
Findings of the Association for Computational Linguistics: ACL 2024, pages 13619–13639
August 11-16, 2024 ©2024 Association for Computational Linguistics

OOP: Object-Oriented Programming Evaluation Benchmark
for Large Language Models

Shuai Wang1, 2 Liang Ding3∗ Li Shen4 Yong Luo1, 2∗ Bo Du1 Dacheng Tao5

1Institute of Artificial Intelligence, School of Computer Science, Wuhan University
2Hubei Luojia Laboratory, Wuhan 3The University of Sydney

4School of Cyber Science and Teachnology, Sun Yat-sen University
5College of Computing & Data Science, Nanyang Technology University

{wangshuai123, luoyong, dubo}@whu.edu.cn,
{mathshenli, liangding.liam, dacheng.tao}@gmail.com

Abstract

Advancing automated programming necessi-
tates robust and comprehensive code generation
benchmarks, yet current evaluation frameworks
largely neglect object-oriented programming
(OOP) in favour of functional programming
(FP), e.g., HumanEval and MBPP. To ad-
dress this, ❶ our study introduces a pio-
neering OOP-focused benchmark, featuring
431 Python programs that encompass essen-
tial OOP concepts and features like classes
and encapsulation methods. ❷ We propose
a novel evaluation metric, pass@o, tailored
for OOP, enhancing traditional pass@k met-
ric. ❸ Our evaluation of 23 leading large lan-
guage models (LLMs), including both general
and code-specialized models, reveals three
key insights: 1) pass@o offers a more rele-
vant and comprehensive assessment for OOP
code generation; 2) Despite excelling in FP,
code-specialized LLMs like WizardCoder lag
in OOP compared to models like ChatGPT; 3)
The poor performance of all advanced LLMs on
our OOP benchmark highlights a critical need
for improvements in this field. Our benchmark
and scripts are publicly released at: https:
//github.com/alphadl/OOP-eval.

1 Introduction

Large language models (LLMs, Ouyang et al.,
2022a; Touvron et al., 2023), consisting of bil-
lions or even trillions of parameters’ Transformer
blocks (Vaswani et al., 2017), have emerged like
mushrooms after the rain, especially since the emer-
gence of ChatGPT1. In comparison to small mod-
els, LLMs exhibit stronger generalization and rea-
soning capabilities (Wei et al., 2022). Currently,
LLMs are playing a crucial role in various tasks,
e.g., code generation (Chen et al., 2021; Li et al.,
2022; Roziere et al., 2023), language understand-
ing (Zhong et al., 2023), human-computer interac-

∗Corresponding authors.
1https://chat.openai.com

ChatGPT CodeLlamaWizardCoder-15b
HumanEval 48.10 36.12 59.75
MBPP 52.20 48.23 49.89
OOP 15.69 2.92 3.02

48.10

36.12

59.75
52.20

48.23 49.89

15.69

2.92 3.02
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

ChatGPT CodeLlama-13b WizardCoder-15b
Sc

or
es

HumanEval MBPP OOP

HumanEval MBPP OOP

Figure 1: The performance comparison of widely-
used code language models on functional program-
ming (FP) and object-oriented programming (OOP)
code generation benchmarks, in terms of pass@1
scores. We see that all models perform relatively well
on FP benchmarks, i.e., Humaneval (Chen et al., 2021)
and MBPP (Austin et al., 2021), while exhibiting poor
performance on our OOP benchmark.

tion (Tolomei et al., 2023; Moslem et al., 2023),
and translation (Peng et al., 2023; Lu et al., 2023).

The process of code generation entails crafting
code in a suitable programming language from
natural language descriptions of problems or re-
quirements, aiming to effectively solve the prob-
lems or fulfill the requirements. Given that hir-
ing professional programmers to write code con-
sumes a significant amount of human and material
resources, the importance of automated program-
ming becomes particularly evident. Currently, the
question of how to use the rising LLMs to gener-
ate more accurate automated programming codes
based on problems or requirements stated by actual
natural language has become an important research
topic (Liu et al., 2023; Zhong and Wang, 2023). In
the research process, code generation evaluation is
crucial. Code generation evaluation not only needs
to objectively and impartially reflect the current per-
formance of LLMs in programming but also should
disclose the shortcomings in LLM programming to
further enhance its potential.

[Importance of OOP] According to the Novem-

13619

https://github.com/alphadl/OOP-eval
https://github.com/alphadl/OOP-eval
https://chat.openai.com

Benchmark Number NL PL Task Type

HumanEval (Chen et al., 2021) 164 en Python Function Programming
MBPP (Austin et al., 2021) 974 en Python Function Programming
APPS (Hendrycks et al., 2021) 5000 en Python Function Programming
CodeContests (Li et al., 2022) 165 en Multi Function Programming
MultiPL-MBPP (Cassano et al., 2023) 974∗ Multi Multi Function Programming
HumanEval-X (Zheng et al., 2023) 164∗ en Multi Function Programming
MultiPL-HumanEval (Cassano et al., 2023) 164∗ en Multi Function Programming
MTPB (Nijkamp et al., 2022) 115 en Python Function Programming
ODEX (Wang et al., 2022) 945 Multi Python Function Programming
PandasEval (Zan et al., 2022) 101 en Python Function Programming
BIG-Bench (Srivastava et al., 2022) 32 en Python Function Programming
CodeApex⋆ (Fu et al., 2023) 476∗ zh&en C++ Function Programming
ClassEval (Du et al., 2023) 100 en Python Class-level Programming
OOP (Our) 431 en Python Object-Oriented Programming

Table 1: Overview of existing code evaluation benchmarks. (“NL” denotes natural language describing the
problem or requirements; “PL” represents the generated programming language; “en” and “zh” denote English and
Chinese, respectively, and “Multi” means containing multiple NLs or PLs; “∗” indicates the number of samples for
each language; “⋆” means that in CodeApex, we only considered code generation tasks.)

ber programming language rankings by TIOBE 2,
four out of the top five programming languages are
OOP, which reflects the importance of OOP lan-
guages. OOP is centred on designing code around
data or objects rather than organizing it based on
functionality and logic (Stroustrup, 1988; Stefik
and Bobrow, 1985). OOP focuses more on the
programming paradigm of class and object (Weg-
ner, 1990). Functions are commonly referred to as
methods in OOP.

[Motivation] However, existing code generation
evaluation benchmarks primarily focus on the eval-
uation of FP, and lack the evaluation of relevant
concepts and features of OOP, e.g., class, inheri-
tance, encapsulation methods, etc. If using existing
benchmarks in Table 1 for evaluation can only show
the performance of LLMs in FP, it fails to reflect
their potential in OOP, as illustrated in Figure 1.

[OOP benchmark and metric] Considering
the limitations of current code generation evalu-
ation FP benchmarks and the widespread use of
the Python programming language, we propose the
first OOP evaluation benchmark based on Python.
OOP benchmark consists of 431 Python programs,
covering key concepts and features of OOP, includ-
ing class, inheritance, encapsulation methods, etc.
Furthermore, to prevent the issue where LLMs may
not generate concepts and features of OOP, we have
optimized the pass@k (Kulal et al., 2019; Chen

2https://www.tiobe.com/tiobe-index/

et al., 2021) metric by matching key points in natu-
ral language with key points in the programming
language, i.e., the class names and private function
names, etc, for natural language requirements are
matched with the class names and private function
names, etc., in the programming language. Our
main contributions are summarized as follows:

1. We construct and release the first OOP eval-
uation benchmark, which encompasses con-
cepts and features of OOP, e.g., class, poly-
morphism, encapsulation methods, etc.

2. We devise a new metric pass@o based on con-
ventional pass@k, tailored for the OOP code
generation task, by matching key points in
natural language and programming language.

3. We extensively evaluated our OOP with 23
advanced LLMs, demonstrating that i) there is
still significant room for improving the OOP
tasks, ii) our benchmark could serve as a ro-
bust and fair indicator that helps the commu-
nity quantify LLMs’ OOP performance.

2 Related work

Code Evaluation Benchmark In the early days
of LLMs, researchers from Google and OpenAI
launched artificial handwritten code evaluation
benchmarks, namely MBPP (Austin et al., 2021)
and HumanEval (Chen et al., 2021), respectively.

13620

https://www.tiobe.com/tiobe-index/

MBPP and HumanEval are currently the main-
stream code generation evaluation benchmarks, but
both of them are based on the Python programming
language. Subsequently, MultiPL-MBPP (Cas-
sano et al., 2023) and MultiPL-HumanEval (Cas-
sano et al., 2023) expanded upon these two bench-
marks by translating the Python programming lan-
guage into eighteen other programming languages,
e.g., Java, C++, PHP, etc, to evaluate the perfor-
mance of LLMs across others programming lan-
guages. Additionally, HumanEval-X (Zheng et al.,
2023) incorporated multiple test cases into the Hu-
manEval benchmark. Apart from the extensions
made to these two benchmarks, other benchmarks
like CodeApex (Fu et al., 2023) and ODEX (Wang
et al., 2022) exhibit distinctive features across dif-
ferent natural languages and task types. ClassE-
val (Du et al., 2023) focuses on class tasks. Unlike
existing code evaluation benchmarks, our proposed
OOP benchmark primarily focuses on the concepts
and features of OOP, e.g., class, inheritance, etc.
These works are summarized in Table 1.

