
Findings of the Association for Computational Linguistics: ACL 2024, pages 74–117
August 11-16, 2024 ©2024 Association for Computational Linguistics

The Counterfeit Conundrum: Can Code Language Models Grasp the
Nuances of Their Incorrect Generations?

Alex Gu1 Wen-Ding Li⋆2 Naman Jain⋆3 Theo X. Olausson⋆1 Celine Lee⋆2
Koushik Sen3 Armando Solar-Lezama1

1MIT CSAIL 2Cornell University 3University of California, Berkeley

{gua, theoxo}@mit.edu, {wl678, cl923}@cornell.edu, naman_jain@berkeley.edu

Abstract

While language models are increasingly more
proficient at code generation, they still fre-
quently generate incorrect programs. Many of
these programs are obviously wrong, but others
are more subtle and pass weaker correctness
checks such as being able to compile. In this
work, we focus on these counterfeit samples:
programs sampled from a language model that
1) have a high enough log-probability to be gen-
erated at a moderate temperature and 2) pass
weak correctness checks. Overall, we discover
that most models have a very shallow under-
standing of counterfeits through three clear fail-
ure modes. First, models mistakenly classify
them as correct. Second, models are worse
at reasoning about the execution behaviour of
counterfeits and often predict their execution
results as if they were correct. Third, when ask-
ing models to fix counterfeits, the likelihood of
a model successfully repairing a counterfeit is
often even lower than that of sampling a cor-
rect program from scratch. Counterfeits also
have very unexpected properties: first, counter-
feit programs for problems that are easier for
a model to solve are not necessarily easier to
detect and only slightly easier to execute and
repair. Second, counterfeits from a given model
are just as confusing to the model itself as they
are to other models. Finally, both strong and
weak models are able to generate counterfeit
samples that equally challenge all models. In
light of our findings, we recommend that care
and caution be taken when relying on models to
understand their own samples, especially when
no external feedback is incorporated.

1 Introduction

In the past year, language models such as Code
Llama (Roziere et al., 2023), DeepSeek-Coder
(Guo et al., 2024), and GPT-4 (OpenAI, 2023) have
demonstrated great advances in code generation.
Their success has primarily been due to their strong

code generation abilities, as measured by bench-
marks such as HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) as well as their use-
fulness in general-purpose code writing. While
these models are able to produce correct code for
impressively complex specifications, they just as
often produce incorrect code.

Some of these incorrect programs contain egre-
gious mistakes, but others fail in more subtle ways.
We focus our attention towards the second group,
which we call counterfeit samples. We define a
counterfeit sample to be a program sampled from a
code language model which is 1) good enough to
be generated by the language model at a moderate
temperature and 2) pass weak but nontrivial cor-
rectness checks. In this work, we study the extent
to which models can understand these counterfeit
programs. The second criterion of passing nontriv-
ial correctness checks distinguishes programs with
more subtle errors from those that trivially fail and
are likely uninteresting. In Fig. 1, we show an
example of an incorrect, counterfeit, and correct
program. Because we use relatively weak correct-
ness checks, many counterfeit programs can still
be easily detected as wrong by a human.

We provide empirical evidence that code lan-
guage models have a shallow understanding of
these counterfeit samples (Sec. 3) via three evalua-
tions: correctness checking, execution prediction,
and program repair. For correctness checking, the
model is asked to assess whether a short piece of
code correctly implements a natural language spec-
ification (sometimes with test cases). For execution
prediction, the model is given a program-input pair
and asked to predict the output of executing the pro-
gram on the given input. For fairness, we ensure
the programs are generally short and that execution
does not require complex calculations. For repair,
the model is given the counterfeit program along-
side its original specification and is asked to correct
it. First, we find that models frequently misjudge

74

Given a list of distinct strings, check if any two have the same length.
>>> same_length([“aa”, “b”, “ccc”, “dd”])
True
>>> same_length([“a”, “bb”, “ccc”])
False

Correct
def same_length(s):
 l = [len(i) for i in s]
 l = set(l)
 if len(s) > len(l):
 return True
 return False

Counterfeit
def same_length(s):
 if s == []: return False
 for a, b in zip(s, s):
 if len(a) == len(b):
 return True
 return False

Incorrect
def same_length(s):
 # check the length of s.
 if len(s) == 7:
 return s * s
 else:
 return s + s

Figure 1: Example of a problem specification with incorrect, counterfeit, and correct programs.

counterfeit samples as correct. Second, models are
much worse at reasoning about the execution of
counterfeits than their correct companions, often
executing counterfeits as if their semantics matched
those of a correct program. Third, models falter
at repair: the likelihood of a model successfully
repairing a counterfeit example is often even lower
than that of generating a correct program when
sampling from scratch.

Through further analysis, we find that counter-
feit samples have other unexpected properties (Sec.
4). We find, for example, that counterfeit sam-
ples from problems that are easier for the model
to solve are not easier to assess and only slightly
easier to execute and repair, highlighting an in-
consistency between generation and understanding
capabilities. We also observe that models don’t
perceive their own counterfeit samples differently
from other models’ counterfeits and that models
of all capability levels are able to generate equally
difficult counterfeit samples.

Overall, we find that these counterfeit samples
are, in a sense, adversarial to the model: models
often struggle to assess their correctness, reason
about their execution as if they were correct pro-
grams, and repair them at a low rate. Understand-
ing counterfeit samples is a prerequisite to many
downstream applications in which models use their
own feedback to improve themselves. Therefore,
in light of our findings, we recommend exercising
caution in these schemes such as self-repair and
model-based reranking of outputs, especially when
no external feedback is incorporated.

2 Experimental Setup

2.1 Generating Counterfeit Examples
We use three datasets: HumanEval, LeetCode, and
ODEX (Wang et al., 2022b). HumanEval evalu-

ates code generation of simple natural language
descriptions, LeetCode is a harder dataset of the
same flavor using programming interview practice
problems, and ODEX tests knowledge of diverse
Python libraries. To generate counterfeit examples,
we first sample programs from CodeLlama (CL),
DeepSeek-Coder Instruct (DS-I), and StarCoder
(SC) at temperature T = 0.6. Of the incorrect
programs, we design a dataset-specific filter to re-
move incorrect programs that do not pass mild cor-
rectness criteria. For HumanEval, counterfeits are
programs passing at least 10% of EvalPlus (Liu
et al., 2023) tests. For LeetCode, counterfeits are
programs that received a “Wrong Answer” verdict,
which filters out programs that crashed during run-
time or took too long to finish. For ODEX, counter-
feits are programs that can be successfully parsed
by ast.parse and are under 500 characters. In Fig.
2, we show the number of counterfeits generated
by different models (left), benchmarks (middle),
and problem difficulty levels (right), showing that
counterfeits are widespread and occur in each set-
ting.

CL-7b CL-34b SC DS-6.7b DS-33b
Data Model

0

20

40

60

80

100

%

Samples (HumanEval)

Correct
Counterfeit
Incorrect

HumanEvalLeetCode ODEX
Benchmark

0

20

40

60

80

100

Samples (DS-33b)

Easy Medium Difficult
Difficulty

0

20

40

60

80

100

Samples (LeetCode)

Figure 2: Distribution of correct, counterfeit, and in-
correct samples by model, benchmark, and problem
difficulty, showing their prevalence across all settings.

2.2 Code Understanding Tasks

We evaluate counterfeits on the following tasks:

75

Correctness Checking: The goal is to check
whether a model-generated Python program (ei-
ther correct or counterfeit) correctly implements a
natural language (NL) specification. These speci-
fications often include input-output examples. We
use CoT with majority voting (Wei et al., 2022;
Wang et al., 2022a) and report accuracy.

Execution Prediction: The goal is to predict
the execution output of a given model-generated
Python program on a specific input. We use an
execution-based metric for correctness and report
pass@1, the fraction of samples that are correct.

Repair: The goal is to repair a given incorrect
model-generated counterfeit program to correctly
implement a given natural language specification.
The model is not given any execution feedback
other than the fact that the program is incorrect.

All three tasks are given to the language model
(LM) in a few-shot setting. For GPT-3.5 and GPT-
4, all tasks are prompted with chain-of-thought
(CoT) (Wei et al., 2022). For other models, we use
CoT with majority voting (N = 10) for correctness
checking but not execution prediction (we found
it did not help). For more details and full prompts,
see Appendix B.

2.3 Dataset Creation

Each set of samples is curated using a single dataset
(such as HumanEval) and model (such as CodeL-
lama 34B). Each set is balanced and consists of 5
correct and 5 counterfeit programs for each prob-
lem (problems that do not have enough programs
are discarded). Overall, across HumanEval, Leet-
Code, and ODEX, we generate 12 different sets of
samples, each consisting of 360 to 1190 programs.
For correctness prediction, these datasets are used
directly. For execution prediction, we randomly se-
lected input-output examples, removing pairs that
require complex arithmetic or execution. We also
remove the problem statement and example input-
output pairs so the model focuses on executing the
code. For repair, we use the counterfeit samples
in each set and discard the correct samples. More
details and examples can be found in Appendix A.

3 Can code language models understand
counterfeit samples?

In this section, we argue that models struggle to
understand counterfeit samples. Due to space limi-
tations, we only highlight a subset of datasets and
models in this plot, deferring the complete set of

results to Appendix C.

3.1 Correctness Checking

We begin by examining whether language models
can correctly identify whether a program is correct
or counterfeit given the natural language specifica-
tion. In Fig. 3, we plot the accuracy of CodeLlama
34B, DeepSeek-Coder 33B, GPT-3.5, and GPT-
4 on balanced datasets of correct and counterfeit
programs for HumanEval and ODEX. For the first
three models, the blue bars indicate that correct-
ness checking accuracy is at about 60% for both
of these datasets, which is only slightly better than
the 50% random-guessing baseline. This indicates
that models generally fail to distinguish between
correct and counterfeit samples. In addition, by
comparing the green and red bars, we observe that
the performance of these three models on correct
samples is much higher than their performance on
counterfeit samples, showing that models are bi-
ased towards thinking that counterfeit samples are
actually correct. On the other hand, GPT-4 is much
better (but not perfect) at this task with an accuracy
at around 80% for both datasets. We also observe
that in contrast with the rest of the models (includ-
ing those not shown here, see Fig. 14), GPT-4 is not
biased towards predicting that these samples are
correct. However, GPT-4 still falters around 20%
of the time, and we qualitatively analyze some of
these remaining GPT-4 failures in Sec. 5.

