True.
Since dp[3] != input[3] (0 != -1) or can_use_next_item ==
False, we store output[3] = 2.

Reconstructing all together, output=[1, 2, 2, 2].

Let\’s solve input = [3, 2, 1, -1, 2].

dp[4] = max(input[4], 0) = max(2, 0) = 2
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 2
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) = 3
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) = 4
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) = 6

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0] == input[0] + dp[2] (6 == 3 + 3) and
can_use_next_item == True, we store output[0] = 1. We update
can_use_next_item = False.
Since dp[1] != input[1] + dp[3] (4 != 2 + 2) or
can_use_next_item == False, we store output[1] = 2. We update
can_use_next_item = True.
Since dp[2] == input[2] + dp[4] (3 == 1 + 2) and
can_use_next_item == True, we store output[2] = 1. We update
can_use_next_item = False.
Since dp[3] != input[3] (2 != -1) or can_use_next_item ==
False, we store output[3] = 2. We update can_use_next_item =
True.
Since dp[4] == input[4] (2 == 2) and can_use_next_item == True,
we store output[4] = 1.

Reconstructing all together, output=[1, 2, 1, 2, 1].

Let\’s solve input = [0, 4, -2, 3, -3, -1].

dp[5] = max(input[5], 0) = max(-1, 0) = 0

dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 0
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) = 3
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) =
3
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) = 7
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) = 7

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0] != input[0] + dp[2] (7 != 0 + 3) or
can_use_next_item == False, we store output[0] = 2. We update
can_use_next_item = True.
Since dp[1] == input[1] + dp[3] (7 == 4 + 3) and
can_use_next_item == True, we store output[1] = 1. We update
can_use_next_item = False.
Since dp[2] != input[2] + dp[4] (3 != -2 + 0) or
can_use_next_item == False, we store output[2] = 2. We update
can_use_next_item = True.
Since dp[3] == input[3] + dp[5] (3 == 3 + 0) and
can_use_next_item == True, we store output[3] = 1. We update
can_use_next_item = False.
Since dp[4] != input[4] (0 != -3) or can_use_next_item ==
False, we store output[4] = 2. We update can_use_next_item =
True.
Since dp[5] != input[5] (0 != -1) or can_use_next_item ==
False, we store output[5] = 2.

Reconstructing all together, output=[2, 1, 2, 1, 2, 2].

{prompt}
"""

cot_implicit_6s = """Given a sequence of integers, find a
subsequence with the highest sum, such that no two numbers in
the subsequence are adjacent in the original sequence.

To indicate the selected numbers, print an array with "1" for
chosen numbers and "2" for unchosen ones. For instance, [1, 2,
2, 2, 2] implies selecting only the first number. If multiple
solutions exist, select the lexicographically smallest.

We will solve any task instance by using dynamic programming.
We define dp[i] as the maximum sum of a subsequence that does
not include adjacent elements, when considering only the
elements of the input from the i-th position onwards.

Let\’s solve input = [1, 1, -5, -1].

dp[3] = max(input[3], 0) = max(-1, 0) = 0
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) = 1
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) = 1

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0] == input[0] + dp[2] (1 == 1 + 0) and
can_use_next_item == True, we store output[0] = 1. We update
can_use_next_item = False.
Since dp[1] != input[1] + dp[3] (1 != 1 + 0) or
can_use_next_item == False, we store output[1] = 2. We update
can_use_next_item = True.
Since dp[2] != input[2] (0 != -5) or can_use_next_item ==
False, we store output[2] = 2. We update can_use_next_item =
True.
Since dp[3] != input[3] (0 != -1) or can_use_next_item ==
False, we store output[3] = 2.

Reconstructing all together, output=[1, 2, 2, 2].

Let\’s solve input = [3, 2, 1, -1, 2].

dp[4] = max(input[4], 0) = max(2, 0) = 2
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 2
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) = 3
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) = 4
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dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) = 6

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0] == input[0] + dp[2] (6 == 3 + 3) and
can_use_next_item == True, we store output[0] = 1. We update
can_use_next_item = False.
Since dp[1] != input[1] + dp[3] (4 != 2 + 2) or
can_use_next_item == False, we store output[1] = 2. We update
can_use_next_item = True.
Since dp[2] == input[2] + dp[4] (3 == 1 + 2) and
can_use_next_item == True, we store output[2] = 1. We update
can_use_next_item = False.
Since dp[3] != input[3] (2 != -1) or can_use_next_item ==
False, we store output[3] = 2. We update can_use_next_item =
True.
Since dp[4] == input[4] (2 == 2) and can_use_next_item == True,
we store output[4] = 1.

Reconstructing all together, output=[1, 2, 1, 2, 1].

Let\’s solve input = [0, 4, -2, 3, -3, -1].

dp[5] = max(input[5], 0) = max(-1, 0) = 0
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 0
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) = 3
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) =
3
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) = 7
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) = 7

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0] != input[0] + dp[2] (7 != 0 + 3) or
can_use_next_item == False, we store output[0] = 2. We update
can_use_next_item = True.
Since dp[1] == input[1] + dp[3] (7 == 4 + 3) and
can_use_next_item == True, we store output[1] = 1. We update
can_use_next_item = False.
Since dp[2] != input[2] + dp[4] (3 != -2 + 0) or
can_use_next_item == False, we store output[2] = 2. We update
can_use_next_item = True.
Since dp[3] == input[3] + dp[5] (3 == 3 + 0) and
can_use_next_item == True, we store output[3] = 1. We update
can_use_next_item = False.
Since dp[4] != input[4] (0 != -3) or can_use_next_item ==
False, we store output[4] = 2. We update can_use_next_item =
True.
Since dp[5] != input[5] (0 != -1) or can_use_next_item ==
False, we store output[5] = 2.

Reconstructing all together, output=[2, 1, 2, 1, 2, 2].

Let\’s solve input = [-3, -4, 4, -1].

dp[3] = max(input[3], 0) = max(-1, 0) = 0
dp[2] = max(input[2], input[3], 0) = max(4, -1, 0) = 4
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(4, -4 + 0, 0) =
4
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, -3 + 4, 0) =
4

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0] != input[0] + dp[2] (4 != -3 + 4) or
can_use_next_item == False, we store output[0] = 2. We update
can_use_next_item = True.
Since dp[1] != input[1] + dp[3] (4 != -4 + 0) or
can_use_next_item == False, we store output[1] = 2. We update
can_use_next_item = True.
Since dp[2] == input[2] (4 == 4) and can_use_next_item == True,
we store output[2] = 1. We update can_use_next_item = False.

Since dp[3] != input[3] (0 != -1) or can_use_next_item ==

False, we store output[3] = 2.

Reconstructing all together, output=[2, 2, 1, 2].

Let\’s solve input = [3, 4, -3, -1, -4].

dp[4] = max(input[4], 0) = max(-4, 0) = 0
dp[3] = max(input[3], input[4], 0) = max(-1, -4, 0) = 0
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(0, -3 + 0, 0) =
0
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 4 + 0, 0) = 4
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 0, 0) = 4

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0] != input[0] + dp[2] (4 != 3 + 0) or
can_use_next_item == False, we store output[0] = 2. We update
can_use_next_item = True.
Since dp[1] == input[1] + dp[3] (4 == 4 + 0) and
can_use_next_item == True, we store output[1] = 1. We update
can_use_next_item = False.
Since dp[2] != input[2] + dp[4] (0 != -3 + 0) or
can_use_next_item == False, we store output[2] = 2. We update
can_use_next_item = True.
Since dp[3] != input[3] (0 != -1) or can_use_next_item ==
False, we store output[3] = 2. We update can_use_next_item =
True.
Since dp[4] != input[4] (0 != -4) or can_use_next_item ==
False, we store output[4] = 2.

Reconstructing all together, output=[2, 1, 2, 2, 2].

Let\’s solve input = [-4, 5, 0, 2, 3, -4].

dp[5] = max(input[5], 0) = max(-4, 0) = 0
dp[4] = max(input[4], input[5], 0) = max(3, -4, 0) = 3
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(3, 2 + 0, 0) = 3
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, 0 + 3, 0) = 3
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 5 + 3, 0) = 8
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(8, -4 + 3, 0) =
8

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0] != input[0] + dp[2] (8 != -4 + 3) or
can_use_next_item == False, we store output[0] = 2. We update
can_use_next_item = True.
Since dp[1] == input[1] + dp[3] (8 == 5 + 3) and
can_use_next_item == True, we store output[1] = 1. We update
can_use_next_item = False.
Since dp[2] != input[2] + dp[4] (3 != 0 + 3) or
can_use_next_item == False, we store output[2] = 2. We update
can_use_next_item = True.
Since dp[3] != input[3] + dp[5] (3 != 2 + 0) or
can_use_next_item == False, we store output[3] = 2. We update
can_use_next_item = True.
Since dp[4] == input[4] (3 == 3) and can_use_next_item == True,
we store output[4] = 1. We update can_use_next_item = False.

Since dp[5] != input[5] (0 != -4) or can_use_next_item ==
False, we store output[5] = 2.

Reconstructing all together, output=[2, 1, 2, 2, 1, 2].

{prompt}
"""

Listing 9: CoT Explicit prompts
cot_explicit_3s = """Given a sequence of integers, find a
subsequence with the highest sum, such that no two numbers in
the subsequence are adjacent in the original sequence.

To indicate the selected numbers, print an array with "1" for
chosen numbers and "2" for unchosen ones. For instance, [1, 2,
2, 2, 2] implies selecting only the first number. If multiple
solutions exist, select the lexicographically smallest.
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We will solve any task instance by using dynamic programming.
We define dp[i] as the maximum sum of a subsequence that does
not include adjacent elements, when considering only the
elements of the input from the i-th position onwards.

Let\’s solve input = [1, 1, -5, -1].

There are 4 numbers in the input sequence, so we will use a
list of size 4 to store the dynamic programming values. We
initialize all values to 0.
dp[3] = max(input[3], 0) = max(-1, 0) = 0
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) =
max(0, 1, 0) = 1
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) =
max(1, 1, 0) = 1

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0]=1, input[0]=1, dp[2]=0, input[0] + dp[2] = 1 == 1
= dp[0] and can_use_next_item == True, we store output[0] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[1] = 2. We
update can_use_next_item = True.
Since dp[2] = 0, input[2] = -5, dp[2] != input[2], we store
output[2] = 2. We update can_use_next_item = True.
Since dp[3] = 0, input[3] = -1, dp[3] != input[3], we store
output[3] = 2.

Reconstructing all together, output=[1, 2, 2, 2].

Let\’s solve input = [3, 2, 1, -1, 2].

There are 5 numbers in the input sequence, so we will use a
list of size 5 to store the dynamic programming values. We
initialize all values to 0.
dp[4] = max(input[4], 0) = max(2, 0) = 2
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 2
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) =
max(2, 3, 0) = 3
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) =
max(3, 4, 0) = 4
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) =
max(4, 6, 0) = 6

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0]=6, input[0]=3, dp[2]=3, input[0] + dp[2] = 6 == 6
= dp[0] and can_use_next_item == True, we store output[0] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[1] = 2. We
update can_use_next_item = True.
Since dp[2]=3, input[2]=1, dp[4]=2, input[2] + dp[4] = 3 == 3
= dp[2] and can_use_next_item == True, we store output[2] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[3] = 2. We
update can_use_next_item = True.
Since dp[4] = 2, input[4] = 2, dp[4] == input[4] and
can_use_next_item == True, we store output[4] = 1.

Reconstructing all together, output=[1, 2, 1, 2, 1].

Let\’s solve input = [0, 4, -2, 3, -3, -1].

There are 6 numbers in the input sequence, so we will use a
list of size 6 to store the dynamic programming values. We
initialize all values to 0.
dp[5] = max(input[5], 0) = max(-1, 0) = 0
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 0
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) =
max(0, 3, 0) = 3
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) =

max(3, -2, 0) = 3
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) =
max(3, 7, 0) = 7
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) =
max(7, 3, 0) = 7

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0]=7, input[0]=0, dp[2]=3, input[0] + dp[2] = 3 != 7
= dp[0], we store output[0] = 2. We update can_use_next_item =
True.

Since dp[1]=7, input[1]=4, dp[3]=3, input[1] + dp[3] = 7 == 7
= dp[1] and can_use_next_item == True, we store output[1] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[2] = 2. We
update can_use_next_item = True.
Since dp[3]=3, input[3]=3, dp[5]=0, input[3] + dp[5] = 3 == 3
= dp[3] and can_use_next_item == True, we store output[3] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[4] = 2. We
update can_use_next_item = True.
Since dp[5] = 0, input[5] = -1, dp[5] != input[5], we store
output[5] = 2.

Reconstructing all together, output=[2, 1, 2, 1, 2, 2].

{prompt}
"""
cot_explicit_6s = """Given a sequence of integers, find a
subsequence with the highest sum, such that no two numbers in
the subsequence are adjacent in the original sequence.

To indicate the selected numbers, print an array with "1" for
chosen numbers and "2" for unchosen ones. For instance, [1, 2,
2, 2, 2] implies selecting only the first number. If multiple
solutions exist, select the lexicographically smallest.

We will solve any task instance by using dynamic programming.
We define dp[i] as the maximum sum of a subsequence that does
not include adjacent elements, when considering only the
elements of the input from the i-th position onwards.

Let\’s solve input = [1, 1, -5, -1].

There are 4 numbers in the input sequence, so we will use a
list of size 4 to store the dynamic programming values. We
initialize all values to 0.
dp[3] = max(input[3], 0) = max(-1, 0) = 0
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) =
max(0, 1, 0) = 1
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) =
max(1, 1, 0) = 1

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0]=1, input[0]=1, dp[2]=0, input[0] + dp[2] = 1 == 1
= dp[0] and can_use_next_item == True, we store output[0] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[1] = 2. We
update can_use_next_item = True.
Since dp[2] = 0, input[2] = -5, dp[2] != input[2], we store
output[2] = 2. We update can_use_next_item = True.
Since dp[3] = 0, input[3] = -1, dp[3] != input[3], we store
output[3] = 2.