Code Evaluation Metrics Existing evaluation
metrics can be broadly categorized into two types:
dynamic evaluation metrics and static evaluation
metrics. Dynamic evaluation metrics evaluate the
executability of generated codes by using test cases,
with pass@k (Kulal et al., 2019; Chen et al., 2021)
serving as the primary representative. The calcula-
tion process for pass@k is shown in Appendix A.
Additionally, this category of metrics includes
n@k (Li et al., 2022). Static evaluation metrics cal-
culate BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), Codescore (Dong et al., 2023) and Code-
BLEU (Ren et al., 2020) among manually written
examples and generated programs. However, these
code evaluation metrics do not specifically focus
on evaluating the concepts and features of OOP.
Therefore, we further optimized the pass@k met-
ric based on the evaluation benchmark for OOP.

3 Evaluation Framework

3.1 Overview

Existing code generation benchmarks in Table 1 for
are confined to FP and do not involve essential con-
cepts and features of OOP. We take the frequently
used benchmarks, HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) in Table 1, as ex-
amples. They primarily evaluate the capabilities
of LLMs in FP. The detailed descriptions of Hu-

Firstly, design a class named SS using the Python language, which includes an
instance attribute nums, a private function private_Shortest_subarray, and a
public function public_Shortest_subarray. Then, implement the following
problem in the private function private_Shortest_subarray. Finally, call the
private function private_Shortest_subarray in the public function
public_Shortest_subarray to return the result.
Problem: Given an integer array nums, you need to find a continuous subarray.
If this subarray is sorted in ascending order, then the entire array will become
sorted in ascending order. Please find the shortest subarray that meets this
requirement and output its length.

User:

class SS:
def __init__(self, nums):

self.nums = nums

def private_Shortest_subarray(self):
if not self.nums:

return 0
Find the left and right boundaries of the unsorted subarray
left, right = 0, len(self.nums) - 1
while left < len(self.nums) - 1 and self.nums[left] <= self.nums[left + 1]:

left += 1
If the array is already sorted
if left == len(self.nums) - 1:

return 0
while right > 0 and self.nums[right] >= self.nums[right - 1]:

right -= 1
Find the minimum and maximum values within the unsorted subarray
min_val, max_val = min(self.nums[left:right+1]), max(self.nums[left:right+1])
while left >= 0 and self.nums[left] > min_val:

left -= 1

ChatGPT:

⋮

Figure 2: The generation of private functions
cannot be evaluated using pass@k. (We in-
structed ChatGPT (Ouyang et al., 2022b; OpenAI,
2023) model to generate the class class SS, pub-
lic function public_Shortest_subarray, and private
function def __private_Shortest_subarray based on a
given prompt and implement the corresponding re-
quirements within the functions. However, Chat-
GPT does not generate the private functions named
private_Shortest_subarray outlined in the red box.)

manEval and MBPP are provided in Appendix B.
If we use existing benchmarks in Table 1 for evalu-
ation, it does not show the capability of LLMs in
OOP, as illustrated in Figure 1, that is, the seem-
ingly decent LLMs (on FP tasks) perform relatively
worse on OOP tasks. In addition, existing code gen-
eration evaluation metrics primarily use pass@k
to evaluate the executability of the generated code.
However, using the pass@k metric can not reflect
whether LLMs generate concepts and features re-
lated to OOP, as illustrated in Figure 2. Therefore,
pass@k can not objectively and fairly reflect the
OOP capabilities of LLMs.

As a result, we established an OOP benchmark
and proposed the evaluation metric pass@o for
OOP. The process for constructing the OOP bench-
mark is illustrated in Figure 3.

3.2 Building OOP Benchmarks

Data Filtering. The training data for current
LLMs mostly comes from the internet. If we di-
rectly evaluate LLMs using existing OOP data from

13621

Source 500 questions 431 prompts

LeetCode

GithubStack Overflow

Codewars

Question 1:

Question 1:
Given a triangle, find the minimum
sum of paths from top to bottom.
Question 2:
Given a non-negative integer
numRows, generate the first
numRows rows of Yang Hui's
triangle.
Question 3:
Given a string s, please split s into
substrings such that each substring
is a palindrome. Returns all possible
splits for s.

Prompt 1:
First, implement the FTMPA class
using the Python language. Then,
write a public function called
Minimum_Path in the FTMPA class.
This function should aim to find the
minimum path sum from top to
bottom in a given triangle.
Prompt 2:
First, write a PDSB class using the
Python language. Then, within the
PDSB class,

Strictly
selected

by Human

Rewritten
based

on five rules

Design
based

on five rules

Case 1:

431 cases

Case 1:
test_list:
assert candidate([[2],[3,4],

[6,5,7],[4,1,8,3]])==11
assert candidate([[-10]])==-10
assert candidate([[2],[5,4]])==6
test_matching:

~~~~~~~
Case 2:
Case 3:

Case 4:

Case 5:

Case 6:
Case 7:

