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Abstract

We study the code generation behavior of
instruction-tuned models built on top of code
pre-trained language models when they could
access an auxiliary function to implement a
function. We design several ways to provide
auxiliary functions to the models by adding
them to the query or providing a response pre-
fix to incorporate the ability to utilize auxil-
iary functions with the instruction-following
capability. Our experimental results show the
effectiveness of combining the base models’
auxiliary function utilization ability with the
instruction following ability. In particular, the
performance of adopting our approaches with
the open-sourced language models surpasses
that of the recent powerful proprietary language
models, i.e., gpt-4o.

1 Introduction

Generating codes based on natural language re-
quirements, i.e., code generation, becomes an ap-
pealing application for natural language process-
ing community due to the recent advance of code
pre-trained language models (Singh et al., 2023;
Zhou et al., 2023; Wang et al., 2023; Zhang et al.,
2023). Pre-training on large-scale code corpora
enables a language model to implement correct
functions based on their requirements written in
the docstrings. Also, tuning a code pre-trained
language model to follow instructions has been re-
leased due to the effectiveness of instruction-tuned
language models on natural language tasks (Luo
et al., 2024; Wei et al., 2023; Song et al., 2024;
Lei et al., 2024).1 These instruction-tuned models
boost up the code generation ability.

In code generation tasks, leveraging an auxiliary
function reduces the implementation difficulty of

* Corresponding author
1From now on, we call an instruction-tuned code pre-

trained model an instruction-tuned model for brevity.

a target function compared to that of implement-
ing them from scratch. The auxiliary function is
a function that helps implement a target function
by inspiring novel mechanism or handling compli-
cated subroutines for the target function through
function calls (Lee et al., 2024). Therefore, prop-
erly utilizing the given auxiliary function becomes
important for the instruction-tuned models.

However, limited research has been conducted
on providing auxiliary functions to make the
instruction-tuned models utilize the auxiliary func-
tions effectively. Lee et al. (2024) initially in-
cluded the auxiliary function in the prompt, but it
showed inferior results compared to just prompting
the corresponding base pre-trained models. Also,
the instruction-tuned models’ ability to incorporate
the code content with their natural language text
has not been fully explored, except that the model
providers showcase some qualitative examples in
their appendix (Rozière et al., 2024).

In this work, we comprehensively explore the
instruction-tuned models’ code generation behav-
ior when they can access an auxiliary function. To
do this, we design several prompts that are likely
to elicit the ability to utilize auxiliary functions by
leveraging the query-response structure employed
in the instruction-tuned models. To be specific, we
provide detailed information about the auxiliary
function in the query and provide an incomplete
codeblock to the prefix in the response to complete
the remaining response. Then, we evaluate their
effectiveness across several competitive instruction-
tuned models. Our evaluation results show that
our proposed prompts perform efficaciously on the
instruction-tuned models compared to the corre-
sponding base models, and even surpass gpt-4o,
which is purportedly known as the most powerful
language model. Finally, we perform an in-depth
analysis to demonstrate that incorporating auxiliary
function utilization ability already encoded in their
base model with instruction-following capability
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Figure 1: An example of our proposed prompts com-
patible with CodeLlama-Inst format. The green and
purple part indicate inserting information about auxil-
iary function into the query and response, respectively.

through the response prefix is the main cause of the
superior performance.

2 Related work

Several language models (Singh et al., 2023; Zhou
et al., 2023; Wang et al., 2023; Zhang et al., 2023)
are pretrained on massive code corpora and fur-
ther finetuned to follow user instructions using a
pre-defined chat format. They show progress on
various representative coding benchmarks with a
prompt template (Chen et al., 2021; Austin et al.,
2021; Hendrycks et al., 2021; Li et al., 2022; Lee
et al., 2024). The widely used template during the
evaluation forms a function signature with the doc-
string containing the requirement. However, con-
sidering that the instruction-following models are
trained with chat format, their effectiveness could
be overlooked when we evaluating them without
considering their formats. Lee et al. (2024) initially
design a prompt template for instruction-following
models, but the effectiveness on their models are
marginal under their evaluation process. Along
with the prompt engineering research line (Sondos
Mahmoud Bsharat, 2023) demonstrating that even

a simple prompt adjustment brings enormous gain
by eliciting the power of language models, this
work explores a better prompt that effectively com-
bines the power of base model and the instruction
following capabilities.