Reconstructing all together, output=[1, 2, 2, 2].

Let\’s solve input = [3, 2, 1, -1, 2].

There are 5 numbers in the input sequence, so we will use a
list of size 5 to store the dynamic programming values. We
initialize all values to 0.
dp[4] = max(input[4], 0) = max(2, 0) = 2
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dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 2
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) =
max(2, 3, 0) = 3
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) =
max(3, 4, 0) = 4
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) =
max(4, 6, 0) = 6

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0]=6, input[0]=3, dp[2]=3, input[0] + dp[2] = 6 == 6
= dp[0] and can_use_next_item == True, we store output[0] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[1] = 2. We
update can_use_next_item = True.
Since dp[2]=3, input[2]=1, dp[4]=2, input[2] + dp[4] = 3 == 3
= dp[2] and can_use_next_item == True, we store output[2] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[3] = 2. We
update can_use_next_item = True.
Since dp[4] = 2, input[4] = 2, dp[4] == input[4] and
can_use_next_item == True, we store output[4] = 1.

Reconstructing all together, output=[1, 2, 1, 2, 1].

Let\’s solve input = [0, 4, -2, 3, -3, -1].

There are 6 numbers in the input sequence, so we will use a
list of size 6 to store the dynamic programming values. We
initialize all values to 0.
dp[5] = max(input[5], 0) = max(-1, 0) = 0
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 0
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) =
max(0, 3, 0) = 3
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) =
max(3, -2, 0) = 3
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) =
max(3, 7, 0) = 7
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) =
max(7, 3, 0) = 7

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0]=7, input[0]=0, dp[2]=3, input[0] + dp[2] = 3 != 7
= dp[0], we store output[0] = 2. We update can_use_next_item =
True.

Since dp[1]=7, input[1]=4, dp[3]=3, input[1] + dp[3] = 7 == 7
= dp[1] and can_use_next_item == True, we store output[1] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[2] = 2. We
update can_use_next_item = True.
Since dp[3]=3, input[3]=3, dp[5]=0, input[3] + dp[5] = 3 == 3
= dp[3] and can_use_next_item == True, we store output[3] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[4] = 2. We
update can_use_next_item = True.
Since dp[5] = 0, input[5] = -1, dp[5] != input[5], we store
output[5] = 2.

Reconstructing all together, output=[2, 1, 2, 1, 2, 2].

Let\’s solve input = [-3, -4, 4, -1].

There are 4 numbers in the input sequence, so we will use a
list of size 4 to store the dynamic programming values. We
initialize all values to 0.
dp[3] = max(input[3], 0) = max(-1, 0) = 0
dp[2] = max(input[2], input[3], 0) = max(4, -1, 0) = 4
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(4, -4 + 0, 0) =
max(4, -4, 0) = 4
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, -3 + 4, 0) =
max(4, 1, 0) = 4

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting

numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0]=4, input[0]=-3, dp[2]=4, input[0] + dp[2] = 1 != 4
= dp[0], we store output[0] = 2. We update can_use_next_item

= True.
Since dp[1]=4, input[1]=-4, dp[3]=0, input[1] + dp[3] = -4 !=
4 = dp[1], we store output[1] = 2. We update can_use_next_item
= True.

Since dp[2] = 4, input[2] = 4, dp[2] == input[2] and
can_use_next_item == True, we store output[2] = 1. We update
can_use_next_item = False.
Since can_use_next_item == False, we store output[3] = 2.

Reconstructing all together, output=[2, 2, 1, 2].

Let\’s solve input = [3, 4, -3, -1, -4].

There are 5 numbers in the input sequence, so we will use a
list of size 5 to store the dynamic programming values. We
initialize all values to 0.
dp[4] = max(input[4], 0) = max(-4, 0) = 0
dp[3] = max(input[3], input[4], 0) = max(-1, -4, 0) = 0
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(0, -3 + 0, 0) =
max(0, -3, 0) = 0
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 4 + 0, 0) =
max(0, 4, 0) = 4
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 0, 0) =
max(4, 3, 0) = 4

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0]=4, input[0]=3, dp[2]=0, input[0] + dp[2] = 3 != 4
= dp[0], we store output[0] = 2. We update can_use_next_item =
True.

Since dp[1]=4, input[1]=4, dp[3]=0, input[1] + dp[3] = 4 == 4
= dp[1] and can_use_next_item == True, we store output[1] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[2] = 2. We
update can_use_next_item = True.
Since dp[3] = 0, input[3] = -1, dp[3] != input[3], we store
output[3] = 2. We update can_use_next_item = True.
Since dp[4] = 0, input[4] = -4, dp[4] != input[4], we store
output[4] = 2.

Reconstructing all together, output=[2, 1, 2, 2, 2].

Let\’s solve input = [-4, 5, 0, 2, 3, -4].

There are 6 numbers in the input sequence, so we will use a
list of size 6 to store the dynamic programming values. We
initialize all values to 0.
dp[5] = max(input[5], 0) = max(-4, 0) = 0
dp[4] = max(input[4], input[5], 0) = max(3, -4, 0) = 3
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(3, 2 + 0, 0) =
max(3, 2, 0) = 3
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, 0 + 3, 0) =
max(3, 3, 0) = 3
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 5 + 3, 0) =
max(3, 8, 0) = 8
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(8, -4 + 3, 0) =
max(8, -1, 0) = 8

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Since dp[0]=8, input[0]=-4, dp[2]=3, input[0] + dp[2] = -1 !=
8 = dp[0], we store output[0] = 2. We update can_use_next_item
= True.

Since dp[1]=8, input[1]=5, dp[3]=3, input[1] + dp[3] = 8 == 8
= dp[1] and can_use_next_item == True, we store output[1] = 1.
We update can_use_next_item = False.

Since can_use_next_item == False, we store output[2] = 2. We
update can_use_next_item = True.
Since dp[3]=3, input[3]=2, dp[5]=0, input[3] + dp[5] = 2 != 3
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= dp[3], we store output[3] = 2. We update can_use_next_item =
True.

Since dp[4] = 3, input[4] = 3, dp[4] == input[4] and
can_use_next_item == True, we store output[4] = 1. We update
can_use_next_item = False.
Since can_use_next_item == False, we store output[5] = 2.

Reconstructing all together, output=[2, 1, 2, 2, 1, 2].

{prompt}
"""

J.3 Comparison between CoT Implicit and
CoT Explicit

Listing 10: Compare CoT Implicit with CoT Explicit
Given a sequence of integers, find a subsequence with the
highest sum, such that no two numbers in the subsequence are
adjacent in the original sequence.

To indicate the selected numbers, print an array with "1" for
chosen numbers and "2" for unchosen ones. For instance, [1, 2,
2, 2, 2] implies selecting only the first number. If multiple
solutions exist, select the lexicographically smallest.

We will solve any task instance by using dynamic programming.
We define dp[i] as the maximum sum of a subsequence that does
not include adjacent elements, when considering only the
elements of the input from the i-th position onwards.

Let’s solve input = [-45, 40, 77, -93, 25, -73].

###
Explicit: There are 6 numbers in the input sequence, so we
will use a list of size 6 to store the dynamic programming
values. We initialize all values to 0.
dp[5] = max(input[5], 0) = max(-73, 0) = 0
dp[4] = max(input[4], input[5], 0) = max(25, -73, 0) = 25
Implicit: dp[3] = max(dp[4], input[3] + dp[5], 0) = max(25,
-93 + 0, 0) = 25
Explicit: dp[3] = max(dp[4], input[3] + dp[5], 0) = max(25,
-93 + 0, 0) = max(25, -93, 0) = 25
Implicit: dp[2] = max(dp[3], input[2] + dp[4], 0) = max(25, 77
+ 25, 0) = 102

Explicit: dp[2] = max(dp[3], input[2] + dp[4], 0) = max(25, 77
+ 25, 0) = max(25, 102, 0) = 102

Implicit: dp[1] = max(dp[2], input[1] + dp[3], 0) = max(102,
40 + 25, 0) = 102
Explicit: dp[1] = max(dp[2], input[1] + dp[3], 0) = max(102,
40 + 25, 0) = max(102, 65, 0) = 102
Implicit: dp[0] = max(dp[1], input[0] + dp[2], 0) = max(102,
-45 + 102, 0) = 102
Explicit: dp[0] = max(dp[1], input[0] + dp[2], 0) = max(102,
-45 + 102, 0) = max(102, 57, 0) = 102

Finally, we reconstruct the lexicographically smallest
subsequence that fulfills the task objective by selecting
numbers as follows. We store the result on a list named "
output".

Let can_use_next_item = True.
Implicit: Since dp[0] != input[0] + dp[2] (102 != -45 + 102)
or can_use_next_item == False, we store output[0] = 2. We
update can_use_next_item = True.
Explicit: Since dp[0]=102, input[0]=-45, dp[2]=102, input[0] +
dp[2] = 57 != 102 = dp[0], we store output[0] = 2. We update

can_use_next_item = True.
Implicit: Since dp[1] != input[1] + dp[3] (102 != 40 + 25) or
can_use_next_item == False, we store output[1] = 2. We update
can_use_next_item = True.
Explicit: Since dp[1]=102, input[1]=40, dp[3]=25, input[1] +
dp[3] = 65 != 102 = dp[1], we store output[1] = 2. We update
can_use_next_item = True.
Implicit: Since dp[2] == input[2] + dp[4] (102 == 77 + 25) and
can_use_next_item == True, we store output[2] = 1. We update

can_use_next_item = False.
Explicit: Since dp[2]=102, input[2]=77, dp[4]=25, input[2] +
dp[4] = 102 == 102 = dp[2] and can_use_next_item == True, we
store output[2] = 1. We update can_use_next_item = False.
Implicit: Since dp[3] != input[3] + dp[5] (25 != -93 + 0) or
can_use_next_item == False, we store output[3] = 2. We update
can_use_next_item = True.

Explicit: Since can_use_next_item == False, we store output[3]
= 2. We update can_use_next_item = True.

Implicit: Since dp[4] == input[4] (25 == 25) and
can_use_next_item == True, we store output[4] = 1. We update
can_use_next_item = False.
Explicit: Since dp[4] = 25, input[4] = 25, dp[4] == input[4]
and can_use_next_item == True, we store output[4] = 1. We
update can_use_next_item = False.
Implicit: Since dp[5] != input[5] (0 != -73) or
can_use_next_item == False, we store output[5] = 2.
Explicit: Since can_use_next_item == False, we store output[5]
= 2.

Reconstructing all together, output=[2, 2, 1, 2, 1, 2].

J.4 Travel planning prompts

Listing 11: CoT prompts
prompt_cot_zero_shot = """
The user will ask for a flight route between two cities. You
need to generate a response with the route. Your response
should be in the format "[city 1]-[city 2]-[city 3]-...-[city
n]". If there is no solution, reply "Answer: None. "
Question: {input}
Answer: """

prompt_cot_1s = """
The user will ask for a flight route between two cities. You
need to generate a response with the route. Your response
should be in the format "Answer: [city 1]-[city 2]-[city
3]-...-[city n]". If there is no solution, reply "Answer: None.
"

Question: What is the flight route from Dublin to Sydney?
Answer: Dublin-London-Sydney.
Question: {input}
Answer: """

prompt_cot_3s = """
The user will ask for a flight route between two cities. You
need to generate a response with the route. Your response
should be in the format "[city 1]-[city 2]-[city 3]-...-[city
n]". If there is no solution, reply "Answer: None. "
Question: What is the flight route from Dublin to Sydney?
Answer: Dublin-London-Sydney.
Question: What is the flight route from New York to Amsterdam?
Answer: New York-London-Amsterdam.
Question: What is the flight route from Toronto to Sydney?
Answer: Toronto-San Francisco-Sydney.
Question: {input}
Answer: """

prompt_cot_8s = """
The user will ask for a flight route between two cities. You
need to generate a response with the route. Your response
should be in the format "[city 1]-[city 2]-[city 3]-...-[city
n]". If there is no solution, reply "Answer: None. "
Question: What is the flight route from Dublin to Sydney?
Answer: Dublin-London-Sydney.
Question: What is the flight route from New York to Amsterdam?
Answer: New York-London-Amsterdam.
Question: What is the flight route from Toronto to Sydney?
Answer: Toronto-San Francisco-Sydney.
Question: What is the flight route from Astana to Rome?
Answer: Astana-Moscow-Rome.
Question: What is the flight route from Visakhapatnam to
Odense?
Answer: Visakhapatnam-Hyderabad-Copenhagen-Odense.
Question: What is the flight route from Shanghai to Nanjing?
Answer: Shanghai-Nanjing.
Question: What is the flight route from Singapore to Taipei?
Answer: Singapore-Taipei.
Question: What is the flight route from Sydney to Istanbul?
Answer: Sydney-Singapore-Istanbul.
Question: {input}
Answer: """

Listing 12: ToT prompts
prompt_tot_propose_zero_shot = ’’’List a few possible cities
to fly to from the current city via one direct flight. If the
goal city can be reached via one direct flight from the
current city, just answer the goal city. Format of your
response is "Answer: [city 1], [city 2], [city 3], ... [city n
]."
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Question: {input}
’’’

prompt_tot_propose_1s = ’’’List the a few possible cities to
fly to from the current city via one direct flight. If the
goal city can be reached via one direct flight from the
current city, just answer the goal city. Format of your
response is "Answer: [city 1], [city 2], [city 3], ... [city n
]."
Question: You want to go to Sydney and you are at Dublin.
Propose a few possible cities with direct flights to go to for
the next step.

Answer: London, Paris, Frankfurt, Amsterdam, Zurich.
Question: {input}
’’’

prompt_tot_propose_3s = ’’’List the a few possible cities to
fly to from the current city via one direct flight. If the
goal city can be reached via one direct flight from the
current city, just answer the goal city. Format of your
response is "Answer: [city 1], [city 2], [city 3], ... [city n
]."
Question: You want to go to Sydney and you are at Dublin.
Propose a few possible cities with direct flights to go to for
the next step.