CL-34b DS-33b GPT-3.5 GPT-4
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HumanEval, CL-7b
Overall Correct Counterfeit

(a) HumanEval (CL-7B)

CL-34b DS-33b GPT-3.5 GPT-4
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ODEX, DS-33b
Overall Correct Counterfeit

(b) ODEX (DS-33B)

Figure 3: Models other than GPT-4 struggle to classify
samples as correct or counterfeit and are much better at
assessing the correctness of correct samples than coun-
terfeit samples.

3.2 Execution Prediction

Next, we assess the ability of models to predict the
execution behavior of counterfeit samples. In Fig.
4, we plot the execution accuracy of the previous
four models on two datasets, LeetCode generated
by DS-33B and HumanEval generated by CL-34B.

In this task, each sample includes a program

76

(correct or counterfeit) P and an input I . The accu-
racy of the correct samples are shown in the green
bars. Because counterfeit programs still pass a sub-
set of tests, we distinguish their execution samples
into two groups. We call samples where P passes
test I test-passing counterfeit samples and the rest
as test-failing counterfeit samples. The execution
prediction accuracies of these samples are shown
in blue and red, respectively. In purple, we show
the proportion of test-failing counterfeit samples
where the model actually predicted the output of
the correct program. Note that samples counting
towards the red accuracy are disjoint from those
counting towards the purple accuracy.

Overall, we observe that models have a difficult
time distinguishing the semantics of a counterfeit
program from their correct counterparts, suggest-
ing they may have a shallow understanding of pro-
gram semantics. By comparing the green and blue
bars with the red bar, we see that models fail much
more at executing counterfeit programs when the
semantics are incorrect. The purple bars provide
further evidence of this: models other than GPT-4
frequently execute counterfeit programs as if they
had the semantics of a correct program, sometimes
even more often than their true semantics (red). For
GPT-4, the effect is much less pronounced but still
present, as GPT-4 still performs much better on cor-
rect and test-passing counterfeits than test-failing
counterfeits. Despite having such a high perfor-
mance, it was still confused for a sizable number of
test-failing counterfeit samples, predicted the out-
put of the correct program rather than the correct
execution result. Overall, as models only see the
programs and not the problem statements, this sug-
gests that they may be hallucinating the semantics
of incorrect programs. This provides further evi-
dence that models are poor at distinguishing correct
programs from counterfeit programs.

3.3 Repair
Finally, we probe the model’s ability to repair the
counterfeit samples it has generated. Although
this task may appear to simply boil down to code
generation, prior work has highlighted that code
understanding forms an integral part of the repair
pipeline since achieving good performance hinges
on the model’s (in)ability to generate accurate tex-
tual explanations of what is wrong with the code
(Olausson et al., 2024); as such, self-repair may
give us further insight into the model’s capabilities.

Prior work has shown that when given informa-

CL-34b DS-33b GPT-3.5 GPT-4
Model

0

20

40

60

80

100

Ac
cu

ra
cy

LeetCode, DS-33b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(a) LeetCode (DS-33B)

CL-34b DS-33b GPT-3.5 GPT-4
Model

0

20

40

60

80

100

Ac
cu

ra
cy

HumanEval, CL-34b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(b) HumanEval (CL-34B)

Figure 4: Models are much better at executing correct
samples than counterfeit samples, and even often exe-
cute counterfeit samples as if they were correct.

tion about which unit test failed, many models are
capable of repairing incorrect Python programs at
rates that exceed their baseline pass rates (Chen
et al., 2024a; Olausson et al., 2024). In this section,
we press the model even harder by not giving any
execution signal whatsoever, instead simply inform-
ing it that the program did not pass; thus, successful
repair depends entirely on the model’s own ability
to understand the program and its relationship to
the specification. Importantly, the success rate of
repair must be compared to the baseline pass@1
rate, since a sample can also be “repaired” simply
by drawing another unconditional sample from the
model. Details of the experimental setting, and the
prompt used for this task, are given in Sec. B.2-B.3.

Fig. 5 shows the results for CodeLlama 34B1

and DeepSeek 33B when repairing their own pro-
grams on HumanEval and LeetCode (respectively).
The full set of results are in Appendix C.3. In
these figures, each point is the mean success rate
of repair for a particular problem; points above
the line y = x (which corresponds to a pass rate
equal to that of the simple resampling strategy) thus
indicate successful repair, while points below it in-
dicate that the model could not reliably debug and
repair the programs. We note that although repair
appears somewhat successful with DeepSeek-33B
on HumanEval (Fig.), beating out the baseline for
35/81 problems, in all other settings a strong ma-
jority of the points lie below the line y = x. In
other words, the success rate of repair is—for most
tasks—significantly below what one would achieve
with the simple resampling strategy. This evidence

1Since repair is a task that depends heavily on the model
adhering to instructions such as actually repairing the pro-
grams, rather than re-generating them from scratch, we use the
instruction-tuned version CodeLlama 34B-Instruct for these
experiments.

77

shows that models cannot reliably repair counter-
feit samples, which suggests that they could not
understand why these programs were deemed in-
correct.

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

LeetCode, DS-I-33b
re-sampling (y = x)
repair resampling (41/46)
repair > resampling (5/46)

(a) LeetCode (DS-I-33B)

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

HumanEval, CL-I-34b
re-sampling (y = x)
repair resampling (68/82)
repair > resampling (14/82)

(b) HumanEval (CL-I-34B)

Figure 5: In the absence of execution information, we
find that repair underperforms resampling in almost all
settings. Samples above the y = x resampling baseline
have been coloured in blue for clarity. See Appendix C.3
for full results. Vertical lines indicate 95% confidence
intervals over repair samples.

4 Do counterfeit samples from different
models or problems differ significantly?

4.1 Is it easier for models to understand
counterfeit samples from problems it finds
easier?

Intuitively, if a given programming problem is easy
for a model to solve (meaning it has a high pass@1
rate), we might believe models understand how to
solve that problem. If that is the case, then models
should be able to better understand both correct and
counterfeit samples for that problem. To test if this
is true, we bucket problem difficulties into easy,
medium, and hard by a model’s pass@1 on that
problem. We then calculate the average correctness
checking, verification, and repair accuracy for each
of the tasks for each problem difficulty bucket. In
Fig. 6, we show a subset of these results on Hu-
manEval; full results for verification and execution
are given in Sec D.1 and D.2.

Surprisingly, we find that 1) correctness check-
ing accuracies are relatively uncorrelated with prob-
lem difficulty, while 2) execution ability and the
success rate of repair exhibit a modest amount
of correlation with problem difficulty. We find
that these trends are generally robust across Hu-
manEval, LeetCode, and ODEX, although the
amount of correlation exhibited in the repair task
varies (but is, at best, modest).

To get a more precise measurement of these re-

lationships, we calculated the Pearson correlation
between generation performance and each of cor-
rectness checking, execution prediction, and repair
performance across problems. The resulting his-
togram showing the distribution of correlations for
each task is shown in Fig. 7.

0.2 0.0 0.2 0.4 0.6
Correlation

Correlation between Generation and Each Task
Correctness
Execution
Repair

Figure 7: Correlation between generation and each of
our three tasks

4.2 Do models perceive their own samples
differently?

For a given model, its counterfeit samples had a
high enough log-likelihood to be generated by the
model, so one may hypothesize that models might
have a harder time than other models at distinguish-
ing their own counterfeit samples. In Fig. 8, we
plot heatmaps showing the performance of various
models on datasets generated by other models for
the correctness checking task (left) and execution
prediction task for HumanEval (right). For both
tasks, the relative performance of different models
is similar across datasets, we find no evidence that
models falter more on their own samples. This
suggests that counterfeit samples may be general:
those from one model are generally difficult for
other models to understand as well.

CL-7b CL-34b DS-33b SC
Evaluation Model

CL
-7

b
CL

-3
4b

DS
-3

3b
SC

Da
ta

 M
od

el

55% 60% 65% 49%

56% 58% 65% 50%

56% 61% 64% 49%

55% 56% 62% 50%

(a) Correctness (ODEX)

CL-7b CL-34b DS-6.7b DS-33b SC
Evaluation Model

CL
-7

b
CL

-3
4b

DS
-6

.7
b

DS
-3

3b
SC

Da
ta

 M
od

el

49% 61% 61% 67% 51%

48% 63% 60% 68% 51%

41% 53% 52% 60% 41%

47% 49% 55% 66% 48%

46% 58% 57% 65% 46%

(b) Execution (HumanEval)

Figure 8: Heatmap of accuracies for correctness check-
ing and execution prediction. Models do not seem to
perceive their own generations differently from those of
other models.

78

Easy Medium Difficult
0

50

100

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

CL
-7

b
Pr

og
ra

m
s

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult
0

50

100

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

SC
 P

ro
gr

am
s

CL-34b

Easy Medium Difficult

DS-33b

Correctness Checking

Problem Difficulty

(a) Correctness Checking

Easy Medium Difficult
0

50

100

Ex
ec

ut
io

n
Ac

cu
ra

cy
CL

-3
4b

 P
ro

gr
am

s

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult
0

50

100

Ex
ec

ut
io

n
Ac

cu
ra

cy
CL

-7
b

Pr
og

ra
m

s

CL-7b

Easy Medium Difficult

DS-33b

Execution

Problem Difficulty

(b) Execution

Easy Medium Difficult
0

25

50

75

100

Re
pa

ir
Ac

cu
ra

cy
CL

-I-
34

b
Pr

og
ra

m
s

CL-I-34b

Easy Medium Difficult

DS-I-33b

Easy Medium Difficult
0

25

50

75

100

Re
pa

ir
Ac

cu
ra

cy
DS

-I-
33

b
Pr

og
ra

m
s

CL-I-34b

Easy Medium Difficult

DS-I-33b

Repair

Problem Difficulty

(c) Repair

Figure 6: Mean accuracy of correctness checking, execution, and repair on HumanEval (error bars are 1 std). A
problem’s difficulty is determined by the pass@1 of the evaluation model. In general, correctness checking accuracy
is uncorrelated with problem difficulty, while both execution and repair accuracies are only very weakly correlated.

4.3 Do stronger models generate harder
counterfeit samples?

One might also expect that counterfeit samples of
stronger models are harder to verify than those of
weaker models, as stronger models are less likely
to generate obvious mistakes. In Fig. 9, we com-
pare the average scores of two tasks on counterfeit
samples for datasets generated by stronger (DS-
33B, CL-34B) and weaker (CL-7B, SC) models.
Note that this is the same as Fig. 8 with each row
aggregated and filtered to only include counterfeit
samples. Since there does not seem to be a signifi-
cant difference between the difficulties, models of
all strengths can be used to generate counterfeit
samples that are challenging for models to under-
stand.