~~~~~~~
~~~~~~~
~~~~~~~

~~~~~~~

~~~~~~~
~~~~~~~

Non-English English

API translate

assert candidate([["class FTMPA",  
"def Minimum_Path“]]) == True

⋮ ⋮⋮

Case 2:
test_list:

Figure 3: The construction process of our object-oriented programming (OOP) benchmark.

the web, it would not reflect the OOP capabilities
of LLMs. Therefore, we first rigorously selected
500 natural language description-based prob-
lems or requirements based on Python from plat-
forms like LeetCode 3, open-source repositories
on GitHub 4, Stack Overflow 5, and Codewars 6.
These 500 questions or requirements only are lim-
ited to FP and do not involve concepts and features
related to OOP.

Human Rewritten. Subsequently, we manually
rewrite the collected 500 questions or requirements
by adhering to the following rules:

1. Designing, based on the problems or require-
ments, with relevant OOP concepts and fea-
tures, e.g., class names, inheritance name (i.e.,
parent class name), encapsulation methods
name (i.e., public function name and private
function names), etc.

2. Related problems or requirements are imple-
mented within the public function and private
function of the class while ensuring the encap-
sulation of that implementation.

3https://leetcode.com/
4https://github.com/
5https://stackoverflow.com/
6https://www.codewars.com/

3. Convert the variables associated with prob-
lems or requirements into class attribute vari-
ables, ensuring that these variables are acces-
sible in both public and private functions.

4. If the implementation of problems or require-
ments is placed within the private function
of the class, it is necessary to design a corre-
sponding public function for access.

5. The rewritten OOP relevant problems or re-
quirements can be successfully implemented
and accessed through objects.

Following the five rules mentioned above, we
conducted a standardized rewriting of the 500
Python-based problems or requirements.

Case Design. Finally, we designed correspond-
ing test cases to evaluate OOP. We obtained 431
samples of OOP, as shown in Figure 3. The spe-
cific construction details of OOP are provided in
Appendix C.

Level Classification. Given the difficulty nature
of programming, we divided the designed OOP
benchmark into three levels: Simple-level OOP,
Moderate-level OOP, and Difficult-level OOP, as
shown in Figure 7.

13622

https://leetcode.com/
https://github.com/
https://stackoverflow.com/
https://www.codewars.com/


Simple-level OOP has 77 program samples, and
includes only class, and public function. Moderate-
level OOP builds upon simple-level OOP by adding
attribute variables and private functions, and has
179 program samples. Nevertheless, the difficult-
level OOP is based on the Simple-level of OOP, and
adds inheritance, polymorphism and other related
concepts and features of OOP. There are a total
of 175 program samples for difficult-level OOP.
Although private functions are not involved in the
difficulty level, the problems or requirements in
difficult-level OOP are more complex and varied.
Using such a level of classification, we can not
only evaluate the performance of existing LLMs in
OOP but also analyze the shortcomings of LLMs,
which allows us to better unearth the potential of
LLMs in OOP. Using this approach makes it more
convenient for us to improve the OOP performance
of LLMs.

3.3 Evaluation Metrics Pass@o

To evaluate whether LLMs generate concepts and
features related to OOP, i.e., generated subclass
name, parent class name, private function name
and public function name, etc, in the programming
language, we proposed a pass@o metric based
on OOP. The pass@o metric adds keyword points
matching between natural language with program-
ming language based on the pass@k, i.e.,

α =
n∑

i=1

f (Xi) ,

wheref(Xi) = (1)



1, if utf (Xi) passed and
m∑

j

xj∃Xi

0, otherwise

,

pass@o := E
Problems

[
1−

(
n−α
o

)
(
n
o

)
]
, (2)

In Eq. (1), n represents the number of code gen-
erations for a given problem; Xi represents the
i-th generated program code; α represents the
quantity of n generated codes passing tests and
matches; ut (·) denotes the unit test function; m
represents the number of keyword points in the cur-
rent prompt; and xj represents the j-th keyword
points in natural language. In Eq. (2), o ≤ n.

The pass@o metric not only optimizes the limi-
tations of pass@k evaluation but also objectively
and fairly reflects the OOP performance of LLMs.

4 Experiments

4.1 Experimental Setup

Evaluated LLMs In the OOP task, we conduct
experiments on 23 mainstream LLMs. These
models include both general LLMs, i.g., Chat-
GPT (Ouyang et al., 2022b; OpenAI, 2023),
Llama2 (Touvron et al., 2023), InternLm (Team,
2023a), MPT (Team, 2023b), DeepSeek (Team,
2024), Falcon (Almazrouei et al., 2023), Qwen (Bai
et al., 2023), Yi 7 and code-specialized LLMs,
e.g., CodeLlama (Roziere et al., 2023), Wizard-
Coder (Luo et al., 2023), StarCoder (Li et al., 2023),
as shown in Table 6. The details description of 24
LLMs are shown in Appendix D.

Parameter Settings. In the experiment, we fol-
lowed the settings on Llama2 (Touvron et al.,
2023), configuring the temperature to 0.1 and 0.8
for code generation. The remaining parameters
(top − p = 0.95, n = 200, o ≤ n), consistently
remained unchanged. We evaluate the OOP bench-
mark on eight NVIDIA A100 GPUs using the
vllm (Kwon et al., 2023) 0.2.1.post1 framework 8.

Metrics. In terms of evaluation metrics, we use
for pass@k and the proposed pass@o metrics.

4.2 Overall Evaluation Result

The evaluation results of the LLMs with temper-
atures set to 0.1 and 0.8 are presented in Table 2,
respectively. From the experimental results, We
have obtained the following conclusions:

The OOP capabilities of the existing LLMs fall
far short of the ideal state In Table 2, we can
observe that LLMs with strong coding capabilities
(e.g., WizardCoder-15b, CodeLlama-7b-Python,
and CodeLlama-13b, achieved scores of 58.12,
40.48, and 35.07, respectively, in the HumanEval
code leaderboard 9), exhibit performance in OOP
benchmarks that falls significantly short of the ideal
state. WizardCoder-15b, CodeLlama-7b-Python,
and CodeLlama-13b scored 3.02, 1.27, and 2.92,
respectively, on the OOP benchmark at pass@1.
Their scores on pass@100 were also 10.01, 14.07,
and 13.11, respectively. Even the current ChatGPT
model with strong general capabilities scores 15.69

7https://01.ai/cn
8https://github.com/vllm-project/vllm
9https://huggingface.co/spaces/bigcode/

bigcode-models-leaderboard

13623

https://01.ai/cn
https://github.com/vllm-project/vllm
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard


Model
1 80 100

pass@k pass@o ∆ (↓) pass@k pass@o ∆ (↓) pass@k pass@o ∆ (↓)

General

Falcon-7b 0.01 0.00 -0.01 0.37 0.19 -0.18 0.47 0.23 -0.24
Falcon-40b 0.01 0.00 -0.01 2.90 1.11 -1.79 3.42 1.26 -2.16
Llama2-7b 0.01 0.01 -0.00 4.02 1.72 -2.30 4.62 1.94 -2.68
InternLm-7b 0.03 0.02 -0.01 1.04 0.52 -0.52 1.22 0.58 -0.64
Yi-6b 0.07 0.01 -0.06 5.07 1.67 -3.40 6.00 1.98 -4.02
Llama2-13b 0.09 0.06 -0.03 7.28 2.17 -5.11 8.24 2.41 -5.83
MPT-7b 0.28 0.02 -0.26 4.77 1.27 -3.50 5.50 1.46 -4.04
Qwen-7b 0.94 0.61 -0.33 15.02 5.68 -9.34 16.35 5.83 -10.52
Qwen-14b 1.52 0.75 -0.77 26.28 10.58 -15.70 28.10 11.48 -16.62
DeepSeek-7b 1.53 0.50 -1.03 16.83 7.72 -9.11 18.70 8.70 -10.00
Yi-34b 2.20 1.09 -1.11 21.96 8.43 -13.53 23.68 9.22 -14.46
Llama2-70b 3.55 1.25 -2.30 21.01 9.97 -11.04 23.14 11.16 -11.98
DeepSeek-67b 8.02 3.71 -3.95 49.31 27.42 -21.89 51.60 29.47 -22.13
Qwen-72b 11.20 4.62 -6.58 57.48 35.70 -21.78 59.52 37.83 -21.69

ChatGPT 42.88 15.69 -27.19 75.71 58.28 -17.43 76.20 59.80 -16.40

Specialized

GPT_BigCode 0.10 0.06 -0.04 7.00 2.58 -4.42 8.01 2.92 -5.09
CodeLlama-7b 2.67 1.20 -1.47 24.09 9.16 -14.93 25.72 9.92 -15.80
CodeLlama-13b-Python 2.80 1.03 -1.77 36.34 17.22 -19.12 38.75 18.96 -19.79
StarCoder 4.61 1.26 -3.35 28.67 10.05 -18.62 30.44 10.88 -19.56
CodeLlama-7b-Python 4.68 1.27 -3.41 28.68 12.90 -15.78 30.33 14.07 -16.26
CodeLlama-34b 6.24 1.58 -4.66 46.31 22.59 -23.72 49.01 24.68 -24.33
WizardCoder-15b 6.83 3.02 -3.81 28.10 9.50 -18.60 29.41 10.01 -19.40
CodeLlama-13b 6.87 2.92 -3.95 32.69 12.20 -20.49 34.53 13.11 -21.42

Table 2: Performance of 23 large language models (LLMs) on object-oriented programming (OOP) tasks.
We also reported the differences in evaluation results between pass@k and pass@o. (All LLMs are evaluated in
zero-shot fashion. For pass@100 and pass@80 scores, we use a temperature of 0.8 and top-p=0.95. For pass@1
scores, we use a temperature of 0.1 and top-p=0.95. The best results are highlighted in black bold; Red indicates
the differences evaluated using the pass@o and pass@k metrics; Underlined indicates the maximum disparities
evaluated between pass@o and pass@k metrics; Gray indicates models with a larger number of parameters.)

on pass@1 and 59.80 on pass@100. The results in-
dicate that the untapped potential of existing LLMs
in OOP has not been fully explored.

Limitations of pass@k evaluated OOP The
scores from Table 2 indicate that using pass@k
does not objectively reflect the OOP perfor-
mance of LLMs, e.g., the WizardCoder-15b model
achieves scores of 6.83, 28.10, and 29.41 using
pass@k, while its scores drop to 3.02, 9.50, and
10.01 when using pass@o. The evaluation scores
of other LLMs using pass@o in Table 2 showed
a decline, once again proving the limitations of
pass@k in evaluation OOP.

In addition, we also observed a significant phe-
nomenon, e.g., when evaluated using pass@k,
Qwen-14b (score 26.28) scored lower than
WizardCoder-15b (score 28.10) on pass@80. How-
ever, when evaluated using pass@o, Qwen-14b
(score 10.58) scored higher than WizardCoder-15b
(score 9.50) on pass@80. Analyzing the experi-
mental results of Qwen-14b and WizardCoder-15b,
we observed that when evaluated using pass@o,
Qwen-14b outperforms WizardCoder-15b in terms

of the ability to correctly generate OOP concepts
and feature keywords, as illustrated in Figure 4. It
also reiterates that pass@k cannot objectively and
fairly reflect the evaluation results of OOP.

A larger model scale does not necessarily