3 Methods

We design several prompts for pre-trained models
and instruction-tuned models to show their abil-
ity to generate code with and without auxiliary
functions. To do this, we build up two different
approaches to naturally fuse the information inside
the auxiliary functions into the instruction format
used during instruction tuning.

3.1 Preliminary

We briefly explain how the existing work uses
instruction-tuned models to implement codes. In
general, the instruction-tuned models comply with
a query-response format. Within this format, the
models are trained to respond to that query. There-
fore, we simply write a query with the given re-
quirements to induce them to implement the code.
The query consists of (1) the objective statement,
(2) a description of a function, and (3) a formatting
guideline. The objective statement commands them
to implement a function, and a description of the
function is followed to explain their functionality
with some examples. Finally, the output formatting
guideline is provided to easily parse the codeblock
from their response. The constructed query is in-
serted into the pre-defined format for the model
prompts. Then, the models generate a response
that contains a codeblock with the implementation.

3.2 Incorporating the function utilization
ability with instruction-following ability

On top of the existing approach, we propose simple
and effective ways to enhance the instruction-tuned
models’ ability to utilize other functions.

Approach 1. Inserting auxiliary function in-
formation in the query-side The first approach
(Figure 1, Green) is to insert the information about
auxiliary function to the query. Assuming that the
instruction-tuned models understand the codes in
their query, we can expect that information about
the auxiliary function, e.g., declaration, docstring,
and their implementation, provided in the query
would be comprehended by the models and lever-
aged when generating their response.
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Approach 2. Inserting auxiliary function def-
inition in the response-side Another approach
(Figure 1, Purple) is to attach an informative start-
ing text to the response to guide the models to
naturally complete the remaining response. One
similar approach that has been conducted in gen-
eral tasks is to elicit language models’ reasoning
capability by attaching a starting text, e.g., let’s
think step by step, to the response (Kojima et al.,
2022). Motivated by this work, we attach the in-
complete codeblock that models should generate
within their response. Specifically, we open a code-
block with an appropriate tag and function declara-
tion requested to be implemented in the query with
proper import statements. Using this approach also
guarantees that the codeblock is properly opened,
so the task for the models becomes easier as they
just properly finalize the codeblock. In addition,
we insert an auxiliary function into the codeblock
for the models to leverage the auxiliary function
during the generation.

4 Experiments

We explore the effectiveness of our proposed strat-
egy with recent competitive instruction-tuned mod-
els and analyze their behavior from various angles.

4.1 Experimental setup

Basic setup We list the recent competitive
instruction-tuned models and their corresponding
base models in Table 1. We adopt the Humanex-
tension benchmark consist of 151 relevant function
pairs specially designed for measuring the language
models’ ability to utilize other functions (Lee et al.,
2024). We follow the widely used decoding strat-
egy for generating code: 0.2 for temperature and
0.95 for top p, and generate at most 512 tokens per
prompt (Ben Allal et al., 2022). We evaluate the
generated implementations using functional cor-
rectness by measuring the proportion of correct
implementations that pass whole test cases among
20 generations, which is known as pass@1 score.

Measuring the base models’ auxiliary func-
tion utilization capability We measure the pre-
trained base models’ ability to utilize other func-
tions using the Humanextension benchmark with
the prompt where the detailed prompt for the base
models can be found in the Appendix. In doing so,
we disentangle the strength of the instruction-tuned
models from our experimental results by consider-
ing the improvement already observed in the base

models. We compare this score to evaluate whether
the proposed approaches with the instruction-tuned
models could surpass this simple baseline.