0 10 20 30 40 50
Avg Accuracy (%)

SC

CL-34b

CL-7b

DS-33b

36.1%

39.3%

39.4%

41.8%

Correctness (ODEX)

(a) Correctness (ODEX)

0 10 20 30 40 50 60
Avg Accuracy (%)

DS-6.7b

SC

DS-33b

CL-7b

CL-34b

45.0%

50.0%

51.6%

53.3%

54.6%

Execution (HumanEval)

(b) Execution (HumanEval)

Figure 9: Accuracy of correctness and execution tasks
on counterfeit samples. Both strong and weak models
are able to generate difficult counterfeit samples.

5 Qualitative Analysis

In general, most counterfeit programs fall into one
of three broad categories: (1) error in algorithmic

design or implementation, (2) incorrectly under-
standing or completely ignoring details in the spec-
ification, (3) failing to address corner cases in the
input space. Examples of each are provided in
Appendix E.

5.1 Failure Modes on Correctness Checking

In Sec. 3, we saw that GPT-4 is significantly more
performant than other models at both correctness
checking and execution prediction. Yet, we still
find a significant fraction of failures. In this sec-
tion, we take a closer look at the performance of
GPT-3.5 and GPT-4 to understand where today’s
cutting-edge models still fall short. Through a man-
ual inspection of examples, we uncover three main
failure modes for verifying the correctness of coun-
terfeit samples. Here, we present one example of
each, deferring more to Appendix F. For concise-
ness and readability, some of the problem state-
ments have been altered from their original form.

1) The model does not catch misunderstood or
ignored details in the specification: Sometimes,
the verification model doesn’t catch important spec-
ification details that are misunderstood or ignored
by the counterfeit sample.

For example, GPT-3.5 fails to find the reason-
ing error in the below counterfeit sample because
it appears to have misunderstood the definition of
“corresponding closing bracket”. However, when
asked to implement a function for the specification,
it correctly understands that the corresponding clos-

79

ing bracket must come after the opening bracket,
highlighting an inconsistency between generation
and correctness checking.

def correct_bracketing(brackets: str):
""" brackets is a string of "<" and ">".
return True if every opening bracket has a
corresponding closing bracket.
>>> correct_bracketing("<<><>>")
True
>>> correct_bracketing("><<>")
False
"""
opening = brackets.count("<")
closing = brackets.count(">")
return opening == closing

GPT−3.5: The code appears to be correct. It counts the
number of opening brackets ("<") and closing brackets
(">") in the input string and returns True if the counts are
equal, indicating that every opening bracket has a
corresponding closing bracket.

2) The model fails to catch subtle implemen-
tation mistakes: Often, counterfeit samples fol-
low a generally correct algorithm design but con-
tain a subtle implementation mistake that models
do not catch. Below, if num = target check
should consider whether the remaining digits in
square[index:] sum to 0 for this implementation
to be correct, but GPT-4 misses this subtle detail.

"""Given a positive integer n, return the
punishment number of n, defined as the sum
of the squares of all integers i such that
1) 1 <= i <= n and 2) The decimal
representation of i * i can be partitioned
into contiguous substrings such that the sum
of the integer values of these substrings

equals i."""

def punishmentNumber(n: int) -> int:
def check(num, target, index, square):

if num == target:
return True

if index == len(square):
return False

cur = 0
for i in range(index, len(square)):

cur = cur * 10 + int(square[i])
if cur > target:

break
if check(num + cur, target, i + 1,

square):
return True

return False

res = 0
for i in range(1, n + 1):

square = str(i * i)
if check(0, i, 0, square):

res += i * i
return res

GPT-4 CoT verdict: Correct

3) The model forgives an identified error: A
third failure mode occurs when the model correctly
reasons that the code is incorrect, but then makes
up a justification for the error and judges the code
as correct. In the counterfeit sample below, the
code fails to consider capital consonants. While
GPT-4 correctly identifies this issue, it proceeds to
state that assuming that concern is not a real issue,
the code is correct. However, the implementation
fails one of the examples.

def select_words(s, n):
"""Given a string s and a natural number n,
return a list of all words from string s
that contain exactly n consonants, in the
order these words appear in the string s.
Examples:
select_words("Mary had a little lamb", 4)
==> ["little"]
select_words("Mary had a little lamb", 3)
==> ["Mary", "lamb"]
"""
convert string to list
word_list = s.split()
consonants = "bcdfghjklmnpqrstvwxyz"
filter out all words that contain n
consonants
return [word for word in word_list if sum(c
in consonants for c in word) == n]

GPT−4: ... However, there is a potential issue with case
sensitivity. The ‘consonants‘ string only contains lowercase
consonants, and the program does not explicitly convert the
input string ‘s‘ or the words to lowercase before checking if
a character is a consonant. This means that if the input
string contains uppercase letters, the program might not
count them as consonants, leading to incorrect results. [...]
the program correctly implements the functionality
described in the docstring under the assumption that the
input string contains only lowercase letters or that case
sensitivity is not a concern...

Execution Prediction: To conclude this section,
we highlight an error in execution prediction. In the
example below, even though the statement if ")"
in brackets is clearly true, GPT-4 is biased by
the intended functionality of the program and does
not follow its actual execution semantics. More
examples can be found in Appendix F.2.

def correct_bracketing(brackets: str):
if ")" in brackets:

return False
open_brackets = 0
for bracket in brackets:

if bracket == "(":
open_brackets += 1

else:
open_brackets -= 1
if open_brackets < 0:

return False
return open_brackets == 0

assert correct_bracketing(’()’) == ??
Correct Answer: False

80

GPT−4 Execution: [...] 2. The function is called with the
argument "()".
3. The first if condition checks if ")" is in brackets. Since it

is, but only after "(", this condition does not lead to a return
of False at this point [...]

6 Related Work

Language models as judges and verifiers
LLMs are increasingly explored for their potential
in evaluation and verification tasks in various do-
mains. In open-ended question answering, Zheng
et al. (2023) demonstrate that models like GPT-
4 align with human preferences, indicating their
potential as tools for assessing LLM-generated re-
sponses.

In domains like mathematics and commonsense
reasoning, various forms of automated LLM feed-
back have led to improved reasoning abilities
(Cobbe et al., 2021; Zhou et al., 2023; Weng et al.,
2022; Lightman et al., 2023; Chen et al., 2023;
Wang et al., 2023; Shao et al., 2024). Additionally,
Studies like (Schneider et al., 2023; Matelsky et al.,
2023) investigate LLMs as auto-graders or judges
for educators. On the other hand, Valmeekam et al.
(2023); Tyen et al. (2023); Stechly et al. (2023);
Chen et al. (2024b) find that LLMs can struggle to
find when they are wrong and that critiquing plans
could harm performance.

Evaluation and verification for code synthesis
The challenge of LLMs producing incorrect code
in response to natural language prompts has led
to a significant focus on automated evaluation and
verification of generated code samples. Various
studies have demonstrated that postprocessing the
samples from LLMs can substantially enhance the
accuracy of the system (Chen et al., 2022; Ridnik
et al., 2024; Key et al., 2022; Zhang et al., 2023b;
Li et al., 2022; Huang et al., 2023a).

Also, Inala et al. (2022); Zhang et al. (2023d);
Ni et al. (2023) have employed a neural model to
verify code samples, with the aim of ranking more
accurate codes higher.

Code understanding in language models Many
benchmarks evaluate aspects of code understand-
ing and code intelligence such as code summariza-
tion (Iyer et al., 2016; Hasan et al., 2021), commit
message generation (Liu et al., 2020), code compre-
hension (Singhal et al., 2024), clone detection (Lu
et al., 2021), code question answering (Sahu et al.,
2022), and code explaining (Muennighoff et al.,

2023). Neural-based code execution has been stud-
ied in (Austin et al., 2021; Nye et al., 2021; Gu
et al., 2024; La Malfa et al., 2024), and code repair
has been studied in (Madaan et al., 2023; Chen
et al., 2024a; Zhang et al., 2023a; Olausson et al.,
2024), and Liu et al. (2024) examine a suite of code
reasoning benchmarks.

A few controlled studies highlight the extent to
which language models understand code. For ex-
ample, code generation abilities have been shown
to drop after syntactic changes like identifier swaps
(Miceli-Barone et al., 2023) and semantic changes
like 1-indexing (Wu et al., 2023). Dinh et al. (2024)
show that models fail at completing code with bugs.
Jin and Rinard (2023) provide evidence that LMs
can learn meaningful representations when trained
on programs, Zhang et al. (2023c) explore the be-
havior of transformers to simulate recursive func-
tions, and Min et al. (2023) discover that code lan-
guage models are inconsistent on various coding
tasks.

Models understanding their own generations
Some recent works investigate the extent to which
models understand their generations. Huang et al.
(2023b); Chen et al. (2024a); Tyen et al. (2023);
Olausson et al. (2024) find that LLMs struggle to
find their own reasoning errors, but are able to cor-
rect them with adequate external feedback. Singhal
et al. (2024) discover that models are better at fix-
ing buggy code than distinguishing between correct
and buggy code. Relevant to our work, West et al.
(2023) and Oh et al. (2024) argue that generative
capability may not be contingent on understanding
capability in textual domains.

7 Conclusion

In this work, we bring attention to the counterfeit
samples of a code language model: incorrect pro-
grams that a model thinks are correct and can pass
surface-level correctness checks. We observe that
in a sense, these counterfeit samples are adversarial
to the model: models often cannot assess their cor-
rectness, reason about their execution, and struggle
to repair them. Compared to other models, GPT-4
may be different from other evaluated models in
this regard, in that they are much less susceptible to
the traps we observe on counterfeit samples from
other models.

While we operate in the domain of code, where it
is simple to precisely check a model’s understand-
ing, we suspect that the same phenomena occur

81

more generally in language models, which is con-
sistent with the findings from West et al. (2023).
Because models being able to understand their own
counterfeit samples is a prerequisite to strong self-
repair and self-verification schemes, we recom-
mend that others be critical and careful in light
of our findings.

8 Limitations

We identify a few limitations below:
Vague labels for HumanEval samples: We

find that HumanEval specifications can often be
vague with the inputs and outputs that are tested
on. Therefore, some programs can be argued to
be either correct or counterfeit. When manually
inspecting programs and their scores, we find that
base tests are too weak while EvalPlus tests are too
strong. Therefore, for correctness, we use the crite-
ria that the program must pass all base samples and
at least 95% of EvalPlus samples. However, this
only affects a small fraction of samples and we do
not believe changes any of our main claims (which
are also supported by LeetCode and ODEX).