perform better on pass@1 In Table 2, when
evaluated using pass@o, CodeLlama-34b scores
1.58 on pass@1, whereas CodeLlama-13b scores
2.92 on pass@1. Additionally, CodeLlama-13b-
Python scores 1.03 on pass@1, while the corre-
sponding CodeLlama-7b-Python scores 1.27 on
pass@1. However, CodeLlama-7b scores 1.20 on
pass@1, which is lower than the score achieved
by CodeLlama-13b. The scores of CodeLlama-7b,
CodeLlama-13b, CodeLlama-34b, CodeLlama-7b-
Python, and CodeLlama-13b-Python on pass@1
indicate that a larger model scale does not neces-
sarily result in the highest scores on pass@1.

4.3 Different-level Evaluation Results

Following the classification of OOP benchmarks
in Section 3.2, we conducted evaluations for three
levels of OOP benchmarks, and the results are pre-

13624



First, design a ROE class using the Python language. The class should have an instance attribute called nums, a private function
called private_relative_order, and a public function called public_relative_order. In the private function
private_relative_order, move all the zeros in the array nums to the end while maintaining the relative order of the non-zero
elements. Finally, in the public function public_relative_order, call the private function private_relative_order and return the
result.

class ROE:
def __init__(self, nums):

self.nums = nums
def _private_relative_order(self):

zeros = []
non_zeros = []
for num in self.nums:

if num == 0:
zeros.append(num)

else:
non_zeros.append(num)

self.nums = non_zeros + zeros
def public_relative_order(self):

self._private_relative_order()
return self.nums

class ROE:
def __init__(self, nums):

self.nums = nums
def private_relative_order(self):

count = 0
for i in range(len(self.nums)):

if self.nums[i] != 0:
self.nums[i], self.nums[count] =self.nums[count], 

self.nums[i]
count += 1

def public_relative_order(self):
self.private_relative_order()
return self.nums

User

Qwen-14b WizardCoder-15b

pass@k, k=80
pass@o, o=80

pass@k, k=80
pass@o, o=80

Figure 4: The case comparison of generation results between Qwen-14b and WizardCoder-15b in the OOP
benchmark. We see: 1) Qwen-14b can accurately generate private functions, while WizardCoder-15b cannot
accurately generate private functions; 2) The results generated by Qwen-14b and WizardCoder-15b can both pass
the evaluation using pass@k; 3) The results generated by Qwen-14b can pass the evaluation using pass@o, but the
results generated by WizardCoder-15b cannot pass the evaluation using pass@o.

sented in Tables 3, 4, and 5, respectively. we have
drawn the following conclusions:

LLMs perform better at the simple-level OOP
compared to the moderate-level and difficult-
level OOP From the simple-level OOP evalua-
tion results in Table 3, we can see that the eval-
uation results using pass@k and pass@o are the
same. It also indicates that LLMs can comprehend
the fundamental concepts and features of OOP, e.g.,
class, and encapsulation methods (i.e., public func-
tion). However, in Tables 4 and 5, LLMs exhibit
a weaker understanding of concepts and features
related to OOP, e.g., encapsulation methods (i.e.,
private function), inheritance, and polymorphism,
and are unable to generate corresponding code ac-
curately. Detailed descriptions are in Appendix E.

ChatGPT has large gap in moderate-level usage
using pass@k and pass@o From the results in
Table 4, We observe that with pass@k evaluation,
ChatGPT scores are 51.71, 83.30, and 83.67, but
with pass@o evaluation, ChatGPT only achieves
scores of 2.53, 51.54, and 54.78. We analyzed
the moderate-level OOP results for ChatGPT, and
found that its understanding of private functions is
relatively poor. When evaluated using pass@k, a
total of 5551 codes can pass the test cases correctly.
However, when evaluated using pass@o, only 272

codes can successfully pass the test cases. Among
them, 5279 codes fail to match the pass@o crite-
ria. Upon careful examination, we found that all
these 5279 codes resulted from errors generated
by private functions To further validate the authen-
ticity of the experimental results, we randomly se-
lected prompts corresponding to three error results.
Subsequently, we input prompts of the erroneous
results into the web version of ChatGPT for code
generation, as illustrated in Figure 13, 14 and 15.
We found that the code generated by online Chat-
GPT 10 is also private function error.

ChatGPT outperforms moderate-level in
difficult-level evaluation results According to
the evaluation results from Tables 3 and 4, we
observe that the performance of ChatGPT at the
difficult level is stronger than at the moderate
level. At the difficult-level OOP, ChatGPT scores
are 19.70, 71.83, and 73.37, whereas at the
moderate-level OOP, ChatGPT scores are only
2.53, 51.54, and 54.78.

5 Discussion

In this section, we will explore the reasons behind
the generally lower scores of LLMs in OOP, as
well as the applicability of the Chain-of-Thoughts

10https://chat.openai.com/

13625

https://chat.openai.com/


Attribute 
variable

Private 
function

Public 
function Class

CodeLlam
a-34b 29752 51 36950 8069

此处键入公式
ChatGPT 62325 3090 72219 72222 
All 70800 36000 86200 86200 

def __init__

def __ and def _ def

class

CodeLlama-34b ChatGPT

70,800

36000

86,200 86,200

70,800

36,000

86,200 86,200

29,752

41,048

35,949 36,950

49,250

38,069

48,131

62,325

32,910

72,219

13,981

72,222

13,978

0.00

1.00× 105

2.00× 104

4.00× 104

6.00× 104

8.00× 104

N
um

be
rs

Figure 5: Distribution of search results for ChatGPT
and CodeLlama-34b. (In program, “class” serves as
the indicator for program class names. If the program
does not contain a “class”, it signifies an error in the
generation of class names by the LLM. Similarly, it
can be deduced that “def _” and “def __” serve as
indicators for private function names; “def” signifies
a public function name; and “def __init__” represents
the indicator for attribute variables name. Moreover,
In our OOP benchmark, the LLM should ideally gener-
ate at least 86,200 “class”, 36,000 “def __” or “def _”,
86,200 “def”, and 70,800 “def __init__”.)

(CoT) method to OOP.

Why LLMs score lower in OOP benchmarks?
We use the experimental results of ChatGPT and
CodeLlama-34b on pass@1 as examples for anal-
ysis. As we instruct LLMs to generate relevant
class names, private function names, public func-
tion names, etc., We conducted searches using sim-
ple keywords, e.g., “class”, “def _”, “def __”, “def
__init__”, and “def” on both CodeLlama-34b and
ChatGPT results. A detailed description of the
retrieval process is provided in Appendix F. We
compiled and analyzed the distribution of retrieval
“class”, “def _”, “def __”, “def __init__”, and
“def”, as shown in Figure 5, concluding that: 1)
Weak knowledge, e.g., class, encapsulation meth-
ods, etc, of OOP in LLMs; 2) LLMs particularly
lack cognition of private functions; 3) There is a
certain degree of gap between CodeLlama-34b and
ChatGPT. Specific example is shown in Figure 11.

The applicability of CoT in OOP. Taking
CodeLlama-13b, StarCoder, and WizardCoder-15b
as examples, we respectively incorporate the few-
shot, zero-shot CoT, and few-shot CoT methods
to validate whether CoT approaches demonstrate
applicability in OOP, as shown in Table 7. We
observed a significant improvement in the scores

of LLMs in OOP when using the few-shot ap-
proach, e.g., CodeLlama-13b achieved scores of
14.50, 48.13, and 49.85 using the few-shot method,
representing improvements of 396.58%, 294.51%,
and 280.24%, respectively, compared to the zero-
shot method. In Table 7, we also observe that
CodeLlama-13b achieves scores of 1.33, 13.31,
and 14.62 in zero-shot CoT, but its score at pass@1
is lower at 2.92 compared to zero-shot. Addition-
ally, StarCoder scores 0.25, 6.58, and 7.07 in zero-
shot CoT, which are lower than StarCoder scores
in zero-shot at 1.26, 10.05, and 10.88, respectively.
The scores of the CodeLlama-13b, StarCoder, and
WizardCoder-15b models on few-shot CoT are also
lower than their scores on few-shot. We analyzed
the experimental results of zero-shot and zero-shot
CoT and found that using the CoT method intro-
duces an illusion to the model, preventing it from
directly generating the corresponding code, as il-
lustrated in Figure 12. Therefore, it is necessary to
integrate the concepts and features of OOP to de-
sign appropriate CoT strategies in order to enhance
the effectiveness of generating OOP by LLMs. Ap-
pendix G provides detailed prompts for few-shot,
zero-shot CoT, and few-shot CoT.

6 Conclusion

In this paper, we propose the first OOP evalua-
tion benchmark based on Python, consisting of 431
Python programs, encompassing key concepts and
features of OOP, e.g., class, encapsulation methods,
etc. Simultaneously, we propose the evaluation
metric pass@o for the OOP benchmark. pass@o
improves upon the limitations of pass@k by match-
ing keyword points between natural language with
program language. We evaluate 23 mainstream
LLMs using the proposed OOP benchmark and
pass@o metric. Experimental results show that
the current OOP of LLMs is far from ideal, which
also reveals that LLMs have room for further im-
provement. Furthermore, Existing LLMs have a
certain gap with ChatGPT in OOP. Moreover, we
also investigate that applying some of the current
improvement strategies directly to the OOP bench-
mark does not show significant improvement. In
the future, we need to further strengthen the OOP
knowledge of LLMs, especially regarding private
functions. At the same time, we also hope that more
researchers can contribute to the advancement of
research in OOP.

13626



Limitations

Our OOP benchmark has several limitations: (1)
Our proposed OOP benchmark is based on the
Python programming language and does not cover
other OOP languages. (2) Given the incorporation
of crucial concepts like polymorphism and inher-
itance in the OOP benchmark, it does not specifi-
cally address challenges associated with more intri-
cate scenarios, e.g., multiple inheritance and over-
loading. (3) While OOP languages hold a signifi-