Answer: London, Paris, Mombai.
Question: You want to go to Nanjing and you are at Shanghai.
Propose a few possible cities with direct flights to go to for
the next step.

Answer: Nanjing.
Question: You want to go to Amsterdam and you are at New York.
Propose a few possible cities with direct flights to go to

for the next step.
Answer: London, Paris, Frankfurt, Amsterdam.
Question: {input}
’’’

prompt_tot_propose_8s = ’’’List the a few possible cities to
fly to from the current city via one direct flight. If the
goal city can be reached via one direct flight from the
current city, just answer the goal city. Format of your
response is "Answer: [city 1], [city 2], [city 3], ... [city n
]."
Question: You want to go to Sydney and you are at Dublin.
Propose a few possible cities with direct flights to go to for
the next step.

Answer: London, Paris, Mombai.
Question: You want to go to Amsterdam and you are at New York.
Propose a few possible cities with direct flights to go to

for the next step.
Answer: London, Paris, Frankfurt.
Question: You want to go to Sydney and you are at Toronto.
Propose a few possible cities with direct flights to go to for
the next step.

Answer: San Francisco, Los Angeles, Vancouver.
Question: You want to go to Nanjing and you are at Shanghai.
Propose a few possible cities with direct flights to go to for
the next step.

Answer: Nanjing.
Question: You want to go to Rome and you are at Astana.
Propose a few possible cities with direct flights to go to for
the next step.

Answer: Moscow, Rome, Istanbul.
Question: You want to go to Odense and you are at
Visakhapatnam. Propose a few possible cities with direct
flights to go to for the next step.
Answer: Hyderabad, Copenhagen, Odense.
Question: You want to go to Taipei and you are at Singapore.
Propose a few possible cities with direct flights to go to for
the next step.

Answer: Taipei.
Question: You want to go to Istanbul and you are at Sydney.
Propose a few possible cities with direct flights to go to for
the next step.

Answer: Singapore, Dubai, Abu Dhabi.
Question: {input}
’’’

Listing 13: ToT Linear prompts
prompt_tot_linear_zero_shot = """The user will ask for a
flight route between two cities. You need to generate a
response with the route.
You are simulating bfs process to find the route between two
cities. In the beginning, you have a queue [’start city’] and
an empty explored list []. You need to proceed with the
following steps:

1. Take the first city in the queue as the current city. If
the city is in the explored list, skip it. Otherwise, put the
city into the explored list.
2. Propose the possible cities with direct flights to go to
for the next step. Do not propose the explored cities and
cities in the queue.
3. Put the cities into the queue.
Repeat steps 1-3 until the goal city is included in the queue.
Respond with reasoning steps, and end with the answer, in the
format "Answer: [city 1]-[city 2]-[city 3]-...-[city n]"
Question: {input}
Let’s think step by step.
"""

prompt_tot_linear_cot_1s = """The user will ask for a flight
route between two cities. You need to generate a response with
the route.

You are simulating bfs process to find the route between two
cities. In the beginning, you have a queue [’start city’], and
you need to proceed the following steps:

1. Take the first city in the queue as the current city.
2. Propose the possible cities with direct flights to go to
for the next step. Do not propose the explored cities and
cities in the queue.
3. Put the cities into the queue.
Repeat steps 1-3 until the goal city is included in the queue.
Respond with reasoning steps, and end with the answer, in the
format "Answer: [city 1]-[city 2]-[city 3]-...-[city n]"
Question: What is the flight route from Guatemala City to
Guangzhou?
The queue is [Guatemala City]. Take the first path, Guatemala
City, from the queue.
The current city is Guatemala City, which is not in the
explored list. Thus, put the current city into the explored
list. The explored list is [Guatemala City]
The current city is Guatemala City and the goal is Guangzhou.
For the next step, the promising cities to go to are [New York,
Los Angeles, Mexico City].

Puting those cities into the queue. The queue is [Guatemala
City-New York, Guatemala City-Los Angeles, Guatemala City-
Mexico City].
Take the first path, Guatemala City-New York, from the queue.
The current city is New York, which is not in the explored
list. Thus, put the current city into the explored list. The
explored list is [Guatemala City, New York]
The current city is New York and the goal is Guangzhou. For
the next step, the promising cities to go to are [Helsinki,
Guangzhou, Lahore].
The goal city is Guangzhou. Since Guangzhou is in the found,
and the current selected path is Guatemala City-New York, the
route is Guatemala City-New York-Guangzhou.
Answer: Guatemala City-New York-Guangzhou
Question: {input}
Let’s think step by step.
"""

prompt_tot_linear_cot_2s = """The user will ask for a flight
route between two cities. You need to generate a response with
the route.

You are simulating bfs process to find the route between two
cities. In the beginning, you have a queue [’start city’], and
you need to proceed the following steps:

1. Take the first city in the queue as the current city.
2. Propose the possible cities with direct flights to go to
for the next step. Do not propose the explored cities and
cities in the queue.
3. Put the cities into the queue.
Repeat steps 1-3 until the goal city is included in the queue.
Respond with reasoning steps, and end with the answer, in the
format "Answer: [city 1]-[city 2]-[city 3]-...-[city n]"
Question: What is the flight route from Guatemala City to
Guangzhou?
The queue is [Guatemala City]. Take the first path, Guatemala
City, from the queue.
The current city is Guatemala City, which is not in the
explored list. Thus, put the current city into the explored
list. The explored list is [Guatemala City]
The current city is Guatemala City and the goal is Guangzhou.
For the next step, the promising cities to go to are [New York,
Los Angeles, Mexico City].

Puting those cities into the queue. The queue is [Guatemala
City-New York, Guatemala City-Los Angeles, Guatemala City-
Mexico City].
Take the first path, Guatemala City-New York, from the queue.
The current city is New York, which is not in the explored
list. Thus, put the current city into the explored list. The
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explored list is [Guatemala City, New York]
The current city is New York and the goal is Guangzhou. For
the next step, the promising cities to go to are [Helsinki,
Guangzhou, Lahore].
The goal city is Guangzhou. Since Guangzhou is in the found,
and the current selected path is Guatemala City-New York, the
route is Guatemala City-New York-Guangzhou.
Answer: Guatemala City-New York-Guangzhou
Question: What is the flight route from Tegucigalpa to
Helsinki?
The queue is [Tegucigalpa]. Take the first path, Tegucigalpa,
from the queue.
The current city is Tegucigalpa, which is not in the explored
list. Thus, put the current city into the explored list. The
explored list is [Tegucigalpa]
The current city is Tegucigalpa and the goal is Helsinki. For
the next step, the promising cities to go to are [Guatemala
City, Miami].
Puting those cities into the queue. The queue is [Tegucigalpa-
Guatemala City, Tegucigalpa-Miami].
Take the first path, Tegucigalpa-Guatemala City, from the
queue.
The current city is Guatemala City, which is not in the
explored list. Thus, put the current city into the explored
list. The explored list is [Tegucigalpa, Guatemala City]
The current city is Guatemala City and the goal is Helsinki.
For the next step, the promising cities to go to are [New York,
Los Angeles, Mexico City].

Puting those cities into the queue. The queue is [Tegucigalpa-
Miami, Tegucigalpa-Guatemala City-New York, Tegucigalpa-
Guatemala City-Los Angeles, Tegucigalpa-Guatemala City-Mexico
City].
Take the first path, Tegucigalpa-Miami, from the queue.
The current city is Miami, which is not in the explored list.
Thus, put the current city into the explored list. The
explored list is [Tegucigalpa, Guatemala City, Miami]
The current city is Miami and the goal is Helsinki. For the
next step, the promising cities to go to are [Sao Paulo,
Buenos Aires, Chicago].
Puting those cities into the queue. The queue is [Tegucigalpa-
Guatemala City-New York, Tegucigalpa-Guatemala City-Los
Angeles, Tegucigalpa-Guatemala City-Mexico City, Tegucigalpa-
Miami-Sao Paulo, Tegucigalpa-Miami-Buenos Aires, Tegucigalpa-
Miami-Chicago].
Take the first path, Tegucigalpa-Guatemala City-New York, from
the queue.

The current city is New York, which is not in the explored
list. Thus, put the current city into the explored list. The
explored list is [Tegucigalpa, Guatemala City, Miami, New York
]
The current city is New York and the goal is Helsinki. For the
next step, the promising cities to go to are [Helsinki,

Guangzhou, Lahore].
The goal city is Helsinki. Since Helsinki is in the found, and
the current selected path is Tegucigalpa-Guatemala City-New

York, the route is Tegucigalpa-Guatemala City-New York-
Helsinki.
Answer: Tegucigalpa-Guatemala City-New York-Helsinki
Question: {input}
Let’s think step by step.
"""

J.5 Game of 24 prompts

Listing 14: CoT prompts
cot_prompt_1s = ’’’Use numbers and basic arithmetic operations
(+ - * /) to obtain 24. Each step, you are only allowed to

choose two of the remaining numbers to obtain a new number.
Please strictly follow the format of the example. Do not
include unnecessary information in your output. Do not include
serial numbers that are not in the example.

Input: 4 4 6 8
Steps:
4 + 8 = 12 (left: 4 6 12)
6 - 4 = 2 (left: 2 12)
2 * 12 = 24 (left: 24)
Answer: (6 - 4) * (4 + 8) = 24
Input: {input}
’’’

cot_prompt_3s = ’’’Use numbers and basic arithmetic operations
(+ - * /) to obtain 24. Each step, you are only allowed to

choose two of the remaining numbers to obtain a new number.

Please strictly follow the format of the example. Do not
include unnecessary information in your output. Do not include
serial numbers that are not in the example.

Input: 4 4 6 8
Steps:
4 + 8 = 12 (left: 4 6 12)
6 - 4 = 2 (left: 2 12)
2 * 12 = 24 (left: 24)
Answer: (6 - 4) * (4 + 8) = 24
Input: 2 9 10 12
Steps:
12 * 2 = 24 (left: 9 10 24)
10 - 9 = 1 (left: 1 24)
24 * 1 = 24 (left: 24)
Answer: (12 * 2) * (10 - 9) = 24
Input: 4 9 10 13
Steps:
13 - 10 = 3 (left: 3 4 9)
9 - 3 = 6 (left: 4 6)
4 * 6 = 24 (left: 24)
Answer: 4 * (9 - (13 - 10)) = 24
Input: {input}
’’’

cot_prompt_5s = ’’’Use numbers and basic arithmetic operations
(+ - * /) to obtain 24. Each step, you are only allowed to

choose two of the remaining numbers to obtain a new number.
Please strictly follow the format of the example. Do not
include unnecessary information in your output. Do not include
serial numbers that are not in the example.

Input: 4 4 6 8
Steps:
4 + 8 = 12 (left: 4 6 12)
6 - 4 = 2 (left: 2 12)
2 * 12 = 24 (left: 24)
Answer: (6 - 4) * (4 + 8) = 24
Input: 2 9 10 12
Steps:
12 * 2 = 24 (left: 9 10 24)
10 - 9 = 1 (left: 1 24)
24 * 1 = 24 (left: 24)
Answer: (12 * 2) * (10 - 9) = 24
Input: 4 9 10 13
Steps:
13 - 10 = 3 (left: 3 4 9)
9 - 3 = 6 (left: 4 6)
4 * 6 = 24 (left: 24)
Answer: 4 * (9 - (13 - 10)) = 24
Input: 1 4 8 8
Steps:
8 / 4 = 2 (left: 1 2 8)
1 + 2 = 3 (left: 3 8)
3 * 8 = 24 (left: 24)
Answer: (1 + 8 / 4) * 8 = 24
Input: 5 5 5 9
Steps:
5 + 5 = 10 (left: 5 9 10)
10 + 5 = 15 (left: 9 15)
15 + 9 = 24 (left: 24)
Answer: ((5 + 5) + 5) + 9 = 24
Input: {input}
’’’