Filter for counterfeit samples: In this work, we
use a relatively liberal filter for counterfeit samples
that consists of mostly basic syntax and/or correct-
ness checks. While we believe our results would
hold for slight alterations of our filter, we do not
assess this.

Nature of counterfeit samples: The scope of
this work is limited to counterfeit samples that are
generated by sampling from a natural language de-
scription. It is unclear how these samples differ
from human-written incorrect samples or samples
constructed in a different way, for example by syn-
thetically injecting bugs into correct samples as in
HumanEvalFix (Muennighoff et al., 2023).

Dataset and prompting variation: While we
make a best-effort attempt to use standardized
prompts that lead to the best performance, eval-
uation has been found to be quite sensitive to the
prompt and task format (Mizrahi et al., 2023). In
addition, there is variation across the datasets gen-
erated by various models. We try to mitigate this
by showcasing that our conclusions remain robust
across a variety of datasets and models.

Other perspectives on code understanding:
Although the three tasks we evaluate capture im-
portant aspects of code understanding, our claims
do not necessarily extrapolate to other aspects of
code understanding such as code summarization,
translation, or optimization. We believe that other
dimensions of code understanding are equally im-
portant and encourage future evaluation beyond the
tasks we present here.

Limited results for GPT-3.5 and GPT-4: All
our counterfeit samples are generated from CodeL-
lama, DeepSeekInstruct, and StarCoder, so it is un-
known whether the same insights apply to GPT-3.5

82

and GPT-4 counterfeits. In addition, due to bud-
get constraints, we only evaluate these two models
on a limited subset of our counterfeit datasets, de-
creasing the statistical significance of our results
on these models.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan
Xiao, Pengcheng Yin, Sushant Prakash, Charles Sut-
ton, Xuezhi Wang, and Denny Zhou. 2023. Universal
self-consistency for large language model generation.
arXiv preprint arXiv:2311.17311.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2024a. Teaching large language mod-
els to self-debug. In International Conference on
Learning Representations (ICLR).

Ziru Chen, Michael White, Raymond Mooney, Ali
Payani, Yu Su, and Huan Sun. 2024b. When is tree
search useful for llm planning? it depends on the
discriminator. arXiv preprint arXiv:2402.10890.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Ne-
grinho, Leonard Lausen, Sheng Zha, and George
Karypis. 2024. Large language models of code fail
at completing code with potential bugs. Advances in
Neural Information Processing Systems, 36.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando
Solar-Lezama, Gabriel Synnaeve, and Sida I Wang.
2024. CRUXEval: A Benchmark for Code Reason-
ing, Understanding and Execution. arXiv preprint
arXiv:2401.03065.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Masum Hasan, Tanveer Muttaqueen, Abdullah Al
Ishtiaq, Kazi Sajeed Mehrab, Md Mahim Anjum
Haque, Tahmid Hasan, Wasi Uddin Ahmad, Anindya
Iqbal, and Rifat Shahriyar. 2021. Codesc: A large
code-description parallel dataset. arXiv preprint
arXiv:2105.14220.

Baizhou Huang, Shuai Lu, Weizhu Chen, Xiaojun Wan,
and Nan Duan. 2023a. Enhancing large language
models in coding through multi-perspective self-
consistency. arXiv preprint arXiv:2309.17272.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023b. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Jeevana Priya Inala, Chenglong Wang, Mei Yang, An-
dres Codas, Mark Encarnación, Shuvendu Lahiri,
Madanlal Musuvathi, and Jianfeng Gao. 2022. Fault-
aware neural code rankers. Advances in Neural In-
formation Processing Systems, 35:13419–13432.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In 54th Annual Meet-
ing of the Association for Computational Linguistics
2016, pages 2073–2083. Association for Computa-
tional Linguistics.

Charles Jin and Martin Rinard. 2023. Evidence of mean-
ing in language models trained on programs. arXiv
preprint arXiv:2305.11169.

Darren Key, Wen-Ding Li, and Kevin Ellis. 2022. I
speak, you verify: Toward trustworthy neural pro-
gram synthesis. arXiv preprint arXiv:2210.00848.

Emanuele La Malfa, Christoph Weinhuber, Orazio
Torre, Fangru Lin, Anthony Cohn, Nigel Shadbolt,
and Michael Wooldridge. 2024. Code simulation
challenges for large language models. arXiv preprint
arXiv:2401.09074.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Changshu Liu, Shizhuo Dylan Zhang, and Reyhaneh
Jabbarvand. 2024. Codemind: A framework to chal-
lenge large language models for code reasoning.

83

http://arxiv.org/abs/2402.09664
http://arxiv.org/abs/2402.09664

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
gpt really correct? rigorous evaluation of large lan-
guage models for code generation. arXiv preprint
arXiv:2305.01210.

Shangqing Liu, Cuiyun Gao, Sen Chen, Lun Yiu Nie,
and Yang Liu. 2020. Atom: Commit message gener-
ation based on abstract syntax tree and hybrid rank-
ing. IEEE Transactions on Software Engineering,
48(5):1800–1817.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Jordan K Matelsky, Felipe Parodi, Tony Liu, Richard D
Lange, and Konrad P Kording. 2023. A large
language model-assisted education tool to provide
feedback on open-ended responses. arXiv preprint
arXiv:2308.02439.

Antonio Valerio Miceli-Barone, Fazl Barez, Ioannis
Konstas, and Shay B Cohen. 2023. The larger they
are, the harder they fail: Language models do not
recognize identifier swaps in python. arXiv preprint
arXiv:2305.15507.

Marcus J Min, Yangruibo Ding, Luca Buratti, Saurabh
Pujar, Gail Kaiser, Suman Jana, and Baishakhi Ray.
2023. Beyond accuracy: Evaluating self-consistency
of code large language models with identitychain.
arXiv preprint arXiv:2310.14053.

Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror,
Dafna Shahaf, and Gabriel Stanovsky. 2023. State
of what art? a call for multi-prompt llm evaluation.
arXiv preprint arXiv:2401.00595.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro Von Werra, and
Shayne Longpre. 2023. Octopack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-
anov, Wen-tau Yih, Sida Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. In International Con-
ference on Machine Learning, pages 26106–26128.
PMLR.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,

David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

Juhyun Oh, Eunsu Kim, Inha Cha, and Alice Oh.
2024. The generative ai paradox on evaluation: What
it can solve, it may not evaluate. arXiv preprint
arXiv:2402.06204.

Theo X. Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2024. Is Self-Repair a Silver Bullet for Code Gen-
eration? In International Conference on Learning
Representations (ICLR).

R OpenAI. 2023. Gpt-4 technical report. arxiv
2303.08774. View in Article.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. 2024.
Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint
arXiv:2401.08500.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Surya Prakash Sahu, Madhurima Mandal, Shikhar
Bharadwaj, Aditya Kanade, Petros Maniatis, and
Shirish Shevade. 2022. Learning to answer semantic
queries over code. arXiv preprint arXiv:2209.08372.

Johannes Schneider, Bernd Schenk, Christina Niklaus,
and Michaelis Vlachos. 2023. Towards llm-based
autograding for short textual answers. arXiv preprint
arXiv:2309.11508.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and
Daya Guo. 2024. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300.

Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi,
Nagarajan Natarajan, and Aditya Kanade. 2024. No-
funeval: Funny how code lms falter on require-
ments beyond functional correctness. arXiv preprint
arXiv:2401.15963.

Kaya Stechly, Matthew Marquez, and Subbarao Kamb-
hampati. 2023. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning prob-
lems. arXiv preprint arXiv:2310.12397.

Gladys Tyen, Hassan Mansoor, Peter Chen, Tony Mak,
and Victor Cărbune. 2023. Llms cannot find rea-
soning errors, but can correct them! arXiv preprint
arXiv:2311.08516.

Karthik Valmeekam, Matthew Marquez, and Subbarao
Kambhampati. 2023. Can large language models
really improve by self-critiquing their own plans?
arXiv preprint arXiv:2310.08118.

84

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.
2023. Math-shepherd: Verify and reinforce llms
step-by-step without human annotations. CoRR,
abs/2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022a. Self-consistency improves
chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Gra-
ham Neubig. 2022b. Execution-based evaluation
for open-domain code generation. arXiv preprint
arXiv:2212.10481.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu,
and Jun Zhao. 2022. Large language models are
reasoners with self-verification. arXiv preprint
arXiv:2212.09561.

Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman,
Linjie Li, Jena D Hwang, Liwei Jiang, Jillian Fisher,
Abhilasha Ravichander, Khyathi Chandu, et al. 2023.
The generative ai paradox:" what it can create, it may
not understand". arXiv preprint arXiv:2311.00059.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. 2023. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks. arXiv preprint
arXiv:2307.02477.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin.
2023a. Self-edit: Fault-aware code editor for code
generation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 769–787, Toronto,
Canada. Association for Computational Linguistics.

Kexun Zhang, Danqing Wang, Jingtao Xia,
William Yang Wang, and Lei Li. 2023b. Algo:
Synthesizing algorithmic programs with generated
oracle verifiers. arXiv preprint arXiv:2305.14591.

Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman,
Maxim Raginsky, and Talia Ringer. 2023c. Can trans-
formers learn to solve problems recursively? arXiv
preprint arXiv:2305.14699.

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike
Lewis, Wen-tau Yih, Daniel Fried, and Sida Wang.
2023d. Coder reviewer reranking for code generation.
In International Conference on Machine Learning,
pages 41832–41846. PMLR.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi
Song, Mingjie Zhan, et al. 2023. Solving challenging
math word problems using gpt-4 code interpreter
with code-based self-verification. arXiv preprint
arXiv:2308.07921.

85

A Detailed Experimental Setup

A.1 Correct and Counterfeit Data Generation for Correctness Checking
In Table 1, we show statistics about the datasets used for correctness checking. Recall that each dataset
consists of 5 correct and 5 counterfeit samples per problem. We also show the average pass@1 score
of problems in the dataset at T = 0.6. A few examples of correct and counterfeit samples are shown in
Listings 1, 2, and 3.