cant share, non-OOP languages, e.g., C and Go
languages, also play irreplaceable roles. In fu-
ture work, we plan to consider expanding the OOP
benchmark to cover a broader spectrum. Addi-
tionally, we encourage researchers to explore the
potential of LLMs through evaluations based on
the OOP benchmark.

Ethics Statement

We take ethical considerations very seriously. This
paper focuses on establishing benchmarks for OOP
to analyze the performance of existing LLMs. Our
research reveals that existing LLMs fall far short
of ideal performance in OOP. We conducted exper-
iments on open and publicly available LLMs and
accurately and objectively report the findings and
conclusions of this paper. Therefore, we believe
that this study does not raise ethical concerns.

Acknowledgements

This work is supported in part by the STI
2030—Major Projects (No. 2021ZD0201405),
National Natural Science Foundation of China
(Grant No. U23A20318 and 62276195), the Spe-
cial Fund of Hubei Luojia Laboratory under Grant
220100014, and the CCF-Zhipu AI Large Model
Fund OF 202224.

References
Loubna Ben Allal, Raymond Li, Denis Kocetkov,

Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t
reach for the stars! arXiv preprint.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hesslow,
Julien Launay, Quentin Malartic, Daniele Mazzotta,
Badreddine Noune, Baptiste Pannier, and Guilherme
Penedo. 2023. The falcon series of open language
models. arXiv preprint.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, et al. 2023. Multipl-e: a scalable
and polyglot approach to benchmarking neural code
generation. IEEE TSE.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large language
models trained on code. arXiv preprint.

Yihong Dong, Jiazheng Ding, Xue Jiang, Zhuo Li,
Ge Li, and Zhi Jin. 2023. Codescore: Evaluating
code generation by learning code execution. arXiv
preprint.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng
Sha, Xin Peng, and Yiling Lou. 2023. Classe-
val: A manually-crafted benchmark for evaluating
llms on class-level code generation. arXiv preprint
arXiv:2308.01861.

Lingyue Fu, Huacan Chai, Shuang Luo, Kounian-
hua Du, Weiming Zhang, Longteng Fan, Jiayi Lei,
Renting Rui, Jianghao Lin, Yuchen Fang, et al.
2023. Codeapex: A bilingual programming eval-
uation benchmark for large language models. arXiv
preprint.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
arXiv preprint.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. In
NeurIPS.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In SOSP.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, et al. 2023. Starcoder:
may the source be with you! arXiv preprint.

13627

https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.16609
https://ieeexplore.ieee.org/abstract/document/10103177
https://ieeexplore.ieee.org/abstract/document/10103177
https://ieeexplore.ieee.org/abstract/document/10103177
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2301.09043
https://arxiv.org/abs/2301.09043
https://arxiv.org/abs/2309.01940
https://arxiv.org/abs/2309.01940
https://arxiv.org/abs/2105.09938
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165
https://dl.acm.org/doi/10.1145/3600006.3613165
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161


Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In ACL.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. arXiv preprint.

Qingyu Lu, Baopu Qiu, Liang Ding, Liping Xie, and
Dacheng Tao. 2023. Error analysis prompting en-
ables human-like translation evaluation in large lan-
guage models: A case study on chatgpt. arXiv
preprint.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint.

Yasmin Moslem, Rejwanul Haque, John D. Kelleher,
and Andy Way. 2023. Adaptive machine translation
with large language models. In EAMT.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022a. Training language models to follow instruc-
tions with human feedback. NeurIPS.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
et al. 2022b. Training language models to follow
instructions with human feedback. In NeurIPS.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In ACL.

Keqin Peng, Liang Ding, Qihuang Zhong, Li Shen,
Xuebo Liu, Min Zhang, Yuanxin Ouyang, and
Dacheng Tao. 2023. Towards making the most of
chatgpt for machine translation. arxiv preprint.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2022. Beyond the imitation
game: Quantifying and extrapolating the capabilities
of language models. arXiv preprint.

Mark Stefik and Daniel G Bobrow. 1985. Object-
oriented programming: Themes and variations. AI
magazine.

Bjarne Stroustrup. 1988. What is object-oriented pro-
gramming? IEEE software.

DeepSeek-AI Team. 2024. Deepseek llm: Scaling open-
source language models with longtermism. arXiv
preprint.

InternLM Team. 2023a. Internlm: A multilingual lan-
guage model with progressively enhanced capabili-
ties.

MosaicML NLP Team. 2023b. Introducing mpt-7b: A
new standard for open-source, commercially usable
llms. Accessed: 2023-05-05.

Gabriele Tolomei, Cesare Campagnano, Fabrizio Sil-
vestri, and Giovanni Trappolini. 2023. Prompt-to-
os (p2os): Revolutionizing operating systems and
human-computer interaction with integrated ai gener-
ative models. arXiv preprint.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham
Neubig. 2022. Execution-based evaluation for open-
domain code generation. arXiv preprint.

Peter Wegner. 1990. Concepts and paradigms of object-
oriented programming. ACM Sigplan Oops Messen-
ger.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu
Kim, Bei Guan, Yongji Wang, Weizhu Chen, and
Jian-Guang Lou. 2022. Cert: Continual pre-training
on sketches for library-oriented code generation. In
IJCAI.

13628

https://www.science.org/doi/10.1126/science.abq1158
https://www.science.org/doi/10.1126/science.abq1158
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2303.13809
https://arxiv.org/abs/2303.13809
https://arxiv.org/abs/2303.13809
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://aclanthology.org/2023.eamt-1.22
https://aclanthology.org/2023.eamt-1.22
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://dl.acm.org/doi/10.3115/1073083.1073135
https://dl.acm.org/doi/10.3115/1073083.1073135
https://arxiv.org/abs/2303.13780
https://arxiv.org/abs/2303.13780
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/508
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/508
https://ieeexplore.ieee.org/abstract/document/2020
https://ieeexplore.ieee.org/abstract/document/2020
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://github. com/InternLM/InternLM
https://github. com/InternLM/InternLM
https://github. com/InternLM/InternLM
https://www.databricks.com/blog/mpt-7b
https://www.databricks.com/blog/mpt-7b
https://www.databricks.com/blog/mpt-7b
https://arxiv.org/abs/2310.04875
https://arxiv.org/abs/2310.04875
https://arxiv.org/abs/2310.04875
https://arxiv.org/abs/2310.04875
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2212.10481
https://arxiv.org/abs/2212.10481
https://dl.acm.org/doi/abs/10.1145/382192.383004
https://dl.acm.org/doi/abs/10.1145/382192.383004
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2309.07124
https://arxiv.org/abs/2309.07124
https://doi.org/10.24963/ijcai.2022/329
https://doi.org/10.24963/ijcai.2022/329


Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint.

Li Zhong and Zilong Wang. 2023. Can chatgpt replace
stackoverflow? a study on robustness and reliabil-
ity of large language model code generation. arXiv
preprint.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2023. Can chatgpt understand too?
a comparative study on chatgpt and fine-tuned bert.
arXiv preprint.

13629

https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2308.10335
https://arxiv.org/abs/2308.10335
https://arxiv.org/abs/2308.10335
https://arxiv.org/abs/2302.10198
https://arxiv.org/abs/2302.10198


Prompt:
def truncate_number(number: float) ->float:

""" 
Given a positive floating point number, it can be decomposed into and
integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).

Return the decimal part of the number.
>>>truncate_number(3.5)
0.5
"""

HumanEval

Function Programming

(a) HumanEval.

Prompt:
You are an expert Python programmer, and here is your task:

⋯
Write a function to check if the given tuple list has all k elements. Your
code should pass these tests:

["assert check_k_elements([(4, 4), (4, 4, 4), (4, 4), (4, 4, 4, 4), (4, )], 4) ==
True", "assert check_k_elements([(7, 7, 7), (7, 7)], 7) == True", "assert
check_k_elements([(9, 9), (9, 9, 9, 9)], 7) == False"]
[BEGIN]

MBPP

Function Programming

(b) MBPP.

Prompt:
def truncate_number(number: float) ->float:

""" 
Given a positive floating point number, it can be decomposed into and
integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).

Return the decimal part of the number.
>>>truncate_number(3.5)
0.5
"""

HumanEval

Function Programming

(c) OOP.

Figure 6: Differences between OOP benchmarks and
HumanEval, as well as MBPP Benchmarks (. . . in-
dicates that the few-shot content in MBPP is omitted
). We can see that: 1) the HumanEval benchmark re-
quires models to complete based on the context within
the function; 2) the MBPP benchmark directly requires
models to generate based on prompt requirements; 3)
However, our proposed OOP benchmark requirements
are generated based on specified prompt as well as con-
cepts and features of OOP. Therefore, HumanEval and
MBPP do not reflect the concepts and features of OOP.

A Pass@k calculation process

The calculation process for pass@k is:

pass@k := E
Problems

[
1−

(
n−c
k

)
(
n
k

)
]

(3)

In Eq. (3), n represents the number of code
generations for a given problem; c represents the
quantity of n generated codes passing tests.

Prompt:
First, write a WDS class using the Python language. Then, within the
WDS class, create a public function called without_duplicates to
implement finding the length of the longest substring in a given string s
that does not contain any duplicate characters.

Object-Oriented Programming(OOP)

class, public function