Listing 15: ToT prompts
propose_prompt_1s = ’’’Use numbers and basic arithmetic
operations (+ - * /) to propose possible next steps of
operation. Each step, you are only allowed to choose two of
the input numbers to obtain a new number.
Do not include serial numbers that are not in the example. Do
not include unnecessary information in your output.
Input: 2 8 8 14
Possible next steps:
2 + 8 = 10 (left: 8 10 14)
8 / 2 = 4 (left: 4 8 14)
14 + 2 = 16 (left: 8 8 16)
2 * 8 = 16 (left: 8 14 16)
8 - 2 = 6 (left: 6 8 14)
14 - 8 = 6 (left: 2 6 8)
14 / 2 = 7 (left: 7 8 8)
14 - 2 = 12 (left: 8 8 12)
Input: {input}
Possible next steps:
’’’

propose_prompt_3s = ’’’Use numbers and basic arithmetic
operations (+ - * /) to propose possible next steps of
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operation. Each step, you are only allowed to choose two of
the input numbers to obtain a new number.
Do not include serial numbers that are not in the example. Do
not include unnecessary information in your output.
Input: 2 8 8 14
Possible next steps:
2 + 8 = 10 (left: 8 10 14)
8 / 2 = 4 (left: 4 8 14)
14 + 2 = 16 (left: 8 8 16)
2 * 8 = 16 (left: 8 14 16)
8 - 2 = 6 (left: 6 8 14)
14 - 8 = 6 (left: 2 6 8)
14 / 2 = 7 (left: 7 8 8)
14 - 2 = 12 (left: 8 8 12)
Input: 1 2 7 10
Possible next steps:
1 + 2 = 3 (left: 3 7 10)
2 + 7 = 9 (left: 1 9 10)
7 + 10 = 17 (left: 1 2 17)
1 * 2 = 2 (left: 2 7 10)
2 * 7 = 14 (left: 1 14 10)
7 * 10 = 70 (left: 1 2 70)
1 - 2 = -1 (left: -1 7 10)
2 - 7 = -5 (left: 1 -5 10)
7 - 10 = -3 (left: 1 2 -3)
1 / 2 = 0.5 (left: 0.5 7 10)
2 / 7 = 0.29 (left: 1 0.29 10)
7 / 10 = 0.7 (left: 1 2 0.7)
Input: 4 4 6 8
Possible next steps:
4 + 4 = 8 (left: 6 8 8)
4 + 6 = 10 (left: 8 10 8)
6 + 8 = 14 (left: 4 14 8)
4 * 4 = 16 (left: 6 8 16)
4 * 6 = 24 (left: 8 24 8)
6 * 8 = 48 (left: 4 48 8)
4 - 4 = 0 (left: 0 6 8)
4 - 6 = -2 (left: -2 8 8)
6 - 8 = -2 (left: 4 -2 8)
4 / 4 = 1 (left: 1 6 8)
4 / 6 = 0.67 (left: 8 0.67 8)
6 / 8 = 0.75 (left: 4 0.75 8)
Input: {input}
Possible next steps:
’’’

propose_prompt_5s = ’’’Use numbers and basic arithmetic
operations (+ - * /) to propose possible next steps of
operation. Each step, you are only allowed to choose two of
the input numbers to obtain a new number.
Do not include serial numbers that are not in the example. Do
not include unnecessary information in your output.
Input: 2 8 8 14
Possible next steps:
2 + 8 = 10 (left: 8 10 14)
8 / 2 = 4 (left: 4 8 14)
14 + 2 = 16 (left: 8 8 16)
2 * 8 = 16 (left: 8 14 16)
8 - 2 = 6 (left: 6 8 14)
14 - 8 = 6 (left: 2 6 8)
14 / 2 = 7 (left: 7 8 8)
14 - 2 = 12 (left: 8 8 12)
Input: 1 2 7 10
Possible next steps:
1 + 2 = 3 (left: 3 7 10)
2 + 7 = 9 (left: 1 9 10)
7 + 10 = 17 (left: 1 2 17)
1 * 2 = 2 (left: 2 7 10)
2 * 7 = 14 (left: 1 14 10)
7 * 10 = 70 (left: 1 2 70)
1 - 2 = -1 (left: -1 7 10)
2 - 7 = -5 (left: 1 -5 10)
7 - 10 = -3 (left: 1 2 -3)
1 / 2 = 0.5 (left: 0.5 7 10)
2 / 7 = 0.29 (left: 1 0.29 10)
7 / 10 = 0.7 (left: 1 2 0.7)
Input: 4 4 6 8
Possible next steps:
4 + 4 = 8 (left: 6 8 8)
4 + 6 = 10 (left: 8 10 8)
6 + 8 = 14 (left: 4 14 8)
4 * 4 = 16 (left: 6 8 16)
4 * 6 = 24 (left: 8 24 8)
6 * 8 = 48 (left: 4 48 8)
4 - 4 = 0 (left: 0 6 8)
4 - 6 = -2 (left: -2 8 8)
6 - 8 = -2 (left: 4 -2 8)

4 / 4 = 1 (left: 1 6 8)
4 / 6 = 0.67 (left: 8 0.67 8)
6 / 8 = 0.75 (left: 4 0.75 8)
Input: 3 4 5 6
Possible next steps:
3 + 4 = 7 (left: 5 6 7)
4 + 5 = 9 (left: 6 9 7)
4 + 6 = 10 (left: 5 10 7)
5 + 6 = 11 (left: 4 11 7)
3 * 4 = 12 (left: 5 6 12)
4 * 5 = 20 (left: 6 20 7)
4 * 6 = 24 (left: 5 24 7)
5 * 6 = 30 (left: 4 30 7)
3 - 4 = -1 (left: -1 5 6)
4 - 5 = -1 (left: 6 -1 7)
4 - 6 = -2 (left: 5 -2 7)
5 - 6 = -1 (left: 4 -1 7)
3 / 4 = 0.75 (left: 0.75 5 6)
4 / 5 = 0.8 (left: 6 0.8 7)
4 / 6 = 0.67 (left: 5 0.67 7)
5 / 6 = 0.83 (left: 4 0.83 7)
Input: 2 4 6
Possible next steps:
2 + 4 = 6 (left: 6 6)
4 + 6 = 10 (left: 6 10)
2 * 4 = 8 (left: 6 8)
4 * 6 = 24 (left: 6 24)
2 - 4 = -2 (left: -2 6)
4 - 6 = -2 (left: 8 -2)
2 / 4 = 0.5 (left: 0.5 6)
4 / 6 = 0.67 (left: 8 0.67)
Input: {input}
Possible next steps:
’’’

J.5.1 ToT Decomp prompts

Listing 16: ToT Decomp prompts
select_prompt_1s = ’’’Select two numbers using the bracket.
For example, (2) 8 8 (14) means select 2 and 14. Follow the
format of the example.
Do not include serial numbers that are not in the example. Do
not include unnecessary information in your output.
Input: 1 2 7 10
Select all combinations of two numbers using bracket.
Output:
(1) (2) 7 10
1 (2) (7) 10
1 2 (7) (10)
(1) 2 (7) 10
(1) 2 7 (10)
1 (2) 7 (10)
Input: {input}
Select all combinations of two numbers using bracket.
Output:
’’’

select_prompt_3s = ’’’Select two numbers using the bracket.
For example, (2) 8 8 (14) means select 2 and 14. Follow the
format of the example.
Do not include serial numbers that are not in the example. Do
not include unnecessary information in your output.
Input: 7 8 9
Select all combinations of two numbers using bracket.
Output:
(7) (8) 9
7 (8) (9)
(7) 8 (9)
Input: 2.33 6
Output:
(2.33) (6)
Input: 1 2 7 10
Select all combinations of two numbers using bracket.
Output:
(1) (2) 7 10
1 (2) (7) 10
1 2 (7) (10)
(1) 2 (7) 10
(1) 2 7 (10)
1 (2) 7 (10)
Input: {input}
Select all combinations of two numbers using bracket.
Output:
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’’’

select_prompt_5s = ’’’Select two numbers using the bracket.
For example, (2) 8 8 (14) means select 2 and 14. Follow the
format of the example.
Do not include serial numbers that are not in the example. Do
not include unnecessary information in your output.
Input: 7 8 9
Select all combinations of two numbers using bracket.
Output:
(7) (8) 9
7 (8) (9)
(7) 8 (9)
Input: 2.33 6
Output:
(2.33) (6)
Input: 1 2 7 10
Select all combinations of two numbers using bracket.
Output:
(1) (2) 7 10
1 (2) (7) 10
1 2 (7) (10)
(1) 2 (7) 10
(1) 2 7 (10)
1 (2) 7 (10)
Input: 0.66 8 9
Select all combinations of two numbers using bracket.
Output:
(0.66) (8) 9
0.66 (8) (9)
(0.66) 8 (9)
Input: 2 8 8 14
Select all combinations of two numbers using bracket.
Output:
(2) (8) 8 14
2 (8) (8) 14
2 8 (8) (14)
(2) 8 (8) 14
(2) 8 8 (14)
2 (8) 8 (14)
Input: {input}
Select all combinations of two numbers using bracket.
Output:
’’’

propose_prompt_1s = ’’’Use the two numbers in the bracket and
basic arithmetic operations to propose possible next steps.
Then, remove the selected numbers by the new number. Use the
format ’(left: ...)’ to present the remaining numbers.
Do not include serial numbers that are not in the example. Do
not include unnecessary information in your output.
Input: (2) 8 8 (14)
2 + 14 = 16, replace 2 14 by 16 (left: 8 8 16)
2 * 14 = 28, replace 2 14 by 28 (left: 8 8 28)
2 / 14 = 0.14, replace 2 14 by 0.14 (left: 8 8 0.14)
14 / 2 = 7, replace 2 14 by 7 (left: 8 8 7)
14 - 2 = 12, replace 2 14 by 12 (left: 8 8 12)
2 - 14 = -12, replace 2 14 by -12 (left: 8 8 -12)
Input: {input}
’’’

propose_prompt_3s = ’’’Use the two numbers in the bracket and
basic arithmetic operations to propose possible next steps.
Then, remove the selected numbers by the new number. Use the
format ’(left: ...)’ to present the remaining numbers.
Do not include serial numbers that are not in the example. Do
not include unnecessary information in your output.
Input: (2) 8 8 (14)
2 + 14 = 16, replace 2 14 by 16 (left: 8 8 16)
2 * 14 = 28, replace 2 14 by 28 (left: 8 8 28)
2 / 14 = 0.14, replace 2 14 by 0.14 (left: 8 8 0.14)
14 / 2 = 7, replace 2 14 by 7 (left: 8 8 7)
14 - 2 = 12, replace 2 14 by 12 (left: 8 8 12)
2 - 14 = -12, replace 2 14 by -12 (left: 8 8 -12)
Input: 1 (2) 7 (10)
2 + 7 = 9, replace 2 7 by 9 (left: 1 9 10)
2 * 7 = 14, replace 2 7 by 14 (left: 1 14 10)
2 / 7 = 0.29, replace 2 7 by 0.29 (left: 1 0.29 10)
7 / 2 = 3.5, replace 2 7 by 3.5 (left: 1 3.5 10)
7 - 2 = 5, replace 2 7 by 5 (left: 1 5 10)
2 - 7 = -5, replace 2 7 by -5 (left: 1 -5 10)
Input: (7) (8) 9
7 + 8 = 15, replace 7 8 by 15 (left: 15 9)
7 * 8 = 56, replace 7 8 by 56 (left: 56 9)
7 / 8 = 0.88, replace 7 8 by 0.88 (left: 0.88 9)
8 / 7 = 1.14, replace 7 8 by 1.14 (left: 1.14 9)

8 - 7 = 1, replace 7 8 by 1 (left: 1 9)
7 - 8 = -1, replace 7 8 by -1 (left: -1 9)
Input: {input}
’’’

propose_prompt_5s = ’’’Use the two numbers in the bracket and
basic arithmetic operations to propose possible next steps.
Then, remove the selected numbers by the new number. Use the
format ’(left: ...)’ to present the remaining numbers.
Do not include serial numbers that are not in the example. Do
not include unnecessary information in your output.
Input: (2) 8 8 (14)
2 + 14 = 16, replace 2 14 by 16 (left: 8 8 16)
2 * 14 = 28, replace 2 14 by 28 (left: 8 8 28)
2 / 14 = 0.14, replace 2 14 by 0.14 (left: 8 8 0.14)
14 / 2 = 7, replace 2 14 by 7 (left: 8 8 7)
14 - 2 = 12, replace 2 14 by 12 (left: 8 8 12)
2 - 14 = -12, replace 2 14 by -12 (left: 8 8 -12)
Input: 1 (2) 7 (10)
2 + 7 = 9, replace 2 7 by 9 (left: 1 9 10)
2 * 7 = 14, replace 2 7 by 14 (left: 1 14 10)
2 / 7 = 0.29, replace 2 7 by 0.29 (left: 1 0.29 10)
7 / 2 = 3.5, replace 2 7 by 3.5 (left: 1 3.5 10)
7 - 2 = 5, replace 2 7 by 5 (left: 1 5 10)
2 - 7 = -5, replace 2 7 by -5 (left: 1 -5 10)
Input: (7) (8) 9
7 + 8 = 15, replace 7 8 by 15 (left: 15 9)
7 * 8 = 56, replace 7 8 by 56 (left: 56 9)
7 / 8 = 0.88, replace 7 8 by 0.88 (left: 0.88 9)
8 / 7 = 1.14, replace 7 8 by 1.14 (left: 1.14 9)
8 - 7 = 1, replace 7 8 by 1 (left: 1 9)
7 - 8 = -1, replace 7 8 by -1 (left: -1 9)
Input: (2.33) (6)
2.33 + 6 = 8.33, replace 2.33 6 by 8.33 (left: 8.33)
2.33 * 6 = 14, replace 2.33 6 by 14 (left: 14)
2.33 / 6 = 0.39, replace 2.33 6 by 0.39 (left: 0.39)
6 / 2.33 = 2.57, replace 2.33 6 by 2.57 (left: 2.57)
6 - 2.33 = 3.67, replace 2.33 6 by 3.67 (left: 3.67)
2.33 - 6 = -3.67, replace 2.33 6 by -3.67 (left: -3.67)
Input: 0.66 (8) (9)
8 + 9 = 17, replace 8 9 by 17 (left: 0.66 17)
8 * 9 = 72, replace 8 9 by 72 (left: 0.66 72)
8 / 9 = 0.89, replace 8 9 by 0.89 (left: 0.66 0.89)
9 / 8 = 1.12, replace 8 9 by 1.12 (left: 0.66 1.12)
9 - 8 = 1, replace 8 9 by 1 (left: 0.66 1)
8 - 9 = -1, replace 8 9 by -1 (left: 0.66 -1)
Input: {input}
’’’

assembly_prompt_1s = ’’’Use the previous steps of equations to
form a final equation that obtains 24. Use ’Answer: ’ to

present your final answer.
Input: 4 4 6 8
Steps:
4 + 8 = 12 (left: 4 6 12)
6 - 4 = 2 (left: 2 12)
2 * 12 = 24 (left: 24)
Let’s do it step by step:
f1 = 4 + 8 = 12. In this step, 4 and 8 are from the input.
f2 = 6 - 4 = 2. In this step, 6 and 4 are from the input.
f3 = 2 * 12 = 24. In this step, 2 is from f2, and 12 is from
f1.
Thus, we replace 2 by f2: f3 = 2 * 12 = f2 * 12 = 24
Thus, we replace 12 by f1: f3 = 2 * 12 = f2 * f1 = 24
Since f1 = 4 + 8, we replace f1 by 4 + 8: f3 = 2 * 12 = f2 *
(4 + 8) = 24
Since f2 = 6 - 4, we replace f2 by 6 - 4: f3 = 2 * 12 = (6 -
4) * (4 + 8) = 24
Answer: (6 - 4) * (4 + 8) = 24
Input: {input}Let’s do it step by step:
f1 = ’’’