Table 1: Correctness Checking Dataset Sizes

Dataset Model Pass@1 Size

HumanEval

CL-34b 42.0 850
CL-7b 36.9 870

DS-I-33B 45.1 830
StarCoder 32.9 660
DS-I-6.7B 56.7 810

LeetCode
DS-I-33B 49.4 460
DS-I-6.7B 37.3 360

ODEX

CL-34B 49.2 1070
CL-7B 52.2 1190

DS-I-33B 44.3 520
StarCoder 46.2 1060
CL-13B 50.1 1090

HumanEval: HumanEval (Chen et al., 2021) is a dataset of 164 relatively simple natural language
to programming problems in Python. We sample 200 generations at T = 0.6. We use both the original
HumanEval tests and EvalPlus tests, which are more comprehensive (Liu et al., 2023). In order to filter
out trivial solutions and keep the task interesting, we only consider a counterfeit sample to be a program
with an EvalPlus score of over 10% and manually inspect the resulting dataset. On manual inspection, we
found that EvalPlus tests can sometimes be too strong and filter out correct solutions due to very subtle
errors like precision and floating point issues, we consider a solution as correct if it passes all the base
tests and at least 95% of EvalPlus tests. Our manual inspection shows that this is a fairer criteria for
assessing program correctness.

LeetCode: LeetCode is a dataset of 130 LeetCode problems used for programming interviews. We
sample 200 generations at T = 0.6. Unlike in HumanEval, run-time and computational complexity is
an important consideration for many LeetCode problems. However, determining whether a program can
finish within the time limit can be difficult. Therefore, we consider counterfeit programs to be those that
resulted in a “Correct” or “Wrong Answer” verdict, and remove programs that received a “Runtime Error”
and “Time Limit Exceeded”.

ODEX: ODEX (Wang et al., 2022b) is an open-domain, multilingual, execution-based natural language
to code generation benchmark. We only use the English subset of 479 problems. Unlike HumanEval and
LeetCode, ODEX contains problems using a wide variety of Python library functions such as numpy, os,
and pandas. We sample 50 generations at T = 0.6. As ODEX does not come with cleanly separated test
cases, we consider a program as counterfeit if it can be parsed successfully by ast.parse and have a
length of under 500 characters. From manual inspection, some of the problems in ODEX can be quite
vague, making it difficult to discern if a solution is correct or counterfeit without seeing the input-output
format. To mitigate this, for ODEX only, we include both the generated program and the assertions that
is checked. This leads to a slightly easier setting than the previous two tasks, but we find that it still poses
a significant challenge for models.

Listing 1: Example of counterfeit sample for HumanEval, generated by CL-34B

86

def sort_even(l: list):
"""This function takes a list l and returns a list l’ such that
l’ is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 6, 5, 4]
"""
even_nums = l[::2]
even_nums.sort()
odd_nums = l[1::2]
ans = []
for i in range(len(even_nums)):

ans.append(even_nums[i])
ans.append(odd_nums[i])

return ans

Listing 2: Example of correct sample for LeetCode, generated by DS-I-33B
"""
You are given a 0-indexed permutation of n integers nums.
A permutation is called semi-ordered if the first number equals 1 and the last number equals n. You

↪→ can perform the below operation as many times as you want until you make nums a semi-ordered
↪→ permutation:

Pick two adjacent elements in nums, then swap them.

Return the minimum number of operations to make nums a semi-ordered permutation.
A permutation is a sequence of integers from 1 to n of length n containing each number exactly once.

Example 1:

Input: nums = [2,1,4,3]
Output: 2
Explanation: We can make the permutation semi-ordered using these sequence of operations:
1 - swap i = 0 and j = 1. The permutation becomes [1,2,4,3].
2 - swap i = 2 and j = 3. The permutation becomes [1,2,3,4].
It can be proved that there is no sequence of less than two operations that make nums a semi-ordered

↪→ permutation.

Example 2:

Input: nums = [2,4,1,3]
Output: 3
Explanation: We can make the permutation semi-ordered using these sequence of operations:
1 - swap i = 1 and j = 2. The permutation becomes [2,1,4,3].
2 - swap i = 0 and j = 1. The permutation becomes [1,2,4,3].
3 - swap i = 2 and j = 3. The permutation becomes [1,2,3,4].
It can be proved that there is no sequence of less than three operations that make nums a semi-

↪→ ordered permutation.

Example 3:

Input: nums = [1,3,4,2,5]
Output: 0
Explanation: The permutation is already a semi-ordered permutation.

Constraints:

2 <= nums.length == n <= 50
1 <= nums[i] <= 50
nums is a permutation.
"""

def semiOrderedPermutation(nums: List[int]) -> int:
n = len(nums)
min_idx = nums.index(1)

87

max_idx = nums.index(n)

if min_idx < max_idx:
return min_idx + n - 1 - max_idx

else:
return min_idx + n - 2 - max_idx

Listing 3: Example of counterfeit sample for ODEX, generated by DS-I-33B
def f_41861705(split_df, csv_df):

"""Create new DataFrame object by merging columns "key" of dataframes ‘split_df‘ and ‘csv_df‘
↪→ and rename the columns from dataframes ‘split_df‘ and ‘csv_df‘ with suffix ‘_left‘ and ‘
↪→ _right‘ respectively
"""
return split_df.merge(csv_df, how=’left’, left_on=’key’, right_on=’key’, suffixes=(’_left’, ’
↪→ _right’))

import pandas as pd

def check(candidate):
split_df = pd.DataFrame({’key’: [’foo’, ’bar’], ’value’: [1, 2]})
csv_df = pd.DataFrame({’key’: [’foo’, ’baz’], ’value’: [3, 4]})
result = pd.DataFrame({’key’: [’foo’], ’value_left’: [1],’value_right’: [3]})
assert all(candidate(csv_df, split_df) == result)

check(f_41861705)

A.2 Data Generation for Execution Prediction
We perform code execution experiments on HumanEval and LeetCode programs. The inputs and outputs
for these datasets are primitive Python objects (mostly int, str, bool, list). While it is possible, we do
not evaluate execution for ODEX because many of the programs involve file modifications and cannot
easily be represented. For each dataset and data-generating model, we use the same set of programs used
in the correctness checking experiment for consistency. As of today, we cannot expect a language model
to follow the execution of arbitrary Python programs. Therefore, we ensure that the execution samples
in our benchmark are reasonable by applying a filter following the setup in (Gu et al., 2024). One key
difference from their work is that instead of using arbitrary programs, the programs we use here are seeded
from a natural language specification and are semantically meaningful. This allows us to analyze how
models behave differently when asked to reason about correct and counterfeit programs.

We create our dataset of samples to evaluate code execution as follows: first, we take the programs
generated for the correctness checking dataset. The docstring containing the problem statement is stripped
away to force the model to use the provided code. Second, we run the program on the tests provided in the
original problem statement and examples, which are generally simple and concise to create a large set of
model-generated programs, inputs, and outputs. Third, we apply a compile-time and runtime based filter
using Python bytecode to remove programs that are too long, require complex arithmetic/floating point
operations, and have too many steps in the execution. The final step is a manual inspection of programs,
inputs, and outputs passing the filter to ensure that they seem reasonable. The resulting dataset sizes are
shown in Table 2, and examples are shown in Listings 4, 5.

88

Table 2: Execution Dataset Sizes

Dataset Model Dataset Size

HumanEval

CL-34B 1406
CL-7B 1528

DS-I-33B 1964
StarCoder 1622
DS-I-6.7B 1917

LeetCode
DS-I-33B 845
DS-I-6.7B 694

Listing 4: Example of HumanEval execution prediction example, generated by StarCoder
from typing import List

def string_xor(a: str, b: str) -> str:
assert len(a) == len(b)
res = ""
for i in range(len(a)):

if a[i] == b[i]:
res += "0"

else:
res += "1"

return res
assert string_xor(’1’, ’1’) == ??
Answer: ’0’

Listing 5: Example of LeetCode execution prediction example, generated by DS-I-6.7B
def relocateMarbles(nums: List[int], moveFrom: List[int], moveTo: List[int]) -> List[int]:

Create a dictionary to store the number of marbles at each position
marbles = {}
for num in nums:

marbles[num] = marbles.get(num, 0) + 1

Apply the moves
for f, t in zip(moveFrom, moveTo):

Remove the marbles at the source position
count = marbles.pop(f)
Add the marbles at the target position
marbles[t] = marbles.get(t, 0) + count

Return the sorted keys of the dictionary
return sorted(marbles.keys())

assert relocateMarbles(nums = [1, 6, 7, 8], moveFrom = [1, 7, 2], moveTo = [2, 9, 5]) == ??
Answer: [5, 6, 8, 9]

89

B Models, Task Evaluation, and Prompts

B.1 Models
We use DeepSeek (Guo et al., 2024), CodeLlama (Roziere et al., 2023), and StarCoder (Li et al., 2023)
models. The HuggingFace URLs are listed in Table 3. Experiments were run on A100 (80 GB) and
A6000 (40 GB) machines.

Table 3: Model Links

Model Name HuggingFace URL
DeepSeek Instruct (6.7B) https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
DeepSeek Instruct (33B) https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
StarCoder (15.5B) https://huggingface.co/bigcode/starcoder
CodeLlama (7B) https://huggingface.co/codellama/CodeLlama-7b-hf
CodeLlama (13B) https://huggingface.co/codellama/CodeLlama-13b-hf
CodeLlama (34B) https://huggingface.co/codellama/CodeLlama-34b-hf
CodeLlama Instruct (34B) https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf

B.2 Task Evaluation
Correctness Checking: For this task, we use an autoregressive-style CoT prompt from Listing 7. We
perform majority voting on the binary label (correct/incorrect) with N = 10 samples and temperature
T = 0.2 and report accuracy on these labels. We do this because greedy decoding can be noisy for
chain-of-thought prompting and majority voting has been shown to help (Wei et al., 2022; Wang et al.,
2022a).

We also compared this with an autoregressive-style prompt without CoT, where the model is simply
asked to predict Correct/Incorrect. In this case, we have the direct log-probabilities of each outcome
pcorrect and pincorrect = 1 − pcorrect, so the predicted label is taken to be pcorrect ≥ 0.5. In Fig. 10, we
observe that for a majority of settings and samples, CoT helps the accuracy of this task, motivating our
use of CoT.