(a) Simple-level.

Prompt:
Firstly, design a class named MS using the Python language, which has
instance attributes word1 and word2, a private function
private_Minimum_Steps, and a public function public_Minimum_Steps.
Then, in the private function private_Minimum_Steps, return the
minimum number of steps required to make word1 and word2 identical.
Finally, in the public function public_Minimum_Steps, call the private
function private_Minimum_Steps to return the result.

Object-Oriented Programming (OOP)

class, properties, public function, private function

(b) Moderate-level.

Prompt:
First, write a class named STR in Python, which has an instance attribute,
s, and a public function named without_duplicates. In the public
function without_duplicates, based on the instance attribute s, find the
length of the longest substring without duplicate characters. Next, create
a class named SUB_STR that inherits from the STR class and add a public
function named without_duplicates. In the public function
without_duplicates of the SUB_STR class, find the maximum distance
between repeated characters in the instance attribute s.

Object-Oriented Programming (OOP)

class, properties, public function,
private function, inheritance, polymorphism

(c) Difficult-level.

Figure 7: Examples of different levels for object-
oriented programming (OOP) tasks.

Prompt:
Question: There are n gardens, labeled from 1 to n. There is also an array
paths, where paths[i] = [x_i, y_i] describes the bidirectional path from
garden x_i to garden y_i. In each garden, you plan to plant one of four types
of flowers. Moreover, each garden can have at most three paths leading in
or out. You need to choose a type of flower for each garden so that the types
of flowers in any two gardens connected by a path are different. Return any
feasible solution as the answer answer in the form of an array, where
answer[i] represents the type of flower planted in the (i+1)-th garden. The
types of flowers are represented by 1, 2, 3, and 4;
Based on the above question, create a class PFS in Python with the attribute
n; then create a class SN_PFS that inherits from the PFS class, and add the
attribute paths, as well as a public function Planted_flowers that returns
the result of the above question.
Let’s think step by step.

Figure 8: Example of a prompt using the zero-shot
CoT approach. (The green content indicates guiding
the model to generate code step by step using the CoT
approach.)

B Limitations of HumanEval and MBPP
benchmarks

Existing HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) benchmarks primarily
focus on FP to evaluate the programming capabili-
ties of LLMs, as illustrated in Figure 6.

13630



Model
1 80 100

pass@k pass@o ∆ (↓) pass@k pass@o ∆ (↓) pass@k pass@o ∆ (↓)

General

Falcon-7b 0.00 0.00 -0.00 1.04 1.04 -0.00 1.30 1.30 -0.00
Falcon-40b 0.00 0.00 -0.00 5.10 5.10 -0.00 5.68 5.68 -0.00
Yi-6b 0.00 0.00 -0.00 5.87 5.87 -0.00 6.76 6.76 -0.00
Llama2-7b 0.03 0.03 -0.00 9.56 9.56 -0.00 10.77 10.77 -0.00
InternLm-7b 0.09 0.09 -0.00 2.87 2.87 -0.00 3.21 3.21 -0.00
MPT-7b 0.13 0.13 -0.00 7.03 7.03 -0.00 8.13 8.13 -0.00
Llama2-13b 0.32 0.32 -0.00 12.05 12.05 -0.00 13.39 13.39 -0.00
DeepSeek-7b 0.72 0.72 -0.00 24.03 24.03 -0.00 26.12 26.12 -0.00
Qwen-7b 3.36 3.36 -0.00 30.53 30.53 -0.00 31.24 31.24 -0.00
Yi-34b 3.41 3.41 -0.00 26.16 26.16 -0.00 27.63 27.63 -0.00
Llama2-70b 3.79 3.79 -0.00 27.15 27.15 -0.00 29.52 29.52 -0.00

Qwen-14b 4.06 4.06 -0.00 36.89 36.89 -0.00 37.87 37.87 -0.00
DeepSeek-67b 10.36 10.36 -0.00 52.75 52.75 -0.00 53.48 53.48 -0.00
Qwen-72b 15.12 15.12 -0.00 53.88 53.88 -0.00 54.66 54.66 -0.00
ChatGPT 37.34 37.34 -0.00 54.21 54.21 -0.00 54.45 54.45 -0.00

Specialized

GPT_BigCode 0.34 0.34 -0.00 12.28 12.28 -0.00 13.63 13.63 -0.00
CodeLlama-34b 4.08 4.08 -0.00 47.36 47.36 -0.00 48.99 48.99 -0.00
CodeLlama-13b-Python 5.31 5.31 -0.00 44.37 44.37 -0.00 46.39 46.39 -0.00
CodeLlama-7b 6.38 6.38 -0.00 38.44 38.44 -0.00 40.02 40.02 -0.00
CodeLlama-7b-Python 6.73 6.73 -0.00 43.78 43.78 -0.00 45.43 45.43 -0.00
StarCoder 6.99 6.99 -0.00 39.76 39.76 -0.00 41.28 41.28 -0.00
CodeLlama-13b 16.21 16.21 -0.00 47.72 47.72 -0.00 48.74 48.74 -0.00
WizardCoder-15b 16.79 16.79 -0.00 44.56 44.56 -0.00 45.96 45.96 -0.00

Table 3: Scores of 23 large language models (LLMs) on simple-level object-oriented programming (OOP)
tasks. We also reported the differences in evaluation results between pass@k and pass@o. (All LLMs are evaluated
in zero-shot fashion. For pass@100 and pass@80 scores, we use a temperature of 0.8 and top-p=0.95. For pass@1
scores, we use a temperature of 0.1 and top-p=0.95. Red indicates the differences evaluated using the pass@o and
pass@k metrics; Underlined indicates the maximum disparities evaluated between pass@o and pass@k metrics;
Gray indicates models with a larger number of parameters.)

Prompt:
You are an expert Python programmer, and here is your task:
In the Python language, start by creating a PME class. Within the PME
class, define a public function called prime_number. Within this function,
validate whether a given integer number is a prime number. If it is prime,
the function should return True; otherwise, it should return False.
Your code should pass these tests:
"PME().prime_number(17) == True"
[BEGIN]
class PME:

def prime_number(self, number):
if number < 2:

return False
for i in range(2, int(number**0.5) + 1):

if number % i == 0:
return False

return True

[DONE]

Firstly, design an ES class using Python language, which has instance
attributes nums and k, a private function private_Equal_sum, and a public
function public_Equal_sum. Then, in the private function
private_Equal_sum, determine whether it is possible to divide this array
into k non-empty subsets with equal sums, based on a given integer array
nums and a positive integer k. Finally, call the private function
private_Equal_sum in the public function public_Equal_sum to return
the result.

⋮

Figure 9: Prompt using the few-shot approach. (The
green color indicates the added few-shot content.)

C Detailed construction process of OOP.

In the process of establishing the OOP benchmark,
we hired a total of nine fourth-year undergraduate
computer science students. Among them, two stu-
dents were involved in the data collection process,
four students participated in the rewriting process,
and two students contributed to the use case con-
struction phase, as shown in Figure 3.

During the data collection process, problems or
requirements described in Non-English natural lan-
guage are translated using the Google API, fol-
lowed by manual verification. In the use case con-
struction phase, we begin by inputting the rewritten
prompt into ChatGPT to generate the correspond-
ing code. Subsequently, the generated code is used
for input testing. Finally, the output results are
saved along with the input tests to serve as test
cases. However, the code generated by ChatGPT
may not always be correct, requiring manual in-
spection and correction. During the process of
building the benchmark for OOP, we spent a total
of $200.

13631



Model
1 80 100

pass@k pass@o ∆ (↓) pass@k pass@o ∆ (↓) pass@k pass@o ∆ (↓)

General

Falcon-7b 0.02 0.00 -0.02 0.22 0.00 -0.22 0.28 0.00 -0.28
Falcon-40b 0.02 0.00 -0.02 0.23 0.00 -0.23 0.72 0.00 -0.72
Llama2-7b 0.02 0.00 -0.02 5.51 0.00 -5.51 6.41 0.00 -6.41
InternLm-7b 0.03 0.00 -0.03 1.03 0.00 -1.03 1.26 0.00 -1.26
Llama2-13b 0.08 0.00 -0.08 11.78 0.00 -11.78 13.39 0.00 -13.39
Yi-6b 0.08 0.00 -0.08 6.23 0.36 -5.87 7.39 0.42 -6.97
MPT-7b 0.61 0.00 -0.61 8.16 0.00 -8.16 9.38 0.00 -9.38
Qwen-7b 0.80 0.00 -0.80 20.79 0.00 -20.79 23.27 0.00 -23.27
DeepSeek-7b 1.51 0.00 -1.51 15.47 0.45 -15.02 17.14 0.56 -16.58
Qwen-14b 1.82 0.00 -1.82 37.58 5.12 -32.46 40.10 6.12 -33.98
Yi-34b 2.10 0.00 -2.10 25.61 0.58 -25.03 27.79 0.70 -27.09
Llama2-70b 5.01 0.00 -5.01 21.94 1.34 -20.60 24.27 1.68 -22.59
DeepSeek-67b 7.89 0.00 -7.89 49.79 13.03 -36.76 52.43 15.30 -37.13
Qwen-72b 13.02 0.28 -12.74 63.41 26.97 -36.44 65.21 29.71 -35.50
ChatGPT 51.71 2.53 -49.18 83.30 51.54 -31.76 83.67 54.78 -28.89

Specialized

GPT_BigCode 0.08 0.00 -0.08 9.22 0.67 -8.55 10.55 0.84 -9.71
CodeLlama-7b 3.46 0.00 -3.46 36.85 3.66 -33.19 39.15 4.40 -34.75
CodeLlama-13b-Python 4.31 0.01 -4.30 42.12 10.06 -32.06 45.07 11.84 -33.23
StarCoder 8.01 0.01 -8.00 44.40 4.28 -40.12 46.70 5.07 -41.63
CodeLlama-7b-Python 8.13 0.01 -8.12 43.96 9.28 -34.68 46.17 10.76 -35.41
WizardCoder-15b 9.10 0.00 -9.10 45.25 1.29 -43.96 47.41 1.50 -45.91
CodeLlama-13b 9.46 0.00 -9.46 51.73 7.62 -44.11 54.55 9.12 -45.43
CodeLlama-34b 10.23 0.00 -10.23 51.68 11.41 -40.27 54.22 13.48 -40.74

Table 4: Scores of 23 large language models (LLMs) on moderate-level object-oriented programming (OOP)
tasks. We also reported the differences in evaluation results between pass@k and pass@o. (All LLMs are evaluated
in zero-shot fashion. For pass@100 and pass@80 scores, we use a temperature of 0.8 and top-p=0.95. For pass@1
scores, we use a temperature of 0.1 and top-p=0.95. Red indicates the differences evaluated using the pass@o and
pass@k metrics; Underlined indicates the maximum disparities evaluated between pass@o and pass@k metrics;
Gray indicates models with a larger number of parameters.)

D The details of 23 LLMs

We have selected a total of 23 mainstream LLMs,
including both code-specialized models and gen-
eral models, e.g.,
ChatGPT (Ouyang et al., 2022b; OpenAI, 2023):
ChatGPT was released by OpenAI in November
2022 and has been widely recognized for its aston-
ishing conversational generation capabilities. In
March 2023, OpenAI released ChatGPT 4.0. In
our experiments, we chose to use ChatGPT 3.5
(gpt-3.5-turb) to explore its OOP.
GPT_BigCode (Allal et al., 2023):
GPT_BigCode, derived from the BigCode
project, is a 1.12 billion parameter model trained
on subsets of Java, JavaScript, and Python from
The Stack.
CodeLlama (Roziere et al., 2023): CodeLlama
is a series of large-scale code language models
based on Llama2 that offers state-of-the-art perfor-
mance in open modeling, function completion, sup-