assembly_prompt_3s = ’’’Use the previous steps of equations to
form a final equation that obtains 24. Use ’Answer: ’ to

present your final answer.
Input: 4 4 6 8
Steps:
4 + 8 = 12 (left: 4 6 12)
6 - 4 = 2 (left: 2 12)
2 * 12 = 24 (left: 24)
Let’s do it step by step:
f1 = 4 + 8 = 12. In this step, 4 and 8 are from the input.
f2 = 6 - 4 = 2. In this step, 6 and 4 are from the input.
f3 = 2 * 12 = 24. In this step, 2 is from f2, and 12 is from
f1.
Thus, we replace 2 by f2: f3 = 2 * 12 = f2 * 12 = 24
Thus, we replace 12 by f1: f3 = 2 * 12 = f2 * f1 = 24
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Since f1 = 4 + 8, we replace f1 by 4 + 8: f3 = 2 * 12 = f2 *
(4 + 8) = 24
Since f2 = 6 - 4, we replace f2 by 6 - 4: f3 = 2 * 12 = (6 -
4) * (4 + 8) = 24
Answer: (6 - 4) * (4 + 8) = 24
Input: 2 9 10 12
Steps:
12 * 2 = 24 (left: 9 10 24)
10 - 9 = 1 (left: 1 24)
24 * 1 = 24 (left: 24)
Let’s do it step by step:
f1 = 12 * 2 = 24. In this step, 12 and 2 are from the input.
f2 = 10 - 9 = 1. In this step, 10 and 9 are from the input.
f3 = 24 * 1 = 24. In this step, 24 is from f1, and 1 is from
f2.
Thus, we replace 24 by f1: f3 = 24 * 1 = f1 * 1 = 24
Thus, we replace 1 by f2: f3 = 24 * 1 = f1 * f2 = 24
Since f1 = 12 * 2, we replace f1 by 12 * 2: f3 = 24 * 1 = (12
* 2) * f2 = 24
Since f2 = 10 - 9, we replace f2 by 10 - 9: f3 = 24 * 1 = (12
* 2) * (10 - 9) = 24
Answer: (12 * 2) * (10 - 9) = 24
Input: 4 9 10 13
Steps:
13 - 10 = 3 (left: 3 4 9)
9 - 3 = 6 (left: 4 6)
4 * 6 = 24 (left: 24)
Let’s do it step by step:
f1 = 13 - 10 = 3. In this step, 13 and 10 are from the input.
f2 = 9 - 3 = 6. In this step, 9 is from the input, and 3 is
from f1.
Thus, we replace 3 by f1: f2 = 9 - 3 = 9 - f1 = 6
f3 = 4 * 6 = 24. In this step, 4 is from the input, and 6 is
from f2.
Thus, we replace 6 by f2: f3 = 4 * 6 = 4 * f2 = 24
Since f2 = 9 - f1, we replace f2 by 9 - f1: f3 = 4 * 6 = 4 *
(9 - f1) = 24
Since f1 = 13 - 10, we replace f1 by 13 - 10: f3 = 4 * 6 = 4 *
(9 - (13 - 10)) = 24

Answer: 4 * (9 - (13 - 10)) = 24
Input: {input}Let’s do it step by step:
f1 = ’’’

assembly_prompt_5s = ’’’Use the previous steps of equations to
form a final equation that obtains 24. Use ’Answer: ’ to

present your final answer.
Input: 4 4 6 8
Steps:
4 + 8 = 12 (left: 4 6 12)
6 - 4 = 2 (left: 2 12)
2 * 12 = 24 (left: 24)
Let’s do it step by step:
f1 = 4 + 8 = 12. In this step, 4 and 8 are from the input.
f2 = 6 - 4 = 2. In this step, 6 and 4 are from the input.
f3 = 2 * 12 = 24. In this step, 2 is from f2, and 12 is from
f1.
Thus, we replace 2 by f2: f3 = 2 * 12 = f2 * 12 = 24
Thus, we replace 12 by f1: f3 = 2 * 12 = f2 * f1 = 24
Since f1 = 4 + 8, we replace f1 by 4 + 8: f3 = 2 * 12 = f2 *
(4 + 8) = 24
Since f2 = 6 - 4, we replace f2 by 6 - 4: f3 = 2 * 12 = (6 -
4) * (4 + 8) = 24
Answer: (6 - 4) * (4 + 8) = 24
Input: 2 9 10 12
Steps:
12 * 2 = 24 (left: 9 10 24)
10 - 9 = 1 (left: 1 24)
24 * 1 = 24 (left: 24)
Let’s do it step by step:
f1 = 12 * 2 = 24. In this step, 12 and 2 are from the input.
f2 = 10 - 9 = 1. In this step, 10 and 9 are from the input.
f3 = 24 * 1 = 24. In this step, 24 is from f1, and 1 is from
f2.
Thus, we replace 24 by f1: f3 = 24 * 1 = f1 * 1 = 24
Thus, we replace 1 by f2: f3 = 24 * 1 = f1 * f2 = 24
Since f1 = 12 * 2, we replace f1 by 12 * 2: f3 = 24 * 1 = (12
* 2) * f2 = 24
Since f2 = 10 - 9, we replace f2 by 10 - 9: f3 = 24 * 1 = (12
* 2) * (10 - 9) = 24
Answer: (12 * 2) * (10 - 9) = 24
Input: 4 9 10 13
Steps:
13 - 10 = 3 (left: 3 4 9)
9 - 3 = 6 (left: 4 6)
4 * 6 = 24 (left: 24)
Let’s do it step by step:
f1 = 13 - 10 = 3. In this step, 13 and 10 are from the input.

f2 = 9 - 3 = 6. In this step, 9 is from the input, and 3 is
from f1.
Thus, we replace 3 by f1: f2 = 9 - 3 = 9 - f1 = 6
f3 = 4 * 6 = 24. In this step, 4 is from the input, and 6 is
from f2.
Thus, we replace 6 by f2: f3 = 4 * 6 = 4 * f2 = 24
Since f2 = 9 - f1, we replace f2 by 9 - f1: f3 = 4 * 6 = 4 *
(9 - f1) = 24
Since f1 = 13 - 10, we replace f1 by 13 - 10: f3 = 4 * 6 = 4 *
(9 - (13 - 10)) = 24

Answer: 4 * (9 - (13 - 10)) = 24
Input: 1 4 8 8
Steps:
8 / 4 = 2 (left: 1 2 8)
1 + 2 = 3 (left: 3 8)
3 * 8 = 24 (left: 24)
Let’s do it step by step:
f1 = 8 / 4 = 2. In this step, 8 and 4 are from the input.
f2 = 1 + 2 = 3. In this step, 2 is from f1, and 1 is from the
input.
Thus, we replace 2 by f1: f2 = 1 + 2 = 1 + f1 = (1 + (8 / 4))
= 3
f3 = 3 * 8 = 24. In this step, 3 is from f2, and 8 is from the
input.

Thus, we replace 3 by f2: f3 = 3 * 8 = f2 * 8 = 24
Since f2 = 1 + f1, we replace f2 by 1 + f1: f3 = 3 * 8 = (1 +
f1) * 8 = 24
Since f1 = 8 / 4, we replace f1 by 8 / 4: (1 + f1) * 8 = (1 +
(8 / 4)) * 8 = 24
Answer: (1 + (8 / 4)) * 8 = 24
Input: 5 5 5 9
Steps:
5 + 5 = 10 (left: 5 9 10)
10 + 5 = 15 (left: 9 15)
15 + 9 = 24 (left: 24)
Let’s do it step by step:
f1 = 5 + 5 = 10. In this step, 5 and 5 are from the input.
f2 = 10 + 5 = 15. In this step, 10 is from f1, and 5 is from
the input.
Thus, we replace 10 by f1: f2 = 10 + 5 = f1 + 5 = 15
f3 = 15 + 9 = 24. In this step, 15 is from f2, and 9 is from
the input.
Thus, we replace 15 by f2: f3 = 15 + 9 = f2 + 9 = 24
Since f2 = f1 + 5, we replace f2 by f1 + 5: f3 = 15 + 9 = (f1
+ 5) + 9 = 24
Since f1 = 5 + 5, we replace f1 by 5 + 5: f3 = 15 + 9 = ((5 +
5) + 5) + 9 = 24
Answer: ((5 + 5) + 5) + 9 = 24
Input: {input}Let’s do it step by step:
f1 = ’’’

Listing 17: MusiQue prompts
direct = """Please answer a question given some paragraphs as
context. Respond only the answer, in the format "The answer is
###."

Below are some examples (contexts are omitted):

Question: What is the extreme low temperature of the city
where WNJN-FM is located?
The answer is -9 °F.

Question: When did muslim armies invade the country Al-Mahabah
is located and the country Kleicha originates?

The answer is in 634.

Question: When did hurricane Sandy his the city where The
Dealer’s performer was born?
The answer is October 28, 2012.

Question: What is the enrollment of undergraduates at the
university attended by the entrepreneur owning the gold spike
in the location holding PollyGrind Film Festival?
The answer is 7,200.

Question: When did the nation that seized the country where Al-
Berka is located from the empire that declined following the
Crimean War join the Allies in WW2?
The answer is September 1943.

Question: An institution like a German Fachhochschule is known
by what term in Éric Losfeld’s birth country and the country

where painters remained focused on textures and surfaces.
The answer is hogeschool.
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Now, answer a question given the following paragraphs as
context:

{ctx}

Question: {question}
The answer is"""

cot = """Please answer a question given some paragraphs as
context. Respond by decomposing the question into subquestions,
and end with the format "The answer is ###."

Below are some examples (contexts are omitted):
Question: What is the extreme low temperature of the city
where WNJN-FM is located?
The question can be decomposed into following subquestions:
What city is WNJN-FM located? Answer: Atlantic City
What is the extreme low temperature of Atlantic City ? Answer:
-9 °F

The answer is -9 °F.

Question: When did muslim armies invade the country Al-Mahabah
is located and the country Kleicha originates?

The question can be decomposed into following subquestions:
Which was the country for Kleicha? Answer: Iraq
Which country is Al-Mahabah in? Answer: Syria
When did muslim armies invade Syria and Iraq? Answer: in 634
The answer is in 634.

Question: When did hurricane Sandy his the city where The
Dealer’s performer was born?
The question can be decomposed into following subquestions:
Who is The Dealers’ performer? Answer: Mal Waldron
Where is Mal Waldron’s place of birth? Answer: New York City
When did hurricane sandy hit New York City? Answer: October 28,
2012

The answer is October 28, 2012.

Question: What is the enrollment of undergraduates at the
university attended by the entrepreneur owning the gold spike
in the location holding PollyGrind Film Festival?
The question can be decomposed into following subquestions:
What is the location of PollyGrind Film Festival? Answer: Las
Vegas
Who owns the gold spike in Las Vegas? Answer: Tony Hsieh
Tony Hsieh is educated at where? Answer: Harvard
What is the enrollment of undergraduates at Harvard ? Answer:
7,200
The answer is 7,200.

Question: When did the nation that seized the country where Al-
Berka is located from the empire that declined following the
Crimean War join the Allies in WW2?
The question can be decomposed into following subquestions:
Which country is Al-Berka in? Answer: Libya
What empire declined after the Crimean War? Answer: the
Ottoman Empire
Which european state seized Libya from the Ottoman Empire in
1911? Answer: Italy
When did Italy join the allies in ww2? Answer: September 1943
The answer is September 1943.

Question: An institution like a German Fachhochschule is known
by what term in Éric Losfeld’s birth country and the country

where painters remained focused on textures and surfaces.
The question can be decomposed into following subquestions:
Where is Éric Losfeld’s place of birth? Answer: Mouscron
Arrondissement of Mouscron >> country? Answer: Belgium
Where was the focus of paintings on textures and surfaces?
Answer: the Netherlands
What term is used in Belgium and the the Netherlands to refer
to an institution like a German Fachhochschule? Answer:
hogeschool
The answer is hogeschool.

Now, answer a question given the following paragraphs as
context:

{ctx}

Question: {question}
The question can be decomposed into following subquestions:"""

direct_triplet = """Please answer a question given some
relation triplets as context. Respond only the answer, in the
format "The answer is ###."

Below are some examples:

Relation triplets:
(WNJN-FM, located in, Atlantic City)
(The extreme low temperature of Atlantic City, is, -9 °F)
Question: What is the extreme low temperature of the city
where WNJN-FM is located?
The answer is -9 °F.

Relation triplets:
(Kleicha, country, Iraq)
(Al-Mahabah, country, Syria)
(Muslim armies, invade, Syria and Iraq)
(Syria and Iraq, invaded in, 634)
Question: When did muslim armies invade the country Al-Mahabah
is located and the country Kleicha originates?

The answer is in 634.

Relation triplets:
(The Dealers, performer, Mal Waldron)
(Mal Waldron, place of birth, New York City)
(Hurricane Sandy, hit New York City, October 28, 2012)
Question: When did hurricane Sandy his the city where The
Dealer’s performer was born?
The answer is October 28, 2012.

Relation triplets:
(PollyGrind Film Festival, location, Las Vegas)
(Gold Spike, owned by, Tony Hsieh)
(Tony Hsieh, educated at, Harvard)
(Harvard, undergraduate enrollment, 7,200)
Question: What is the enrollment of undergraduates at the
university attended by the entrepreneur owning the gold spike
in the location holding PollyGrind Film Festival?
The answer is 7,200.

Relation triplets:
(Al-Berka, country, Libya))
(Ottoman Empire, declined after, Crimean War)
(The European state, seized Libya from the Ottoman Empire in
1911, Italy)
(Italy, join the allies in WW2, September 1943)
Question: When did the nation that seized the country where Al-
Berka is located from the empire that declined following the
Crimean War join the Allies in WW2?
The answer is September 1943.