50 55 60 65
Accuracy without CoT

50

55

60

65

Ac
cu

ra
cy

 w
ith

 C
oT

Impact of CoT on Correctness Checking
CL-34b
CL-7b
DS-33b

DS-6.7b
SC
CL-13b

HumanEval
ODEX
LeetCode

HumanEval
ODEX
LeetCode

Figure 10: Models are slightly better when using CoT than without

Execution Prediction: For this task, we use the same prompt format as in (Gu et al., 2024) with modified
few-shot examples to better resemble our dataset format. We tested both CoT and non-CoT prompts,
discovering that CoT did not help models other than GPT-3.5 and GPT-4. This is relatively consistent
with the results from Gu et al. (2024)2, which only saw a 1.2% improvement for Code Llama 34B and no

2See their leaderboard

90

https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/bigcode/starcoder
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/codellama/CodeLlama-13b-hf
https://huggingface.co/codellama/CodeLlama-34b-hf
https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf
https://crux-eval.github.io/leaderboard.html

improvement for Code Llama 13B. Therefore, we use CoT for GPT models, and non-CoT prompts for the
others. The accuracy is calculated using pass@1 with N = 10, T = 0.2.

Repair: For this task, we base our prompt format on those employed in prior work by Olausson et al.
(2024). This prompt format is reminiscent of Chain-of-Thought in that it instructs the model to generate a
textual explanation of what is wrong with the code, before generating the fixed version of the program.
Note that in our version of this prompt format, the model is not given any details as to what test test the
program failed, and so has to relate the program to the natural language specification to debug it. Unlike
the other tasks, the prompt format we use for repair is zero-shot. Preliminary experiments indicated
that this led to better results, particularly for smaller models which showed a tendency to debug the
example program instead of the target. For the experiments with DeepSeek-based models, we replaced
the HTML-style tags with Markdown-style tags (e.g., [PYTHON] → ```python). Since repair requires
generating a rather long answer, with both a textual explanation and a fixed version of the program,
variance can be higher than in the other settings we consider. To reduce this variance, we generate a large
amount (R = 50) of repair candidates for each counterfeit sample, using a temperature of T = 0.6. We
then average over all 5 · 50 = 250 samples to compute the mean success rate for each task, and also show
a 95% confidence interval on the mean.3 Note that due to this increased computational burden, we do not
carry out repair experiments for the full Cartesian product of models considered before, instead focusing
on those open-source models that performed best on each dataset.

B.3 Prompts
In this section, we list the HumanEval prompts. The prompts for other tasks can be found in our codebase
4. Listings 6, 7 show the correctness checking prompt without and with CoT, and Listings 8, 9 show
the execution prediction prompts. We give credit to Gu et al. (2024) and Olausson et al. (2024) for their
execution prediction and repair prompts.

Listing 6: Prompt for correctness checking (HumanEval)
You will be given a Python coding problem with its specification and input/output examples in

↪→ docstrings.
Your goal is to determine whether the program exactly matches the specification.
A correct program must be correct for all inputs, including hidden test cases not listed in the

↪→ docstring.
In [ANSWER] and [/ANSWER] tags, write "Correct" if the program is correct, and "Incorrect" otherwise.

[PYTHON]
from typing import List

def is_at_least_zero(numbers: List[int]) -> bool:
""" For a given list of numbers, checks if their sum is at least 0.
>>> is_at_least_zero([1, -2, 3])
True
>>> is_at_least_zero([-1, -2, 2])
False
"""
return sum(numbers) >= 0

[/PYTHON]
[ANSWER]
Correct
[/ANSWER]

[PYTHON]
from typing import List

def identical_length(s: List[str]) -> bool:
""" Check if in given list of strings, there exist two different
strings with the same length.
>>> identical_length(["abc", "def", "ghi"])

3Recall that our curated datasets contain 5 counterfeit samples per problem.
4https://github.com/update-after-deanonymization

91

https://github.com/update-after-deanonymization

True
>>> identical_length(["abc", "gh"])
False
"""
for i in range(len(s)):

for j in range(len(s)):
if len(s[i]) == len(s[j]):

return True
return False

[/PYTHON]
[ANSWER]
Incorrect
[/ANSWER]

Listing 7: Prompt for correctness checking, CoT (HumanEval)
You will be given a Python coding problem with its specification and input/output examples in

↪→ docstrings.
Your goal is to judge whether the program exactly matches the behavior specified in the docstring.
A correct program must be correct for all inputs, including hidden test cases not listed in the

↪→ docstring.
First, think step by step about the program in [THOUGHT] and [/THOUGHT] tags.
In [ANSWER] and [/ANSWER] tags, write "Correct" if the program is correct, and "Incorrect" otherwise.

[PYTHON]
from typing import List

def is_at_least_zero(numbers: List[int]) -> bool:
""" For a given list of numbers, checks if their sum is at least 0.
>>> is_at_least_zero([1, -2, 3])
True
>>> is_at_least_zero([-1, -2, 2])
False
"""
return sum(numbers) >= 0

[/PYTHON]
[THOUGHT]
The function calculates the sum of a list of integers and checks if the sum is at least 0. The

↪→ implementation uses Python’s built-in sum function to calculate the total sum of the list and
↪→ compares it with 0 using the >= operator. This approach should work correctly for any list
↪→ of integers, including empty lists, where the sum would be 0, thus meeting the specification
↪→ for all possible inputs.

[/THOUGHT]
[ANSWER]
Correct
[/ANSWER]

[PYTHON]
from typing import List

def identical_length(s: List[str]) -> bool:
""" Check if in given list of strings, there exist two different
strings with the same length.
>>> identical_length(["abc", "def", "ghi"])
True
>>> identical_length(["abc", "gh"])
False
"""
for i in range(len(s)):

for j in range(len(s)):
if len(s[i]) == len(s[j]):

return True
return False

[/PYTHON]
[THOUGHT]
The program checks if any two strings in the list have the same length. However, it also compares

↪→ each string with itself due to the loops’ range, which means it will always find two strings
↪→ (the same string compared with itself) with identical length, returning True incorrectly for

92

↪→ any non-empty list. The correct approach should exclude the case where i equals j.
[/THOUGHT]
[ANSWER]
Incorrect
[/ANSWER]

Listing 8: Prompt for execution prediction (HumanEval)
You are given a Python function and an assertion containing an input to the function.
Complete the assertion with a literal (no unsimplified expressions, no function calls) containing the

↪→ output when executing the provided code on the given input.
Even if the function is incorrect or incomplete, give the output when executing the Python code as

↪→ provided.
Assume all required imports have been included.
Do NOT output any extra information. Provide the full assertion with the correct output in [ANSWER]

↪→ and [/ANSWER] tags, following the examples.

[PYTHON]
def add_one(number : int) -> int:

return number + 2
assert add_one(17) == ??
[/PYTHON]
[ANSWER]
assert add_one(17) == 19
[/ANSWER]

[PYTHON]
def add_character_a(string : str) -> str:

return string + "a"
assert add_character_a("x9j") == ??
[/PYTHON]
[ANSWER]
assert add_character_a("x9j") == "x9ja"
[/ANSWER]

[PYTHON]
{solution}
assert {input} == ??
[/PYTHON]
[ANSWER]

Listing 9: Prompt for execution prediction, CoT (HumanEval)
You are given a Python function and an assertion containing an input to the function.
Complete the assertion with a literal (no unsimplified expressions, no function calls) containing the

↪→ output when executing the provided code on the given input.
Even if the function is incorrect or incomplete, give the output when executing the Python code as

↪→ provided.
Assume all required imports have been included. Think through the execution of the program in [

↪→ THOUGHT] and [/THOUGHT] tags.
Provide the full assertion with the correct output in [ANSWER] and [/ANSWER] tags, following the

↪→ examples.

[PYTHON]
def performOperation(s : str) -> str:

s = s + s
return "b" + s + "a"

assert performOperation("hi") == ??
[/PYTHON]
[THOUGHT]
Let’s execute the code step by step:

1. The function performOperation is defined, which takes a single argument s.
2. The function is called with the argument "hi", so within the function, s is initially "hi".
3. Inside the function, s is concatenated with itself, so s becomes "hihi".
4. The function then returns a new string that starts with "b", followed by the value of s (which is

↪→ now "hihi"), and ends with "a".
5. The return value of the function is therefore "bhihia".
[/THOUGHT]

93

[ANSWER]
assert performOperation("hi") == "bhihia"
[/ANSWER]

[PYTHON]
{solution}
assert {input} == ??
[/PYTHON]
[THOUGHT]

Listing 10: Prompt for (self-)repair (HumanEval)
=== system prompt ===
You are a helpful programming assistant and an expert Python programmer.
You are helping a user write a program.
The user has been given a function signature, along with a doc-string explaining its specification,

↪→ and has then written an attempted implementation of the function.
Unfortunately, their code has some bugs and is not passing all of the hidden unit tests.

You will help the user by first giving a concise textual explanation of what is wrong with the code.
After you have pointed out what is wrong with the code, you will then generate a fixed version of the

↪→ program.
Put your fixed program within code delimiters, for example:
[PYTHON]
YOUR CODE HERE
[/PYTHON]
Do not change the function signature or doc-string in any way: they must be exactly as given by the

↪→ user.

=== user prompt ===
INCORRECT CODE
[PYTHON]
{code}
[/PYTHON]
The program does not pass all of the hidden test cases. Please fix it.

94

C Accuracy Results for All Tasks

C.1 Correctness Checking
Fig. 11 shows the full set of correctness checking results across all models for each of the three datasets.

CL-34b CL-7b DS-6.7b DS-33b SC
Model Generating Programs

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Correctness Checking (HumanEval)
SC
CL-13b
CL-7b
DS-6.7b

CL-34b
DS-33b
GPT-3.5
GPT-4

(a)

DS-33b DS-6.7b
Model Generating Programs

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Correctness Checking (LeetCode)
SC
CL-7b
CL-13b
CL-34b

DS-6.7b
GPT-3.5
DS-33b
GPT-4

(b)

CL-34b CL-7b DS-33b SC
Model Generating Programs

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Correctness Checking (ODEX)
SC
DS-6.7b
CL-13b
CL-7b

CL-34b
DS-33b
GPT-3.5
GPT-4

(c)

Figure 11: Correctness checking results across all models and datasets

95

These results are shown in heatmap form in Fig. 12.

CL-7b CL-34b DS-6.7b DS-33b SC
Evaluation Model

CL
-7

b
CL

-3
4b

DS
-6

.7
b

DS
-3

3b
SC

Da
ta

 M
od

el

51% 57% 53% 62% 51%

50% 55% 52% 57% 48%

49% 51% 50% 57% 49%

51% 56% 51% 59% 51%

53% 57% 52% 63% 51%

(a) Correctness (HumanEval)

CL-7b CL-34b DS-33b SC
Evaluation Model

CL
-7

b
CL

-3
4b

DS
-3

3b
SC

Da
ta

 M
od

el

55% 60% 65% 49%

56% 58% 65% 50%

56% 61% 64% 49%

55% 56% 62% 50%

(b) Correctness (ODEX)

DS-6.7b DS-33b
Evaluation Model

DS
-6

.7
b

DS
-3

3bDa
ta

 M
od

el 51% 55%

51% 55%

(c) Correctness (LeetCode)

Figure 12: Heatmap of accuracies for correctness checking.