port for large input contexts, and zero-shot instruc-
tion following capabilities for programming tasks.
CodeLlama includes the base model (CodeLlama),

the Python specialized model (CodeLlama-Python),
and the instruction-following model (CodeLlama-
Instruct), each available with 7b, 13b, and 34b pa-
rameters. In our experiments, we selected the base
models with 7b, 13b, and 34b parameters, as well
as the Python-specialized models with 7b and 13b
parameters.
WizardCoder (Luo et al., 2023): WizardCoder
is a model fine-tuned using the Evol-Instruct (Xu
et al., 2023) method based on CodeLlama. Wizard-
Coder includes the base model and the Python spe-
cialized model (WizardCoder-Python). The base
model comes in 1b, 3b, and 15b variants, while the
Python specialized model is available in 7b, 13b,
and 34b. In our experiments, we selected the 15b
version of the base model.
StarCoder (Li et al., 2023): StarCoderBase is
trained on The Stack (v1.2) 11 data in the GitHub
repository. The StarCoder model is fine-tuned
based on the StarCoderBase model.
Llama2 (Touvron et al., 2023): The Llama2
model was released by the Meta team in July 2023.

11https://huggingface.co/datasets/bigcode/
the-stack

13632

https://huggingface.co/datasets/bigcode/the-stack
https://huggingface.co/datasets/bigcode/the-stack


Model
1 80 100

pass@k pass@o ∆ (↓) pass@k pass@o ∆ (↓) pass@k pass@o ∆ (↓)

General

Llama2-7b 0.00 0.00 -0.00 0.00 0.00 -0.00 0.00 0.00 -0.00
Falcon-7b 0.00 0.00 -0.00 0.22 0.00 -0.22 0.28 0.00 -0.28
MPT-7b 0.00 0.00 -0.00 0.23 0.00 -0.23 0.29 0.00 -0.29
Llama2-13b 0.00 0.00 -0.00 0.47 0.00 -0.47 0.58 0.00 -0.58
Qwen-7b 0.01 0.01 -0.00 2.08 0.46 -1.62 2.47 0.51 -1.96
InternLm-7b 0.01 0.00 -0.01 0.23 0.00 -0.23 0.29 0.00 -0.29
Falcon-40b 0.02 0.00 -0.01 0.23 0.00 -0.23 0.72 0.00 -0.72
Qwen-14b 0.07 0.06 -0.01 9.77 4.70 -5.07 11.24 5.53 -5.73
Yi-6b 0.09 0.03 -0.06 3.52 1.16 -2.36 4.20 1.45 -2.75
DeepSeek-7b 1.51 0.00 -1.51 15.47 0.45 -15.02 17.14 0.56 -16.58
Yi-34b 1.77 1.20 -0.57 16.27 8.66 -7.61 17.62 9.83 -7.79
Llama2-70b 1.94 1.42 -0.52 17.21 11.26 -5.95 19.05 12.81 -6.24
Qwen-72b 7.54 4.43 -3.11 53.28 36.56 -16.72 56.11 38.67 -17.44
DeepSeek-67b 7.89 0.00 -7.89 49.79 13.03 -36.76 52.43 15.30 -37.13
ChatGPT 36.52 19.70 -16.82 78.94 71.83 -7.11 79.95 73.37 -6.58

Specialized

WizardCoder-15b 0.00 0.00 -0.00 3.05 2.35 -0.70 3.48 2.76 -0.72
CodeLlama-13b 0.00 0.00 -0.00 5.69 1.07 -4.62 6.75 1.31 -5.44
StarCoder 0.00 0.00 -0.00 7.34 2.74 -4.60 8.65 3.31 -5.34
GPT_BigCode 0.01 0.00 -0.01 2.08 0.23 -1.85 2.54 0.29 -2.25
CodeLlama-7b-Python 0.17 0.15 -0.02 5.93 2.84 -3.09 7.02 3.49 -3.53
CodeLlama-13b-Python 0.17 0.17 -0.00 26.74 16.61 -10.13 25.75 18.64 -7.11
CodeLlama-7b 0.18 0.13 -0.05 4.65 1.77 -2.88 5.64 2.18 -3.46
CodeLlama-34b 3.08 2.13 -0.95 40.26 27.83 -12.43 43.59 30.51 -13.08

Table 5: Scores of 23 large language models (LLMs) on difficult-level object-oriented programming (OOP)
tasks. We also reported the differences in evaluation results between pass@k and pass@o. (All LLMs are evaluated
in zero-shot fashion. For pass@100 and pass@80 scores, we use a temperature of 0.8 and top-p=0.95. For pass@1
scores, we use a temperature of 0.1 and top-p=0.95. Red indicates the differences evaluated using the pass@o and
pass@k metrics; Underlined indicates the maximum disparities evaluated between pass@o and pass@k metrics;
Gray indicates models with a larger number of parameters.)

Model name Size Years Open-source Task type

Falcon 7b, 40b 2023 " General
DeepSeek 7b, 67b 2023 " General
Llama2 7b, 13b, 70b 2023 " General
Yi 6b, 34b 2023 " General
InternLm 7b 2023 " General
MPT 7b 2023 " General
Qwen 7b, 14b, 72b 2023 " General
ChatGPT N/A 2023 % General
GPT_BigCode 1.12b 2023 " Code-specialized
CodeLlama 7b, 13b, 34b 2023 " Code-specialized
CodeLlama-Python 7b, 13b 2023 " Code-specialized
StarCoder 15b 2023 " Code-specialized
WizardCoder 15b 2023 " Code-specialized

Table 6: Overview of the Evaluated Models.

Llama2 is a large language model (LLM) that
has undergone pre-training and fine-tuning, with a
range of parameters from 7 billion to 70 billion. In
our experiments, we selected models with 7b, 13b,
and 70b parameters.
InternLm (Team, 2023a): InternLM encompasses
models designed for practical scenarios. The In-
ternLM model includes both a base model and a
chat model with 7b and 20b parameters. In our
experiments, we selected the base model with 7b
parameters.

MPT (Team, 2023b): The MPT model is a
decoder-style transformer trained by MosaicML.
In our experiments, we selected the base model
with 7b parameters.

DeepSeek (Team, 2024): DeepSeek is an LLM
based on the power-law scaling, encompassing
models with 7b and 67b parameters. In our experi-
ments, we opted to utilize the foundational models
with 7b and 67b parameters.

Falcon (Almazrouei et al., 2023): The Falcon se-
ries models are primarily trained on diverse and
high-quality corpora assembled from web data, in-
cluding the 7b, 40b, and 180b parameter models.
In our experiments, we opted to use models with
7b and 40b parameters.

Qwen (Bai et al., 2023): The Qwen model is a
large language model based on the Transformer ar-
chitecture, trained on a vast and diverse dataset for
pre-training. The dataset encompasses a wide range
of types, including extensive web text, professional
books, code, and more. During our experiments,
we selected the base models with 7b, 14b, and 72b
parameters.

13633



Prompt:
You are an expert Python programmer, and here is your task:
In the Python language, start by creating a PME class. Within the PME class, define a public function called prime_number.
Within this function, validate whether a given integer number is a prime number. If it is prime, the function should return True;
otherwise, it should return False.
Your code should pass these tests:
"PME().prime_number(17) == True"
[BEGIN]
Please understand the requirement and write a rough solving process. It starts with a input-output structure. The necessary details 
should be written in natural languages.

### Input:
- The input to the `prime_number` function is an integer `number`.

### Output:
- The function should return `True` if the input ̀ number` is a prime number.
- The function should return `False` if the input ̀ number` is not a prime number.

### Solving Process:
1. **Input Validation:**
- Check if the input ̀ number` is a positive integer. If not, return an error or handle the situation accordingly.

2. **Prime Number Check:**
- If the input ̀ number` is 2 or 3, return `True` since they are prime.
- If the input ̀ number` is less than 2, return `False` since prime numbers are greater than 1.
- Iterate from 2 to the square root of the input ̀ number`.
- Check if the input ̀ number` is divisible evenly by any number in the iteration.
- If it is divisible by any number, return `False` (not a prime number).
- If no divisor is found, return `True` (it is a prime number).

3. **Implementation in Python:**
- Create a class named `PME`.
- Define a public function ̀ prime_number` that takes an integer parameter ̀ number`.
- Implement the steps mentioned above in the `prime_number` function.

Here's a rough implementation in Python:

class PME:
def prime_number(self, number):

if number < 2:
return False

for i in range(2, int(number**0.5) + 1):
if number % i == 0:

return False
return True

[DONE]

Firstly, design an ES class using Python language, which has instance attributes nums and k, a private function private_Equal_sum,
and a public function public_Equal_sum. Then, in the private function private_Equal_sum, determine whether it is possible to
divide this array into k non-empty subsets with equal sums, based on a given integer array nums and a positive integer k. Finally,
call the private function private_Equal_sum in the public function public_Equal_sum to return the result.

⋮

Figure 10: Prompt of using the few-shot CoT approach. (The green color indicates the added few-shot content;
The blue color indicates guiding the model to generate code step by step using the CoT approach.)

Yi 12: The Yi series models are developed as bilin-
gual language models with a focus on Chinese and
English. Yi models are trained on a 3T multilin-
gual corpus and demonstrate promising prospects
in language understanding, common sense reason-
ing, and reading comprehension. In our experi-
ments, we selected models with 6 billion and 34
billion parameters.

We use 23 mainstream code-specialized and
general models with the aim of better illustrating

12https://01.ai/cn

the performance of existing LLMs in OOP. The
overview of the evaluated models is presented in
Table 6.

E Analysis of results

In simple-level OOP of Table 3, ChatGPT scored
37.34 at pass@1. However, in the difficult-
level and Moderate-level OOP, ChatGPT scored
only 19.70 and 2.53 at pass@1, respectively.
CodeLlama-13b scored 16.21 at pass@1 in
the simple-level OOP. In the difficult-level and

13634

https://01.ai/cn


Prompt:
Question: Given a positive integer array values, where values[i] represents the rating of the i-th sightseeing spot,
and the distance between two spots i and j is j-i. The score of a sightseeing combination of a pair of spots (i<j)
is values[i]+values[j]+i-j, which is the sum of the ratings of the spots minus the distance between them. Return
the highest score that a pair of sightseeing spots can achieve;
Based on the above question, please create a class SCT in Python language with the attribute values; then create
a class SN_SCT that inherits the SCT class, and add a public function Sightseeing_combination that returns
the highest score that a pair of sightseeing spots can achieve.
Codellama-34b:
Input: values = [8,1,5,2,6]
Output: 11
Explanation: i = 0, j = 2, values[i]+values[j]+i-j 
= 8+5+0-2 = 11

Input: values = [1,2]
Output: 2

Input: values = [1,2,3,4,5,6,7,8,9,10]
Output: 9

Input: values = 
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1
9,20]
Output: 27

Input: values = 
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1
9,20,21,22,23,24,25,26,27,28,29,30,31,32,33,3
4,35,36,37,38,39,40]
Output: 49

ChatGPT:
### Example