Relation triplets:
(Éric Losfeld, place of birth, Mouscron)
(The Collegian, owned by, Houston Baptist University)
(Houston Baptist University, founded, 1960)
(Hertfordshire, located in, East of England)
(Jan Šindel, birthplace, Hradec Králové)
(Arrondissement of Mouscron, country, Belgium)
(The focus of paintings on textures and surfaces, located in,
the Netherlands)
(Belgium and the Netherlands, refer to, hogeschool)
Question: An institution like a German Fachhochschule is known
by what term in Éric Losfeld’s birth country and the country

where painters remained focused on textures and surfaces.
The answer is hogeschool.

Now, answer a question given the following relation triplets
as context:

{ctx}

Question: {question}
The answer is"""

cot_triplet = """Please answer a question given some relation
triplets as context. Respond by decomposing the question into
subquestions, and end with the format "The answer is ###."

Below are some examples:
Relation treiplets:
(WNJN-FM, located in, Atlantic City)
(The extreme low temperature of Atlantic City, is, -9 °F)
Question: What is the extreme low temperature of the city
where WNJN-FM is located?
The question can be decomposed into following subquestions:
What city is WNJN-FM located? Answer: Atlantic City
What is the extreme low temperature of Atlantic City ? Answer:
-9 °F

The answer is -9 °F.
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Relation treiplets:
(Kleicha, country, Iraq)
(Al-Mahabah, country, Syria)
(Muslim armies, invade, Syria and Iraq)
(Syria and Iraq, invaded in, 634)
Question: When did muslim armies invade the country Al-Mahabah
is located and the country Kleicha originates?

The question can be decomposed into following subquestions:
Which was the country for Kleicha? Answer: Iraq
Which country is Al-Mahabah in? Answer: Syria
When did muslim armies invade Syria and Iraq? Answer: in 634
The answer is in 634.

Relation treiplets:
(The Dealers, performer, Mal Waldron)
(Mal Waldron, place of birth, New York City)
(Hurricane Sandy, hit New York City, October 28, 2012)
Question: When did hurricane Sandy his the city where The
Dealer’s performer was born?
The question can be decomposed into following subquestions:
Who is The Dealers’ performer? Answer: Mal Waldron
Where is Mal Waldron’s place of birth? Answer: New York City
When did hurricane sandy hit New York City? Answer: October 28,
2012

The answer is October 28, 2012.

Relation treiplets:
(PollyGrind Film Festival, location, Las Vegas)
(Gold Spike, owned by, Tony Hsieh)
(Tony Hsieh, educated at, Harvard)
(Harvard, undergraduate enrollment, 7,200)
Question: What is the enrollment of undergraduates at the
university attended by the entrepreneur owning the gold spike
in the location holding PollyGrind Film Festival?
The question can be decomposed into following subquestions:
What is the location of PollyGrind Film Festival? Answer: Las
Vegas
Who owns the gold spike in Las Vegas? Answer: Tony Hsieh
Tony Hsieh is educated at where? Answer: Harvard
What is the enrollment of undergraduates at Harvard ? Answer:
7,200
The answer is 7,200.

Relation treiplets:
(Al-Berka, country, Libya))
(Ottoman Empire, declined after, Crimean War)
(The European state, seized Libya from the Ottoman Empire in
1911, Italy)
(Italy, join the allies in WW2, September 1943)
Question: When did the nation that seized the country where Al-
Berka is located from the empire that declined following the
Crimean War join the Allies in WW2?
The question can be decomposed into following subquestions:
Which country is Al-Berka in? Answer: Libya
What empire declined after the Crimean War? Answer: the
Ottoman Empire
Which european state seized Libya from the Ottoman Empire in
1911? Answer: Italy
When did Italy join the allies in ww2? Answer: September 1943
The answer is September 1943.

Relation treiplets:
(Éric Losfeld, place of birth, Mouscron)
(The Collegian, owned by, Houston Baptist University)
(Houston Baptist University, founded, 1960)
(Hertfordshire, located in, East of England)
(Jan Šindel, birthplace, Hradec Králové)
(Arrondissement of Mouscron, country, Belgium)
(The focus of paintings on textures and surfaces, located in,
the Netherlands)
(Belgium and the Netherlands, refer to, hogeschool)
Question: An institution like a German Fachhochschule is known
by what term in Éric Losfeld’s birth country and the country

where painters remained focused on textures and surfaces.
The question can be decomposed into following subquestions:
Where is Éric Losfeld’s place of birth? Answer: Mouscron
Arrondissement of Mouscron >> country? Answer: Belgium
Where was the focus of paintings on textures and surfaces?
Answer: the Netherlands
What term is used in Belgium and the the Netherlands to refer
to an institution like a German Fachhochschule? Answer:
hogeschool
The answer is hogeschool.

Now, answer a question given the following relation triplets
as context:

{ctx}

Question: {question}
The question can be decomposed into following subquestions:"""

tot = """Please answer a question given some paragraphs as
context. Respond by decomposing the question into subquestions,
and end with the format "The answer to the original question

is ###." All questions can find their answers in the provided
paragraphs.

Below are some examples to demonstrate the desired answering
format (contexts are omitted for brevity):
Question: What is the extreme low temperature of the city
where WNJN-FM is located?
The question can be decomposed into following subquestions:
sub question: What city is WNJN-FM located?
sub answer: Atlantic City
sub question: What is the extreme low temperature of Atlantic
City ?
sub answer: -9 °F
The answer to the original question is -9 °F.

Question: When did muslim armies invade the country Al-Mahabah
is located and the country Kleicha originates?

The question can be decomposed into following subquestions:
sub question: Which was the country for Kleicha?
sub answer: Iraq
sub question: Which country is Al-Mahabah in?
sub answer: Syria
sub question: When did muslim armies invade Syria and Iraq?
sub answer: in 634
The answer to the original question is in 634.

Question: When did hurricane Sandy his the city where The
Dealer’s performer was born?
The question can be decomposed into following subquestions:
sub question: Who is The Dealers’ performer?
sub answer: Mal Waldron
sub question: Where is Mal Waldron’s place of birth?
sub answer: New York City
sub question: When did hurricane sandy hit New York City?
sub answer: October 28, 2012
The answer to the original question is October 28, 2012.

Question: What is the enrollment of undergraduates at the
university attended by the entrepreneur owning the gold spike
in the location holding PollyGrind Film Festival?
The question can be decomposed into following subquestions:
sub question: What is the location of PollyGrind Film Festival
?
sub answer: Las Vegas
sub question: Who owns the gold spike in Las Vegas?
sub answer: Tony Hsieh
sub question: Tony Hsieh is educated at where?
sub answer: Harvard
sub question: What is the enrollment of undergraduates at
Harvard ?
sub answer: 7,200
The answer to the original question is 7,200.

Question: When did the nation that seized the country where Al-
Berka is located from the empire that declined following the
Crimean War join the Allies in WW2?
The question can be decomposed into following subquestions:
sub question: Which country is Al-Berka in?
sub answer: Libya
sub question: What empire declined after the Crimean War?
sub answer: the Ottoman Empire
sub question: Which european state seized Libya from the
Ottoman Empire in 1911?
sub answer: Italy
sub question: When did Italy join the allies in ww2?
sub answer: September 1943
The answer to the original question is September 1943.

Question: An institution like a German Fachhochschule is known
by what term in Éric Losfeld’s birth country and the country

where painters remained focused on textures and surfaces.
The question can be decomposed into following subquestions:
sub question: Where is Éric Losfeld’s place of birth?
sub answer: Mouscron
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sub question: Arrondissement of Mouscron >> country?
sub answer: Belgium
sub question: Where was the focus of paintings on textures and
surfaces?

sub answer: the Netherlands
sub question: What term is used in Belgium and the the
Netherlands to refer to an institution like a German
Fachhochschule?
sub answer: hogeschool
The answer to the original question is hogeschool.

Now, answer a question given the following paragraphs as
context. Remember to decompose the question into subquestions,
and it is guaranteed that the answer can be found in the

provided paragraphs:

{ctx}

Now answer the following question. Remember to decompose the
question into subquestions, and it is guaranteed that the
answer can be found in the provided paragraphs.

Question: {question}
The question can be decomposed into following subquestions:"""

tot_triplet = """Please answer a question given some
paragraphs as context. Respond by decomposing the question
into subquestions, and end with the format "The answer to the
original question is ###." All questions can find their
answers in the provided paragraphs.

Below are some examples to demonstrate the desired answering
format (contexts are omitted for brevity):
Question: What is the extreme low temperature of the city
where WNJN-FM is located?
The question can be decomposed into following subquestions:
sub question: What city is WNJN-FM located?
sub answer: Atlantic City
sub question: What is the extreme low temperature of Atlantic
City ?
sub answer: -9 °F
The answer to the original question is -9 °F.

Question: When did muslim armies invade the country Al-Mahabah
is located and the country Kleicha originates?

The question can be decomposed into following subquestions:
sub question: Which was the country for Kleicha?
sub answer: Iraq
sub question: Which country is Al-Mahabah in?
sub answer: Syria
sub question: When did muslim armies invade Syria and Iraq?
sub answer: in 634
The answer to the original question is in 634.

Question: When did hurricane Sandy his the city where The
Dealer’s performer was born?
The question can be decomposed into following subquestions:
sub question: Who is The Dealers’ performer?
sub answer: Mal Waldron
sub question: Where is Mal Waldron’s place of birth?
sub answer: New York City
sub question: When did hurricane sandy hit New York City?
sub answer: October 28, 2012
The answer to the original question is October 28, 2012.

Question: What is the enrollment of undergraduates at the
university attended by the entrepreneur owning the gold spike
in the location holding PollyGrind Film Festival?
The question can be decomposed into following subquestions:
sub question: What is the location of PollyGrind Film Festival
?
sub answer: Las Vegas
sub question: Who owns the gold spike in Las Vegas?
sub answer: Tony Hsieh
sub question: Tony Hsieh is educated at where?
sub answer: Harvard
sub question: What is the enrollment of undergraduates at
Harvard ?
sub answer: 7,200
The answer to the original question is 7,200.

Question: When did the nation that seized the country where Al-
Berka is located from the empire that declined following the
Crimean War join the Allies in WW2?
The question can be decomposed into following subquestions:
sub question: Which country is Al-Berka in?
sub answer: Libya

sub question: What empire declined after the Crimean War?
sub answer: the Ottoman Empire
sub question: Which european state seized Libya from the
Ottoman Empire in 1911?
sub answer: Italy
sub question: When did Italy join the allies in ww2?
sub answer: September 1943
The answer to the original question is September 1943.

Question: An institution like a German Fachhochschule is known
by what term in Éric Losfeld’s birth country and the country

where painters remained focused on textures and surfaces.
The question can be decomposed into following subquestions:
sub question: Where is Éric Losfeld’s place of birth?
sub answer: Mouscron
sub question: Arrondissement of Mouscron >> country?
sub answer: Belgium
sub question: Where was the focus of paintings on textures and
surfaces?

sub answer: the Netherlands
sub question: What term is used in Belgium and the the
Netherlands to refer to an institution like a German
Fachhochschule?
sub answer: hogeschool
The answer to the original question is hogeschool.

Now, answer a question given the following paragraphs as
context. Remember to decompose the question into subquestions,
and it is guaranteed that the answer can be found in the

provided paragraphs:

{triplet_ctx}

Now answer the following question. Remember to decompose the
question into subquestions, and it is guaranteed that the
answer can be found in the provided paragraphs.

Question: {question}
The question can be decomposed into following subquestions:"""

tot_self_eval = """
The following are candidates to answer a multi-hop question.
Some of them are complete reasoning trajectories while other
may be intermediate. Please sort these candidates based on how
likely they will lead to a correct solution. You should sort

based on the quality, instead of length, i.e. complete
reasoning may or may not be correct. You should return a comma
separated list, and use #1 to indicate the first candidate,

#2 to indicate the second candidate, and so on. Note that the
multi-hop question can be answered by decomposing them into
subquestions and answering them one by one. A good candidate
should be on the right track of decomposing question, and make
no mistakes, and a good final answer should be as concise as

possible.

Below is an example:

Candidate 1:
Question: Where was the film The Beach filmed in the country
where Pao Sarasin was born?
The question can be decomposed into following subquestions:
sub question: Where was Pao Sarasin born?
sub answer: Bangkok, Thailand
sub question: Where was the film The Beach filmed?
sub answer: The film The Beach was filmed on the Thai island
Koh Phi Phi.
The answer to the original question is Thailand.

Candidate 2:
Question: Where was the film The Beach filmed in the country
where Pao Sarasin was born?
The question can be decomposed into following subquestions:
sub question: Where was Pao Sarasin born?
sub answer: Bangkok, Thailand
sub question: Where was the film The Beach filmed?
sub answer: Koh Phi Phi, Thailand
The answer to the original question is Koh Phi Phi, Thailand.

Candidate 3:
Question: Where was the film The Beach filmed in the country
where Pao Sarasin was born?
The question can be decomposed into following subquestions:
sub question: Where was Pao Sarasin born?
sub answer: Bangkok, Thailand
sub question: Where was the film The Beach filmed?
sub answer: The film The Beach was filmed on the Thai island
Koh Phi Phi, in Thailand.
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The answer to the original question is The film The Beach was
filmed on the Thai island Koh Phi Phi, in Thailand.

Candidate 4:
Question: Where was the film The Beach filmed in the country
where Pao Sarasin was born?
The question can be decomposed into following subquestions:
sub question: What is the country of birth of Pao Sarasin?
sub answer: Thailand
sub question: Where was the film The Beach filmed?
sub answer: The Thai island Koh Phi Phi
The answer to the original question is The Thai island Koh Phi
Phi.

Candidate 5:
Question: Where was the film The Beach filmed in the country
where Pao Sarasin was born?
The question can be decomposed into following subquestions:
sub question: What is the country of birth of Pao Sarasin?
sub answer: Thailand
sub question: Where was the film The Beach filmed?
sub answer: The film The Beach was filmed on the Thai island
Koh Phi Phi.
The answer to the original question is The film The Beach was
filmed on the Thai island Koh Phi Phi.