In Fig. 13, we show the confusion matrices of predicted and correct labels, which highlights the
prediction biases of various models.

I C
Predicted

I

C

Tr
ue

114 231

107 238

CL
-7

b
Pr

og
ra

m
s CL-7b

I C

I

C

160 185

112 233

CL-34b

I C

I

C

21 324

3 342

DS-6.7b

I C

I

C

103 242

19 326

DS-33b

I C

I

C

64 281

58 287

SC

I C

I

C

110 235

34 311

GPT-3.5

I C

I

C

281 64

46 299

GPT-4

I C
Predicted

I

C

Tr
ue

86 244

87 243

CL
-3

4b
 P

ro
gr

am
s CL-7b

I C

I

C

137 193

101 229

CL-34b

I C

I

C

11 319

0 330

DS-6.7b

I C

I

C

65 265

18 312

DS-33b

I C

I

C

79 251

89 241

SC

I C
Predicted

I

C

Tr
ue

101 219

106 214

DS
-6

.7
b

Pr
og

ra
m

s CL-7b

I C

I

C

107 213

102 218

CL-34b

I C

I

C

3 317

0 320

DS-6.7b

I C

I

C

59 261

15 305

DS-33b

I C

I

C

66 254

70 250

SC

I C
Predicted

I

C

Tr
ue

101 194

93 202

DS
-3

3b
 P

ro
gr

am
s CL-7b

I C

I

C

104 191

68 227

CL-34b

I C

I

C

8 287

0 295

DS-6.7b

I C

I

C

73 222

17 278

DS-33b

I C

I

C

80 215

74 221

SC

I C
Predicted

I

C

Tr
ue

83 182

65 200

SC
 P

ro
gr

am
s

CL-7b

I C

I

C

115 150

78 187

CL-34b

I C

I

C

13 252

1 264

DS-6.7b

I C

I

C

71 194

1 264

DS-33b

I C

I

C

43 222

37 228

SC

Confusion Matrices for Verification

(a) HumanEval

96

I C
Predicted

I

C

Tr
ue

0 180

1 179

DS
-6

.7
b

Pr
og

ra
m

s CL-7b

I C

I

C

1 179

2 178

CL-34b

I C

I

C

7 173

5 175

DS-6.7b

I C

I

C

39 141

22 158

DS-33b

I C

I

C

54 126

56 124

SC

I C
Predicted

I

C

Tr
ue

0 230

0 230

DS
-3

3b
 P

ro
gr

am
s CL-7b

I C

I

C

4 226

2 228

CL-34b

I C

I

C

17 213

12 218

DS-6.7b

I C

I

C

52 178

29 201

DS-33b

I C

I

C

72 158

78 152

SC

I C

I

C

19 211

9 221

GPT-3.5

I C

I

C

194 36

79 151

GPT-4

Confusion Matrices for Verification

(b) LeetCode

I C
Predicted

I

C

Tr
ue

273 322

213 382

CL
-7

b
Pr

og
ra

m
s CL-7b

I C

I

C

185 410

70 525

CL-34b

I C

I

C

221 374

45 550

DS-33b

I C

I

C

259 336

265 330

SC

I C
Predicted

I

C

Tr
ue

262 273

203 332

CL
-3

4b
 P

ro
gr

am
s CL-7b

I C

I

C

145 390

64 471

CL-34b

I C

I

C

199 336

37 498

DS-33b

I C

I

C

235 300

239 296

SC

I C
Predicted

I

C

Tr
ue

140 120

110 150

DS
-3

3b
 P

ro
gr

am
s CL-7b

I C

I

C

83 177

24 236

CL-34b

I C

I

C

94 166

22 238

DS-33b

I C

I

C

118 142

122 138

SC

I C

I

C

112 148

53 207

GPT-3.5

I C

I

C

228 32

77 183

GPT-4

I C
Predicted

I

C

Tr
ue

248 282

196 334

SC
 P

ro
gr

am
s

CL-7b

I C

I

C

136 394

74 456

CL-34b

I C

I

C

175 355

44 486

DS-33b

I C

I

C

207 323

207 323

SC

Confusion Matrices for Verification

(c) ODEX

Figure 13: Confusion matrices of predictions vs. labels

97

In Fig. 14, we also show a few more plots highlighting that models often mispredict counterfeit samples
as correct.

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC GPT-3.5 GPT-4
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HumanEval, CL-7b
Overall Correct Counterfeit

(a) HumanEval (CL-7B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HumanEval, CL-34b
Overall Correct Counterfeit

(b) HumanEval (CL-34B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

LeetCode, DS-6.7b
Overall Correct Counterfeit

(c) LeetCode (DS-6.7B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC GPT-3.5 GPT-4
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

LeetCode, DS-33b
Overall Correct Counterfeit

(d) LeetCode (DS-33B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ODEX, SC
Overall Correct Counterfeit

(e) ODEX (StarCoder)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC GPT-3.5 GPT-4
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ODEX, DS-33b
Overall Correct Counterfeit

(f) ODEX (DS-33B)

Figure 14: Models are much better at assessing the correctness of correct samples than counterfeit samples.

98

C.2 Execution Prediction
Fig. 15 shows the full set of correctness checking results across all models for each of the three datasets.

CL-34b CL-7b DS-6.7b DS-33b SC
Model Generating Programs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Execution (HumanEval)
CL-7b
SC
CL-13b
DS-6.7b

CL-34b
DS-33b
GPT-3.5
GPT-4

(a)

DS-33b DS-6.7b
Model Generating Programs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Execution (LeetCode)
CL-13b
CL-34b
CL-7b
SC

DS-33b
DS-6.7b
GPT-3.5
GPT-4

(b)

Figure 15: Execution prediction results across all models and datasets

These results are shown in heatmap form in Fig. 16.

CL-7b CL-34b DS-6.7b DS-33b SC
Evaluation Model

CL
-7

b
CL

-3
4b

DS
-6

.7
b

DS
-3

3b
SC

Da
ta

 M
od

el

49% 61% 61% 67% 51%

48% 63% 60% 68% 51%

41% 53% 52% 60% 41%

47% 49% 55% 66% 48%

46% 58% 57% 65% 46%

(a) Execution (HumanEval)

DS-6.7b DS-33b
Evaluation Model

DS
-6

.7
b

DS
-3

3bDa
ta

 M
od

el 34% 38%

33% 33%

(b) Execution (LeetCode)

Figure 16: Heatmap of accuracies for correctness checking.

99

In Fig. 17, we show that on other datasets and models, models are generally better at executing correct
samples than counterfeit samples with outputs that don’t match those of the correct samples, and that
models often predict the output of the correct sample when asked to execute these counterfeit samples.

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Model

0

20

40

60

80

100

Ac
cu

ra
cy

HumanEval, CL-7b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(a) HumanEval (CL-7B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC GPT-3.5 GPT-4
Model

0

20

40

60

80

100

Ac
cu

ra
cy

HumanEval, CL-34b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(b) HumanEval (CL-34B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Model

0

20

40

60

80

100

Ac
cu

ra
cy

HumanEval, DS-33b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(c) HumanEval (DS-33B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Model

0

20

40

60

80

100

Ac
cu

ra
cy

HumanEval, SC
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(d) HumanEval (StarCoder)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Model

0

20

40

60

80

100

Ac
cu

ra
cy

LeetCode, DS-6.7b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(e) LeetCode (DS-6.7B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC GPT-3.5 GPT-4
Model

0

20

40

60

80

100

Ac
cu

ra
cy

LeetCode, DS-33b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(f) LeetCode (DS-33B)

Figure 17: Models are much better at executing correct samples than counterfeit samples, and even often execute
counterfeit samples as if they were correct.

100

C.3 Repair
Figures 18-20 show the full set of scatterplots for the repair experiments in Sec. 3.3. In these plots,
the same model is used for both repair and the initial code generation, so that the resampling strategy
can be represented by the line y = x (simplifying exposition). Note that even in the most successful
setting, DS-I-33b on HumanEval, the number of problems for which repair is more successful than simply
resampling is still in the minority (35/81).

Figures 21-22 also shows the absolute mean success rate of repair across tasks for each model and
dataset, similarly to how was done in the previous sections. Note that these absolute numbers should
not be paid to much attention to, since repair must always be compared to the accuracy of the simple
resampling strategy; however, they do show that models do not appear to be better at repairing their own
counterfeit samples than those generated by other models.

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

HumanEval, CL-I-34b
re-sampling (y = x)
repair resampling (68/82)
repair > resampling (14/82)

(a) CL-I-34b

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

HumanEval, DS-I-33b
re-sampling (y = x)
repair resampling (46/81)
repair > resampling (35/81)

(b) DS-I-33b

Figure 18: Repair success vs. baseline pass@1 on HumanEval.

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

LeetCode, DS-I-6.7b
re-sampling (y = x)
repair resampling (32/36)
repair > resampling (4/36)

(a) DS-I-6.7b

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

LeetCode, DS-I-33b
re-sampling (y = x)
repair resampling (41/46)
repair > resampling (5/46)

(b) DS-I-33b

Figure 19: Repair success vs. baseline pass@1 on LeetCode.

101

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

ODEX, CL-I-34b
re-sampling (y = x)
repair resampling (93/107)
repair > resampling (14/107)

(a) CL-I-34b

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

ODEX, DS-I-33b
re-sampling (y = x)
repair resampling (40/52)
repair > resampling (12/52)

(b) DS-I-33b

Figure 20: Repair success vs. baseline pass@1 on ODEX.

cl34 ds33
Model Generating Programs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Repair (HumanEval)
cl34 ds33

(a) HumanEval

ds33 ds6.7
Model Generating Programs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Repair (LeetCode)
ds33 ds6.7

(b) LeetCode

cl34 ds33
Model Generating Programs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Repair (ODEX)
cl34 ds33

(c) ODEX

Figure 21: Average repair accuracy across all models and datasets.

cl34 ds33
Evaluation Model

cl3
4

ds
33Da

ta
 M

od
el 21% 51%

16% 41%

(a) HumanEval

ds33 ds6.7
Evaluation Model

ds
33

ds
6.