4.2 Results

Overall results We demonstrate that our ap-
proaches successfully elicit the instruction-tuned
models’ ability to utilize auxiliary functions. We
report the pass@1 score with various prompting
approaches in Table 2. First, both adding infor-
mation about auxiliary functions in the query and
appending a codeblock with an auxiliary function
definition in the response show a clear improve-
ment compared to their closest counterparts. Com-
paring the first and third columns or the second and
fourth columns demonstrates the effectiveness of
providing information about auxiliary functions to
the query. Also, comparing the second and fifth
columns verifies the effectiveness of attaching the
auxiliary function definition as a prefix for their
response. Furthermore, our proposed prompts also
work effectively in the bigger sized model such
as Deepseek-coder-33b-Inst. We additionally
report the performance of the powerful proprietary
instruction-tuned models such as gpt-3.5-turbo
and gpt-4o and verify that the open-sourced mod-
els can easily surpass them with our prompting
approach.

Model analysis When we look at each
model, MagicoderS-CL-7b shows superior per-
formance compared to CodeLlama-Inst-7b,
representing the importance of diverse
instruction-tuned datasets and this trend is
also observed in Deepseek-coder-6.7b. As-
suming that Deepseek-coder-Inst-6.7b and
Deepseek-coder-Inst-7b are trained on the
same instruction-tuned dataset, enhancing the base
models is also a plausible direction to improve
their code generation capability with auxiliary
functions. Comparing CodeGemma-Inst-7b and
CodeGemma-Inst-1.1-7b, the pass@1 score is
improved when they implement the given problem
without an auxiliary function (from 0.3881 to
0.4626), but this improvement is not transferred
when they access the auxiliary function (from
0.6228 to 0.6219). Llama3-Inst-8b shows
different patterns compared to other models in that
their score mostly increases when the auxiliary
function is in the query. We speculate the reason
for this results as Llama3-8b is pre-trained on
the mixture of code and text corpora while other
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Base model No Aux Aux Instruction-tuned variants

CodeLlama-7b (Rozière et al., 2024) 0.1973 0.5284 CodeLlama-Inst-7b, MagicoderS-CL-7b
Deepseek-coder-6.7b (Guo et al., 2024) 0.2688 0.6741 Deepseek-coder-Inst-6.7b, MagicoderS-DS-6.7b
Deepseek-coder-7b (Guo et al., 2024) 0.3066 0.6152 Deepseek-coder-Inst-7b
CodeGemma-7b (CodeGemmaTeam, 2024) 0.2623 0.6043 CodeGemma-Inst-7b, CodeGemma-Inst-1.1-7b
Llama3-8b (AI@Meta, 2024) 0.1828 0.4914 Llama3-Inst-8b

Starcoder2-15b (Lozhkov et al., 2024) 0.3066 0.6682 Starcoder2-Inst-15b
CodeLlama-34b (Rozière et al., 2024) 0.2709 0.6411 CodeLlama-Inst-34b
Deepseek-coder-33b (Guo et al., 2024) 0.3599 0.7248 Deepseek-coder-Inst-33b

Table 1: Base models and their instruction-tuned variants. We measure the pass@1 score of the base models on
Humanextension to correctly identify whether our approaches can acquire better performance compared to that of
prompting the base model.

Instruction-tuned model w/o auxiliary function w/ auxiliary function

1. Insert auxiliary function info to query ✓ ✓ ✓
2.1. Insert incomplete codeblock to response ✓ ✓ ✓ ✓
2.2. Insert auxiliary function to incomplete codeblock ✓ ✓
CodeLlama-Inst-7b (Rozière et al., 2024) 0.2907 0.2825 0.4844 0.5503 0.5583 0.5477
MagicoderS-CL-7b (Wei et al., 2023) 0.3977 0.4848 0.4656 0.6440 0.6550 0.6437
Deepseek-coder-Inst-6.7b (Guo et al., 2024) 0.3990 0.5497 0.6613 0.6623 0.6894 0.6828
MagicoderS-DS-6.7b (Wei et al., 2023) 0.4934 0.5507 0.6325 0.7050 0.6828 0.7265
Deepseek-coder-Inst-7b (Guo et al., 2024) 0.5348 0.6079 0.6414 0.6970 0.7166 0.7348
CodeGemma-Inst-7b (CodeGemmaTeam, 2024) 0.3086 0.3881 0.5324 0.6083 0.6228 0.6060
CodeGemma-Inst-1.1-7b (CodeGemmaTeam, 2024) 0.3354 0.4626 0.4563 0.5970 0.6219 0.6182
Llama3-Inst-8b (AI@Meta, 2024) 0.3632 0.3950 0.5801 0.5868 0.4970 0.5772