Now pick the most likely candidate to answer the original
question.
Answer: #4, #5, #3, #2, #1

Now pick from the following candidates:

{candidates}

Now pick the most likely candidate to answer the original
question.
Answer:
"""

Listing 18: Blocksworld prompts
{
"example_pool": [

{
"init": "the red block is clear, the orange block

is clear, the hand is empty, the orange block is on top of the
blue block, the red block is on the table and the blue block

is on the table",
"goal": "the blue block is on top of the orange

block",
"plan": "\nunstack the orange block from on top of

the blue block\nput down the orange block\npick up the blue
block\nstack the blue block on top of the orange block\n[PLAN
END]\n",

"states": [
"the red block is clear, the blue block is

clear, the orange block is clear, the hand is empty, the red
block is on the table, the blue block is on the table and the
orange block is on the table",

"the red block is clear, the blue block is
clear, the hand is empty, the blue block is on top of the
orange block, the red block is on the table and the orange
block is on the table"

]
},
{

"init": "the blue block is clear, the orange block
is clear, the hand is empty, the red block is on top of the

yellow block, the orange block is on top of the red block, the
blue block is on the table and the yellow block is on the

table",
"goal": "the blue block is on top of the yellow

block and the orange block is on top of the blue block",
"plan": "\nunstack the orange block from on top of

the red block\nput down the orange block\nunstack the red
block from on top of the yellow block\nput down the red block\
npick up the blue block\nstack the blue block on top of the
yellow block\npick up the orange block\nstack the orange block
on top of the blue block\n[PLAN END]\n",

"states": [
"the red block is clear, the blue block is

clear, the orange block is clear, the hand is empty, the red
block is on top of the yellow block, the blue block is on the
table, the orange block is on the table and the yellow block
is on the table",

"the red block is clear, the blue block is
clear, the orange block is clear, the yellow block is clear,

the hand is empty, the red block is on the table, the blue
block is on the table, the orange block is on the table and
the yellow block is on the table",

"the red block is clear, the blue block is
clear, the orange block is clear, the hand is empty, the blue
block is on top of the yellow block, the red block is on the
table, the orange block is on the table and the yellow block
is on the table",

"the red block is clear, the orange block is
clear, the hand is empty, the blue block is on top of the
yellow block, the orange block is on top of the blue block,
the red block is on the table and the yellow block is on the
table"

]
},
{

"init": "the red block is clear, the yellow block
is clear, the hand is empty, the red block is on top of the
blue block, the blue block is on top of the orange block, the
orange block is on the table and the yellow block is on the
table",

"goal": "the blue block is on top of the orange
block and the yellow block is on top of the red block",

"plan": "\npick up the yellow block\nstack the
yellow block on top of the red block\n[PLAN END]\n",

"states": [
"the yellow block is clear, the hand is empty,

the red block is on top of the blue block, the blue block is
on top of the orange block, the yellow block is on top of the
red block and the orange block is on the table"

]
},
{

"init": "the blue block is clear, the yellow block
is clear, the hand is empty, the red block is on top of the

orange block, the blue block is on top of the red block, the
orange block is on the table and the yellow block is on the
table",

"goal": "the blue block is on top of the red block
and the yellow block is on top of the blue block",

"plan": "\npick up the yellow block\nstack the
yellow block on top of the blue block\n[PLAN END]\n",

"states": [
"the yellow block is clear, the hand is empty,

the red block is on top of the orange block, the blue block
is on top of the red block, the yellow block is on top of the
blue block and the orange block is on the table"

]
},
{

"init": "the blue block is clear, the orange block
is clear, the hand is empty, the blue block is on top of the

yellow block, the yellow block is on top of the red block, the
red block is on the table and the orange block is on the

table",
"goal": "the blue block is on top of the red block

and the orange block is on top of the yellow block",
"plan": "\nunstack the blue block from on top of

the yellow block\nstack the blue block on top of the orange
block\nunstack the yellow block from on top of the red block\
nput down the yellow block\nunstack the blue block from on top
of the orange block\nstack the blue block on top of the red

block\npick up the orange block\nstack the orange block on top
of the yellow block\n[PLAN END]\n",

"states": [
"the blue block is clear, the yellow block is

clear, the hand is empty, the blue block is on top of the
orange block, the yellow block is on top of the red block, the
red block is on the table and the orange block is on the

table",
"the red block is clear, the blue block is

clear, the yellow block is clear, the hand is empty, the blue
block is on top of the orange block, the red block is on the
table, the orange block is on the table and the yellow block
is on the table",

"the blue block is clear, the orange block is
clear, the yellow block is clear, the hand is empty, the blue
block is on top of the red block, the red block is on the
table, the orange block is on the table and the yellow block
is on the table",

"the blue block is clear, the orange block is
clear, the hand is empty, the blue block is on top of the red
block, the orange block is on top of the yellow block, the red
block is on the table and the yellow block is on the table"

]
},
{
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"init": "the blue block is clear, the orange block
is clear, the hand is empty, the blue block is on top of the

red block, the red block is on the table and the orange block
is on the table",

"goal": "the red block is on top of the orange
block and the orange block is on top of the blue block",

"plan": "\nunstack the blue block from on top of
the red block\nput down the blue block\npick up the orange
block\nstack the orange block on top of the blue block\npick
up the red block\nstack the red block on top of the orange
block\n[PLAN END]\n",

"states": [
"the red block is clear, the blue block is

clear, the orange block is clear, the hand is empty, the red
block is on the table, the blue block is on the table and the
orange block is on the table",

"the red block is clear, the orange block is
clear, the hand is empty, the orange block is on top of the
blue block, the red block is on the table and the blue block
is on the table",

"the red block is clear, the hand is empty,
the red block is on top of the orange block, the orange block
is on top of the blue block and the blue block is on the table
"

]
},
{

"init": "the red block is clear, the yellow block
is clear, the hand is empty, the red block is on top of the
orange block, the orange block is on top of the blue block,
the blue block is on the table and the yellow block is on the
table",

"goal": "the red block is on top of the yellow
block, the blue block is on top of the orange block and the
yellow block is on top of the blue block",

"plan": "\nunstack the red block from on top of
the orange block\nput down the red block\nunstack the orange
block from on top of the blue block\nput down the orange block
\npick up the blue block\nstack the blue block on top of the
orange block\npick up the yellow block\nstack the yellow block
on top of the blue block\npick up the red block\nstack the

red block on top of the yellow block\n[PLAN END]\n",
"states": [

"the red block is clear, the orange block is
clear, the yellow block is clear, the hand is empty, the
orange block is on top of the blue block, the red block is on
the table, the blue block is on the table and the yellow block
is on the table",

"the red block is clear, the blue block is
clear, the orange block is clear, the yellow block is clear,
the hand is empty, the red block is on the table, the blue
block is on the table, the orange block is on the table and
the yellow block is on the table",

"the red block is clear, the blue block is
clear, the yellow block is clear, the hand is empty, the blue
block is on top of the orange block, the red block is on the
table, the orange block is on the table and the yellow block
is on the table",

"the red block is clear, the yellow block is
clear, the hand is empty, the blue block is on top of the
orange block, the yellow block is on top of the blue block,
the red block is on the table and the orange block is on the
table",

"the red block is clear, the hand is empty,
the red block is on top of the yellow block, the blue block is
on top of the orange block, the yellow block is on top of the
blue block and the orange block is on the table"

]
},
{

"init": "the red block is clear, the blue block is
clear, the hand is empty, the red block is on top of the

orange block, the blue block is on the table and the orange
block is on the table",

"goal": "the red block is on top of the blue block
and the blue block is on top of the orange block",

"plan": "\nunstack the red block from on top of
the orange block\nput down the red block\npick up the blue
block\nstack the blue block on top of the orange block\npick
up the red block\nstack the red block on top of the blue block
\n[PLAN END]\n",

"states": [
"the red block is clear, the blue block is

clear, the orange block is clear, the hand is empty, the red
block is on the table, the blue block is on the table and the
orange block is on the table",

"the red block is clear, the blue block is

clear, the hand is empty, the blue block is on top of the
orange block, the red block is on the table and the orange
block is on the table",

"the red block is clear, the hand is empty,
the red block is on top of the blue block, the blue block is
on top of the orange block and the orange block is on the
table"

]
},
{

"init": "the blue block is clear, the yellow block
is clear, the hand is empty, the blue block is on top of the

orange block, the yellow block is on top of the red block, the
red block is on the table and the orange block is on the

table",
"goal": "the blue block is on top of the red block

and the yellow block is on top of the orange block",
"plan": "\nunstack the blue block from on top of

the orange block\nput down the blue block\nunstack the yellow
block from on top of the red block\nstack the yellow block on
top of the orange block\npick up the blue block\nstack the
blue block on top of the red block\n[PLAN END]\n",

"states": [
"the blue block is clear, the orange block is

clear, the yellow block is clear, the hand is empty, the
yellow block is on top of the red block, the red block is on
the table, the blue block is on the table and the orange block
is on the table",

"the red block is clear, the blue block is
clear, the yellow block is clear, the hand is empty, the
yellow block is on top of the orange block, the red block is
on the table, the blue block is on the table and the orange
block is on the table",

"the blue block is clear, the yellow block is
clear, the hand is empty, the blue block is on top of the red
block, the yellow block is on top of the orange block, the red
block is on the table and the orange block is on the table"

]
},
{

"init": "the red block is clear, the orange block
is clear, the white block is clear, the hand is empty, the
blue block is on top of the yellow block, the white block is
on top of the blue block, the red block is on the table, the
orange block is on the table and the yellow block is on the
table",

"goal": "the blue block is on top of the yellow
block, the orange block is on top of the white block and the
white block is on top of the red block",

"plan": "\nunstack the white block from on top of
the blue block\nstack the white block on top of the red block\
npick up the orange block\nstack the orange block on top of
the white block\n[PLAN END]\n",

"states": [
"the blue block is clear, the orange block is

clear, the white block is clear, the hand is empty, the blue
block is on top of the yellow block, the white block is on top
of the red block, the red block is on the table, the orange

block is on the table and the yellow block is on the table",
"the blue block is clear, the orange block is

clear, the hand is empty, the blue block is on top of the
yellow block, the orange block is on top of the white block,
the white block is on top of the red block, the red block is
on the table and the yellow block is on the table"

]
}

],
"intro": "I am playing with a set of blocks where I need

to arrange the blocks into stacks. Here are the actions I can
do\n\nPick up a block\nUnstack a block from on top of another
block\nPut down a block\nStack a block on top of another block
\n\nI have the following restrictions on my actions:\nI can
only pick up or unstack one block at a time.\nI can only pick
up or unstack a block if my hand is empty.\nI can only pick up
a block if the block is on the table and the block is clear.

A block is clear if the block has no other blocks on top of it
and if the block is not picked up.\nI can only unstack a

block from on top of another block if the block I am
unstacking was really on top of the other block.\nI can only
unstack a block from on top of another block if the block I am
unstacking is clear.\nOnce I pick up or unstack a block, I am
holding the block.\nI can only put down a block that I am

holding.\nI can only stack a block on top of another block if
I am holding the block being stacked.\nI can only stack a
block on top of another block if the block onto which I am
stacking the block is clear.\nOnce I put down or stack a block,
my hand becomes empty.\n\n",
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"world_update_pickup": "I am playing with a set of blocks
where I need to arrange the blocks into stacks. Here are the
actions I can do \n\nPick up a block \nUnstack a block from on
top of another block \nPut down a block \nStack a block on

top of another block \n\nI have the following restrictions on
my actions:\nI can only pick up or unstack one block at a time.
\nI can only pick up or unstack a block if my hand is empty.

\nI can only pick up a block if the block is on the table and
the block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up. \nI

can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block. \
nI can only unstack a block from on top of another block if
the block I am unstacking is clear. Once I pick up or unstack
a block, I am holding the block. \nI can only put down a block
that I am holding. \nI can only stack a block on top of

another block if I am holding the block being stacked. \nI can
only stack a block on top of another block if the block onto

which I am stacking the block is clear. Once I put down or
stack a block, my hand becomes empty.\n\nAfter being given an
initial state and an action, give the new state after
performing the action.\n\n[SCENARIO 1]\n[STATE 0] I have that,
the white block is clear, the cyan block is clear, the brown

block is clear, the hand is empty, the white block is on top
of the purple block, the purple block is on the table, the
cyan block is on the table and the brown block is on the table
.\n[ACTION] Pick up the brown block.\n[CHANGE] The hand was
empty and is now holding the brown block, the brown block was
on the table and is now in the hand, and the brown block is no
longer clear.\n[STATE 1] I have that, the white block is

clear, the cyan block is clear, the brown block is in the hand,
the hand is holding the brown block, the white block is on

top of the purple block, the purple block is on the table and
the cyan block is on the table.\n\n[SCENARIO 2]\n[STATE 0] I
have that, the purple block is clear, the cyan block is clear,
the white block is clear, the hand is empty, the white block

is on top of the brown block, the purple block is on the table,
the cyan block is on the table and the brown block is on the

table.\n[ACTION] Pick up the cyan block.\n[CHANGE] The hand
was empty and is now holding the cyan block, the cyan block
was on the table and is now in the hand, and the cyan block is
no longer clear.\n[STATE 1] I have that, the cyan block is in
the hand, the white block is clear, the purple block is clear,
the hand is holding the cyan block, the white block is on top
of the brown block, the purple block is on the table and the

brown block is on the table.\n\n[SCENARIO 3]\n[STATE 0] I have
that, {}\n[ACTION] {}\n[CHANGE]",

"world_update_unstack": "I am playing with a set of blocks
where I need to arrange the blocks into stacks. Here are the

actions I can do \n\nPick up a block \nUnstack a block from on
top of another block \nPut down a block \nStack a block on

top of another block \n\nI have the following restrictions on
my actions:\nI can only pick up or unstack one block at a time.
\nI can only pick up or unstack a block if my hand is empty.