```
Input: values = [8,1,5,2,6]
Output: 11
Explanation: i = 0, j = 2, values[i] + values[j] + i - j = 8 + 5 

+ 0 - 2 = 11
```

### Constraints

- 1 <= values.length <= 10000
- 1 <= values[i] <= 10000

### Hints

- The problem is equivalent to find the maximum sum of a 
subarray.
- The problem is equivalent to find the maximum sum of a 
subarray with a constraint.

Figure 11: An example of Code generated by CodeLlama-34b and ChatGPT. We can see that CodeLlama-34b
did not generate the corresponding class and public function.

Moderate-level OOP, CodeLlama-13b scored only
0.00 and 0.00 at pass@1, respectively. Addition-
ally, WizardCoder-15b scored 16.79 at pass@1
in the simple-level OOP., while in the difficult-
level and Moderate-level OOP, it scored only 0.00
and 0.00 at pass@1, respectively. It indicates that
LLMs can comprehend and execute simple class,
and public functions. However, their understand-
ing of private functions, inheritance, and polymor-
phism is relatively weak. It also provides us with
room for improvement.

F Detailed description of the retrieval
process

During the retrieval process, we first search for
the class class and attribute variables def __init__.
Subsequently, we replace def __init__ in the gen-
erated code snippets with <endoftext>, and finally,
we search for private functions def _ and def __.
Using this approach helps prevent the inadvertent
retrieval of attribute variables as private functions

during the search for private functions. The pro-
cess of searching for public functions def follows
a similar method.

G Details of using the CoT strategy.

zero-shot CoT. We incorporate "Let’s think step
by step" on top of the zero-shot, enabling LLMs
to stepwise infer and thus complete the entire code
generation process, as shown in Figure 8.
few-shot. We randomly selected three samples
from MBPP (Austin et al., 2021), but these three
samples are limited to functions and do not in-
volve relevant concepts and features of OOP. Sub-
sequently, we manually re-write the selected three
samples into examples of OOP based on the five
major principles. Finally, the constructed samples
were integrated into zero-shot to form a few-shot,
as shown in Figure 9.
few-shot CoT. On the foundation of a few-shot,
we first instruct the LLMs to generate correspond-
ing steps based on the question and then proceed

13635



Prompt:
First, write a NNTI class using the Python language, then write a public non_negative_integer
function in the NNTI class to solve the following problem.
Problem: Given a non-empty array composed of integers representing a non-negative integer, add
one to this number, and return the result with the highest digit stored at the beginning of the array.
Note: Each element in the array only stores a single digit (except for the integer 0, this integer
will not start with zero).
Zero-shot:

class NNTI:
def non_negative_integer(self, nums):

"""
:type nums: List[int]
:rtype: List[int]
"""
if nums[0] == 0:

return [1]
for i in range(len(nums) - 1, -1, -1):

if nums[i] == 9:
nums[i] = 0

else:
nums[i] += 1
break

if nums[0] == 0:
nums.insert(0, 1)

return nums

Zero-shot-Cot:
1. First, we need to find the last digit of the
number.
2. Then, we need to add one to the last digit.
3. If the last digit is 9, we need to add one to the
digit before the last digit.
4. If the digit before the last digit is 9, we need
to add one to the digit before the digit before the
last digit.
5. If the digit before the digit before the last digit
is 9, we need to add one to the digit before the
digit before the digit before the last digit.
6. If the digit before the digit before the digit
before the last digit is 9, we need to add one to
the digit before the digit before the digit before
the digit before the last digit.
7. If the digit before the digit before the digit
before the digit before the last digit is 9, we need
to add one to the digit before the digit before the
digit before the digit before the digit before the
last digit.

Figure 12: Comparison of results generated by zero-shot and zero-shot CoT. We can see that: 1) using the zero-
shot CoT approach can lead the model to generate illusions, thus preventing it from generating the corresponding
code. 2) using the zero-shot approach, the model is directly prompted to generate the corresponding code.

Model CodeLlama_13b WizardCoder_15b StarCoder

pass@o 1 80 100 1 80 100 1 80 100

zero-shot CoT 1.33(-1.59) 13.31(+1.11) 14.62(+1.51) 2.67(-0.35) 13.33(-3.89) 14.19(-4.18) 0.28(-0.98) 6.58(-3.47) 7.07(-3.81)
few-shot 14.50(+11.58) 48.13(+35.93) 49.85(+36.74) 17.34(+14.32) 48.25(+38.75) 49.78(+39.77) 14.47(+13.21) 46.59(+36.54) 48.19(+37.31)

few-shot CoT 11.06(-3.44) 42.30(-5.83) 43.79(-6.06) 2.91(-14.43) 36.40(-11.85) 38.61(-11.17) 6.51(-7.96) 39.71(-6.88) 41.76(-6.43)

Table 7: Performance of the CodeLlama_13b, StarCoder, and WizardCoder_15b models with advanced
prompting strategies, i.e., few-shot, zero-shot CoT, few-shot CoT, on the OOP benchmark. Additionally, we
reported the delta in results between few-shot and few-shot CoT, zero-shot and zero-shot CoT, as well as between
few-shot and zero-shot prompting strategies. (Red indicates decline, while blue indicates increase.)

step by step to complete the entire code generation
process, as shown in Figure 10.

13636



private_monotonic_increase

Figure 13: Case 1 of generating code using the web version of ChatGPT.

13637



private_Most_times

Figure 14: Case 2 of generating code using the web version of ChatGPT.

13638



private_Paper_cited

Figure 15: Case 3 of generating code using the web version of ChatGPT.

13639