Starcoder2-Inst-15b (Lozhkov et al., 2024) 0.4182 0.5116 0.6325 0.7079 0.6834 0.6934
CodeLlama-34b-Inst (Rozière et al., 2024) 0.3599 0.3550 0.6219 0.6421 0.6146 0.6364
Deepseek-coder-33b-Inst (Guo et al., 2024) 0.4904 0.5957 0.6546 0.7503 0.7510 0.7639

gpt-3.5-turbo-0125 (Achiam et al., 2023) 0.4868 0.5901
gpt-4o-2024-05-13 (Achiam et al., 2023) 0.6358 0.6987

Table 2: Humanextension pass@1 score for instruction-tuned models with the proposed prompts. We mark bold on
the most effective score in each model and underline the scores that surpass their base models. For gpt models, we
could not report some scores as a user is not technically allowed to add a prefix to the response side.

models focus only on code corpora.

Comparison with the base models We further
examine the performance by comparing that of
their corresponding base models. We underscore
the performance that surpasses the score that could
be acquired by simply prompting the base mod-
els. The scores in the last three columns mostly
outperform their base models, demonstrating that
applying both approaches at the same time success-
fully elicits the instruction-tuned models’ auxiliary
function utilization ability. Based on our experi-
mental results, the models generally surpass their
base models when they gain knowledge about aux-
iliary functions with an incomplete codeblock in
the response.

Response prefix CodeLlama CodeGemma

Add codeblock 0.5503 0.6083
Remove import statements 0.5593 0.6159
Remove docstring 0.5060 0.5758
Without codeblock 0.4844 0.5324

Table 3: Pass@1 score with various response prefix con-
tent. CodeLlama shorts for CodeLlama-Inst-7b and
CodeGemma shorts for CodeGemma-Inst-7b
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4.3 In-depth analysis for response codeblock

We perform an in-depth analysis on the effective-
ness of appending an incomplete codeblock to the
response by dissecting the code-block into sev-
eral components and observing the performance
change as we remove them sequentially. We re-
port the performance in Table 3. For CodeLlama,
removing the docstring for the target function
in the codeblock significantly drops the perfor-
mance. We conclude that CodeLlama understands
the given requirements in the query with the doc-
string through the response codeblock. On the
other hands, CodeGemma preserves the performance
after removing the docstring to some extent. In this
case, providing a function signature is much more
crucial for CodeGemma. From this results, we find
that the instruction-tuned models focus on different
code components and we further investigate this
phenomena in future work.

5 Conclusion

In this work, we study the instruction-tuned mod-
els’ behavior when they can access the auxiliary
function. Through various prompting approaches,
i.e., providing an auxiliary function in the query
or response, we discover effective prompting ap-
proaches that enhance the probability of implement-
ing correct codes using open-sourced models and
surpass the recent powerful proprietary models, i.e.,
gpt-4o. Our further investigation identifies that
providing docstring or function signature to the
response code-block is the major reason to boost
performance. We believe that incorporating the
ability to utilize other functions with the instruction-
following capability is indispensable for generating
complex code, and our work becomes a cornerstone
towards this research direction.

6 Limitation

There are a few limitations that have not been fully
addressed in this work. Due to the limited control
of the proprietary models to the user, we could not
report the score of gpt-3.5-turbo and gpt-4o
when appending a prefix to the response which
is verified as effective in the open-sourced mod-
els. Also, whether the improvement made by the
proposed approaches could be transferred through
fine-tuning does not explore in this work, which
will be our main future work.
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from typing import List

def mean_absolute_deviation(numbers):
"""{auxiliary docstring}"""
{auxiliary implementation}

def find_outliers(numbers):
"""{target docstring}"""

We replace the content of auxiliary and target
docstring and implementation for auxiliary func-
tion as placeholders for readability. In this example,
the base models implement find_outliers and
they could use mean_absolute_deviation as the
function is given in the prompt.
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