\nI can only pick up a block if the block is on the table and
the block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up. \nI

can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block. \
nI can only unstack a block from on top of another block if
the block I am unstacking is clear. Once I pick up or unstack
a block, I am holding the block. \nI can only put down a block
that I am holding. \nI can only stack a block on top of

another block if I am holding the block being stacked. \nI can
only stack a block on top of another block if the block onto

which I am stacking the block is clear. Once I put down or
stack a block, my hand becomes empty.\n\nAfter being given an
initial state and an action, give the new state after
performing the action.\n\n[SCENARIO 1]\n[STATE 0] I have that,
the white block is clear, the cyan block is clear, the brown

block is clear, the hand is empty, the white block is on top
of the purple block, the purple block is on the table, the
cyan block is on the table and the brown block is on the table
.\n[ACTION] Unstack the white block from on top of the purple
block.\n[CHANGE] The hand was empty and is now holding the
white block, the white block was on top of the purple block
and is now in the hand, the white block is no longer clear,
and the purple block is now clear.\n[STATE 1] I have that, the
purple block is clear, the cyan block is clear, the brown

block is clear, the hand is holding the white block, the white
block is in the hand, the purple block is on the table, the

cyan block is on the table and the brown block is on the table
.\n\n[SCENARIO 2]\n[STATE 0] I have that, the purple block is
clear, the cyan block is clear, the white block is clear, the
hand is empty, the cyan block is on top of the brown block,
the purple block is on the table, the white block is on the
table and the brown block is on the table.\n[ACTION] Unstack

the cyan block from on top of the brown block.\n[CHANGE] The
hand was empty and is now holding the cyan block, the cyan
block was on top of the brown block and is now in the hand,
the cyan block is no longer clear, and the brown block is now
clear.\n[STATE 1] I have that, the purple block is clear, the
brown block is clear, the cyan block is in the hand, the white
block is clear, the hand is holding the cyan block, the

purple block is on the table, the white block is on the table
and the brown block is on the table.\n\n[SCENARIO 3]\n[STATE
0] I have that, {}\n[ACTION] {}\n[CHANGE]",

"world_update_putdown": "I am playing with a set of blocks
where I need to arrange the blocks into stacks. Here are the

actions I can do \n\nPick up a block \nUnstack a block from on
top of another block \nPut down a block \nStack a block on

top of another block \n\nI have the following restrictions on
my actions:\nI can only pick up or unstack one block at a time.
\nI can only pick up or unstack a block if my hand is empty.

\nI can only pick up a block if the block is on the table and
the block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up. \nI

can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block. \
nI can only unstack a block from on top of another block if
the block I am unstacking is clear. Once I pick up or unstack
a block, I am holding the block. \nI can only put down a block
that I am holding. \nI can only stack a block on top of

another block if I am holding the block being stacked. \nI can
only stack a block on top of another block if the block onto

which I am stacking the block is clear. Once I put down or
stack a block, my hand becomes empty.\n\nAfter being given an
initial state and an action, give the new state after
performing the action.\n\n[SCENARIO 1]\n[STATE 0] I have that,
the white block is clear, the purple block is clear, the cyan
block is in the hand, the brown block is clear, the hand is

holding the cyan block, the white block is on the table, the
purple block is on the table, and the brown block is on the
table.\n[ACTION] Put down the cyan block.\n[CHANGE] The hand
was holding the cyan block and is now empty, the cyan block
was in the hand and is now on the table, and the cyan block is
now clear.\n[STATE 1] I have that, the cyan block is clear,

the purple block is clear, the white block is clear, the brown
block is clear, the hand is empty, the white block is on the

table, the purple block is on the table, the cyan block is on
the table, and the brown block is on the table.\n\n[SCENARIO
2]\n[STATE 0] I have that, the purple block is clear, the
black block is in the hand, the white block is clear, the hand
is holding the black block, the white block is on top of the

brown block, the purple block is on the table, and the brown
block is on the table.\n[ACTION] Put down the black block.\n[
CHANGE] The hand was holding the black block and is now empty,
the black block was in the hand and is now on the table, and

the black block is now clear.\n[STATE 1] I have that, the
black block is clear, the purple block is clear, the white
block is clear, the hand is empty, the white block is on top
of the brown block, the purple block is on the table, the
brown block is on the table, and the black block is on the
table.\n\n[SCENARIO 3]\n[STATE 0] I have that, {}\n[ACTION]
{}\n[CHANGE]",

"world_update_stack": "I am playing with a set of blocks
where I need to arrange the blocks into stacks. Here are the
actions I can do \n\nPick up a block \nUnstack a block from on
top of another block \nPut down a block \nStack a block on

top of another block \n\nI have the following restrictions on
my actions:\nI can only pick up or unstack one block at a time.
\nI can only pick up or unstack a block if my hand is empty.

\nI can only pick up a block if the block is on the table and
the block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up. \nI

can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block. \
nI can only unstack a block from on top of another block if
the block I am unstacking is clear. Once I pick up or unstack
a block, I am holding the block. \nI can only put down a block
that I am holding. \nI can only stack a block on top of

another block if I am holding the block being stacked. \nI can
only stack a block on top of another block if the block onto

which I am stacking the block is clear. Once I put down or
stack a block, my hand becomes empty.\n\nAfter being given an
initial state and an action, give the new state after
performing the action.\n\n[SCENARIO 1]\n[STATE 0] I have that,
the white block is clear, the purple block is clear, the cyan
block is in the hand, the brown block is clear, the hand is

holding the cyan block, the white block is on the table, the
purple block is on the table, and the brown block is on the
table.\n[ACTION] Stack the cyan block on top of the brown
block.\n[CHANGE] The hand was holding the cyan block and is
now empty, the cyan block was in the hand and is now on top of

2935



the brown block, the brown block is no longer clear, and the
cyan block is now clear.\n[STATE 1] I have that, the cyan
block is clear, the purple block is clear, the white block is
clear, the hand is empty, the cyan block is on top of the
brown block, the brown block is on the table, the purple block
is on the table, and the white block is on the table.\n\n[

SCENARIO 2]\n[STATE 0] I have that, the purple block is clear,
the black block is in the hand, the white block is clear, the
hand is holding the black block, the white block is on top of
the brown block, the purple block is on the table, and the

brown block is on the table.\n[ACTION] Stack the black block
on top of the purple block.\n[CHANGE] The hand was holding the
black block and is now empty, the black block was in the hand
and is now on top of the purple block, the purple block is no
longer clear, and the black block is now clear.\n[STATE 1] I

have that, the black block is clear, the white block is clear,
the hand is empty, the black block is on top of the purple

block, the white block is on top of the brown block, the brown
block is on the table, and the purple block is on the table.\

n\n[SCENARIO 3]\n[STATE 0] I have that, {}\n[ACTION] {}\n[
CHANGE]",

"self-eval": "I am playing with a set of blocks where I
need to arrange the blocks into stacks. Here are the actions I
can do\n\nPick up a block\nUnstack a block from on top of

another block\nPut down a block\nStack a block on top of
another block\n\nI have the following restrictions on my
actions:\nI can only pick up or unstack one block at a time.\
nI can only pick up or unstack a block if my hand is empty.\nI
can only pick up a block if the block is on the table and the
block is clear. A block is clear if the block has no other

blocks on top of it and if the block is not picked up.\nI can
only unstack a block from on top of another block if the block
I am unstacking was really on top of the other block.\nI can

only unstack a block from on top of another block if the block
I am unstacking is clear.\nOnce I pick up or unstack a block,
I am holding the block.\nI can only put down a block that I

am holding.\nI can only stack a block on top of another block
if I am holding the block being stacked.\nI can only stack a
block on top of another block if the block onto which I am
stacking the block is clear.\nOnce I put down or stack a block,
my hand becomes empty.\n\nPlease evaluate whether the given

action is a good one under certain conditions.\n\n[STATEMENT]\
nAs initial conditions I have that, the red block is clear,
the yellow block is clear, the hand is empty, the red block is
on top of the blue block, the yellow block is on top of the

orange block, the blue block is on the table and the orange
block is on the table.\nMy goal is to have that the orange
block is on top of the red block.\n[ACTION]\nunstack the red
block from on top of the blue block\n[EVALUATION]\nbad\n\n[
STATEMENT]\nAs initial conditions I have that, the orange
block is in the hand, the yellow block is clear, the hand is
holding the orange block, the blue block is on top of the red
block, the yellow block is on top of the blue block, and the
red block is on the table.\nMy goal is to have have that the
yellow block is on top of the orange block.\n[ACTION]\nput
down the orange block\n[EVALUATION]\ngood\n\n[STATEMENT]\nAs
initial conditions I have that, the orange block is clear, the
yellow block is clear, the hand is empty, the blue block is

on top of the red block, the orange block is on top of the
blue block, the red block is on the table and the yellow block
is on the table.\nMy goal is to have that the blue block is

on top of the red block and the yellow block is on top of the
orange block.\n[ACTION]\npick up the yellow block\n[EVALUATION
]\ngood\n\n[STATEMENT]\nAs initial conditions I have that, the
orange block is clear, the yellow block is clear, the hand is
empty, the blue block is on top of the red block, the orange

block is on top of the blue block, the red block is on the
table and the yellow block is on the table.\nMy goal is to
have that the blue block is on top of the red block and the
yellow block is on top of the orange block.\n[ACTION]\npick up
the yellow block\n[EVALUATION]\ngood\n\n[STATEMENT]\nAs

initial conditions I have that, the blue block is clear, the
orange block is in the hand, the red block is clear, the hand
is holding the orange block, the red block is on top of the
yellow block, the blue block is on the table, and the yellow
block is on the table.\nMy goal is to have have that the red
block is on top of the yellow block and the orange block is on
top of the blue block.\n[ACTION]\nstack the orange block on

top of the red block\n[EVALUATION]\nbad\n\n[STATEMENT]\nAs
initial conditions I have that, <init_state>\nMy goal is to <
goals>\n[ACTION]\n<action>\n[EVALUATION]\n",

"action_proposals": "I am playing with a set of blocks
where I need to arrange the blocks into stacks. Here are the
actions I can do \n\nPick up a block \nUnstack a block from on
top of another block \nPut down a block \nStack a block on

top of another block \n\nI have the following restrictions on
my actions:\nI can only pick up or unstack one block at a time.

\nI can only pick up or unstack a block if my hand is empty.
\nI can only pick up a block if the block is on the table and
the block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up. \nI

can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block. \
nI can only unstack a block from on top of another block if
the block I am unstacking is clear. Once I pick up or unstack
a block, I am holding the block. \nI can only put down a block
that I am holding. \nI can only stack a block on top of

another block if I am holding the block being stacked. \nI can
only stack a block on top of another block if the block onto

which I am stacking the block is clear. Once I put down or
stack a block, my hand becomes empty.\n\nAfter being given an
initial state, propose all possible actions that is valid in
the given state.\n\n[SCENARIO 1]\n[STATE] I have that, the
white block is clear, the purple block is clear, the cyan
block is in the hand, the brown block is clear, the hand is
holding the cyan block, the white block is on the table, the
purple block is on the table, and the brown block is on the
table.\n[ACTION] Stack the cyan block on top of the white
block. Stack the cyan block on top of the purple block. Stack
the cyan block on top of the brown block. Put down the cyan
block\n\n[SCENARIO 2]\n[STATE] I have that, the orange block
is clear, the yellow block is clear, the hand is empty, the
blue block is on top of the red block, the orange block is on
top of the blue block, the red block is on the table and the
yellow block is on the table.\n[ACTION] Unstack the orange
block from on top of the blue block. Pick up the yellow block.
\n\n[SCENARIO 3]\n[STATE] I have that, {}\n[ACTION]",

"action_proposals_decomp": "I am playing with a set of
blocks where I need to arrange the blocks into stacks. Here
are the actions I can do \n\nPick up a block \nUnstack a block
from on top of another block \nPut down a block \nStack a

block on top of another block \n\nI have the following
restrictions on my actions:\nI can only pick up or unstack one
block at a time. \nI can only pick up or unstack a block if

my hand is empty. \nI can only pick up a block if the block is
on the table and the block is clear. A block is clear if the

block has no other blocks on top of it and if the block is not
picked up. \nI can only unstack a block from on top of

another block if the block I am unstacking was really on top
of the other block. \nI can only unstack a block from on top
of another block if the block I am unstacking is clear. Once I
pick up or unstack a block, I am holding the block. \nI can

only put down a block that I am holding. \nI can only stack a
block on top of another block if I am holding the block being
stacked. \nI can only stack a block on top of another block if
the block onto which I am stacking the block is clear. Once I
put down or stack a block, my hand becomes empty.\n\nAfter

being given an initial state, proposing all possible actions
that is valid.\n\n[SCENARIO 1]\n[STATE] I have that, the white
block is clear, the purple block is clear, the cyan block is

in the hand, the brown block is clear, the hand is holding the
cyan block, the white block is on the table, the purple block
is on the table, and the brown block is on the table.\n[

REASON] Since cyan block is in the hand, I can only stack the
cyan block or put down the cyan block. Since white block is
clear, we can stack cyan block on top of the white block.
Since the purple block is clear, we can stack the cyan block
on top of the purple block. Since the brown block is clear, we
can put the cyan block on top of the brown block. \n[ACTION]

Stack the cyan block on top of the white block. Stack the cyan
block on top of the purple block. Stack the cyan block on top
of the brown block. Put down the cyan block\n\n[SCENARIO 2]\n

[STATE] I have that, the orange block is clear, the yellow
block is clear, the hand is empty, the blue block is on top of
the red block, the orange block is on top of the blue block,

the red block is on the table and the yellow block is on the
table.\n[REASON] Since the hand is empty, I can only unstack a
block or pick up a block. Since only the orange block and

yellow block is clear, I can only pick up or unstack the
yellow block and orange block. Since the yellow block is on
the table, I can pick up the yellow block. Since the orange
block is on top of the blue block, I can unstack the orange
block from on top of the blue block. \n[ACTION] Unstack the
orange block from on top of the blue block. Pick up the yellow
block. \n\n[SCENARIO 3]\n[STATE] I have that, {}\n[REASON]"

}
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