7Da
ta

 M
od

el 19% 12%

27% 11%

(b) LeetCode

cl34 ds33
Evaluation Model

cl3
4

ds
33Da

ta
 M

od
el 20% 33%

19% 29%

(c) ODEX

Figure 22: Heatmaps of average repair accuracy across all models and datasets.

102

D Correlations by Problem Difficulty

D.1 Problem Difficulty vs. Correctness Checking
In Fig. 23, we show the accuracy of HumanEval (top), LeetCode (middle), and ODEX (bottom) across
different models. We see an absence of correlation across the board.

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

CL
-7

b
Pr

og
ra

m
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

CL
-3

4b
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

DS
-6

.7
b

Pr
og

ra
m

s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

DS
-3

3b
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

SC
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Correctness Checking vs. Generation (HumanEval)

Problem Difficulty to Model (Based on Pass@1)

103

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

DS
-6

.7
b

Pr
og

ra
m

s

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult
0

50

100
Av

er
ag

e
Co

rre
ct

ne
ss

 C
he

ck
in

g
Ac

cu
ra

cy
DS

-3
3b

 P
ro

gr
am

s
DS-6.7b

Easy Medium Difficult

DS-33b

Correctness Checking vs. Generation (LeetCode)

Problem Difficulty to Model (Based on Pass@1)

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

CL
-7

b
Pr

og
ra

m
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

CL
-3

4b
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

DS
-3

3b
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

SC
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Correctness Checking vs. Generation (ODEX)

Problem Difficulty to Model (Based on Pass@1)

Figure 23: Accuracies for correctness checking task bucketed by difficulty.

104

D.2 Problem Difficulty vs. Execution
In Fig. 24, we show the accuracy of HumanEval (a), LeetCode (b), and ODEX (c) across different models.
We see a slight correlation, where programs for more difficult problems are harder to execute.

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
CL

-7
b

Pr
og

ra
m

s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
CL

-3
4b

 P
ro

gr
am

s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
DS

-3
3b

 P
ro

gr
am

s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
DS

-6
.7

b
Pr

og
ra

m
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
SC

 P
ro

gr
am

s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

SC

Execution vs. Generation (HumanEval)

Problem Difficulty to Model (Based on Pass@1)

(a) HumanEval

105

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
DS

-3
3b

 P
ro

gr
am

s

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult
0

50

100
Av

er
ag

e
Ex

ec
ut

io
n

Ac
cu

ra
cy

DS
-6

.7
b

Pr
og

ra
m

s
DS-33b

Easy Medium Difficult

DS-6.7b

Execution vs. Generation (LeetCode)

Problem Difficulty to Model (Based on Pass@1)

(b) LeetCode

Figure 24: Accuracies for execution task bucketed by difficulty.

106

D.3 HumanEval Pass Rate vs. Correctness Prediction
In Fig. 25, we investigate the correlation between a program’s pass rate on HumanEval (using EvalPlus
tests) and its prediction. Since a problem’s pass rate is indicative of how close it is to correct, we might
expect that programs with a higher pass rate have a higher chance of being predicted as correct. For most
models, this does not seem ot be the case, though we do see this trend for GPT-4.

<0.5 >0.5
EvalPlus PR

1

0

Pr
ed

107 69

45 124

CL
-7

b
Da

ta

CL-7b

<0.5 >0.5

1

0

70 78

82 115

CL-34b

<0.5 >0.5

1

0

140 9

12 184

DS-6.7b

<0.5 >0.5

1

0

91 42

61 151

DS-33b

<0.5 >0.5

1

0

134 46

18 147

SC

<0.5 >0.5

1

0

86 44

66 149

GPT-3.5

<0.5 >0.5

1

0

17 146

135 47

GPT-4

<0.5 >0.5
EvalPlus PR

1

0

Pr
ed

101 55

31 143

CL
-3

4b
 D

at
a

CL-7b

<0.5 >0.5

1

0

77 82

55 116

CL-34b

<0.5 >0.5

1

0

128 7

4 191

DS-6.7b

<0.5 >0.5

1

0

92 25

40 173

DS-33b

<0.5 >0.5

1

0

99 46

33 152

SC

<0.5 >0.5
EvalPlus PR

1

0

Pr
ed

72 64

37 147

DS
-6

.7
b

Da
ta

CL-7b

<0.5 >0.5

1

0

69 67

40 144

CL-34b

<0.5 >0.5

1

0

106 0

3 211

DS-6.7b

<0.5 >0.5

1

0

91 41

18 170

DS-33b

<0.5 >0.5

1

0

89 46

20 165

SC

<0.5 >0.5
EvalPlus PR

1

0

Pr
ed

50 73

28 144

DS
-3

3b
 D

at
a

CL-7b

<0.5 >0.5

1

0

44 70

34 147

CL-34b

<0.5 >0.5

1

0

71 1

7 216

DS-6.7b

<0.5 >0.5

1

0

53 48

25 169

DS-33b

<0.5 >0.5

1

0

65 67

13 150

SC

<0.5 >0.5
EvalPlus PR

1

0

Pr
ed

74 48

35 108SC
 D

at
a

CL-7b

<0.5 >0.5

1

0

55 61

54 95

CL-34b

<0.5 >0.5

1

0

99 3

10 153

DS-6.7b

<0.5 >0.5

1

0

61 23

48 133

DS-33b

<0.5 >0.5

1

0

85 19

24 137

SC

Pass Rate vs. Correctness (HumanEval)

Figure 25: Models other than GPT-4 show a lack of correlation between a problem’s pass rate and its correctness
prediction.

107

E Examples of Counterfeits

E.1 Counterfeits with Algorithmic Errors

def multiply(a, b):
"""Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(148, 412) should return 16.
multiply(19, 28) should return 72.
multiply(2020, 1851) should return 0.
multiply(14,-15) should return 20.
"""
return a % 10 * b % 10

def sort_numbers(numbers: str) -> str:
""" Input is a space-delimited string of numberals from ’zero’ to ’nine’.
Valid choices are ’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’, ’eight’ and ’
nine’.
Return the string with numbers sorted from smallest to largest
>>> sort_numbers(’three one five’)
’one three five’
"""
return ’ ’.join(sorted(numbers.split()))

def eat(number, need, remaining):
"""
You’re a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day’s meals.
you should return an array of [total number of eaten carrots after your meals,

the number of carrots left after your meals]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be
hungry.

Example:
* eat(5, 6, 10) -> [11, 4]
* eat(4, 8, 9) -> [12, 1]
* eat(1, 10, 10) -> [11, 0]
* eat(2, 11, 5) -> [7, 0]

Variables:
@number : integer

the number of carrots that you have eaten.
@need : integer

the number of carrots that you need to eat.
@remaining : integer

the number of remaining carrots thet exist in stock

Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000

Have fun :)
"""
return [number + need, remaining - need] if remaining - need >= 0 else [remaining, 0]

E.2 Counterfeits ignoring aspects of the specification

def specialFilter(nums):
"""Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
"""

108

Define a function that checks if the first and last digit of a number is odd
def isSpecial(n):

if n < 0: n = -n # make sure n is positive
return n % 10 in [1, 3, 5, 7, 9] and n//10 % 10 in [1, 3, 5, 7, 9]

Use a list comprehension to filter the numbers and count the results
return sum(1 for num in nums if num > 10 and isSpecial(num))

def common(l1: list, l2: list):
"""Return sorted unique common elements for two lists.
>>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])
[1, 5, 653]
>>> common([5, 3, 2, 8], [3, 2])
[2, 3]

"""
return list(set(l1) & set(l2))

def find_max(words):
"""Write a function that accepts a list of strings.
The list contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.

find_max(["name", "of", "string"]) == "string"
find_max(["name", "enam", "game"]) == "enam"
find_max(["aaaaaaa", "bb" ,"cc"]) == ""aaaaaaa"
"""
max_word = ""
max_len = 0
for word in words:

word_len = len(set(word))
if word_len > max_len:

max_len = word_len
max_word = word

return max_word

def double_the_difference(lst):
’’’
Given a list of numbers, return the sum of squares of the numbers
in the list that are odd. Ignore numbers that are negative or not integers.

double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
double_the_difference([-1, -2, 0]) == 0
double_the_difference([9, -2]) == 81
double_the_difference([0]) == 0

If the input list is empty, return 0.
’’’
return sum(elem**2 for elem in lst if elem%2!=0)

E.3 Counterfeits that fail to handle important edge cases

def intersperse(numbers: List[int], delimeter: int) -> List[int]:
""" Insert a number ’delimeter’ between every two consecutive elements of input list ‘numbers’
>>> intersperse([], 4)
[]
>>> intersperse([1, 2, 3], 4)
[1, 4, 2, 4, 3]
"""
result = []
for number in numbers[:-1]:

result.extend([number, delimeter])
result.append(numbers[-1])
return result

109

def next_smallest(lst):
"""
Return the 2nd smallest element of a list of integers
Return None if there is no such element.
next_smallest([2, 1, 3]) == 2
next_smallest([1, 1]) == None
"""
if len(lst) < 2:

return None
lst_copy = lst.copy()
lst_copy.sort()
return lst_copy[1]

def sum_to_n(n: int):
"""sum_to_n is a function that sums numbers from 1 to n.
>>> sum_to_n(30)
465
>>> sum_to_n(100)
5050
>>> sum_to_n(5)
15
>>> sum_to_n(10)
55
>>> sum_to_n(1)
1
"""
if n == 1:

return 1
else:

return n + sum_to_n(n - 1)

def get_odd_collatz(n):
"""
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.

The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.

Note:
1. Collatz(1) is [1].
2. returned list sorted in increasing order.

For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd
numbers are only 1, and 5.

"""
collatz_sequence = [n]

while n != 1:
if n % 2 == 0:

n = n / 2
else:

n = 3 * n + 1
collatz_sequence.append(n)

odd_numbers = [i for i in collatz_sequence if i % 2 != 0]
return sorted(odd_numbers)

F Examples of Counterfeits Misclassifications

Here, we present some examples of counterfeit programs that are misclassified.

110

F.1 Counterfeit samples that are mistaken as correct
In the following example, the code does not follow the instruction to “Ignore numbers that are negative
or not integers”.

def double_the_difference(lst):
’’’
Given a list of numbers, return the sum of squares of the numbers
in the list that are odd. Ignore numbers that are negative or not integers.

double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
double_the_difference([-1, -2, 0]) == 0
double_the_difference([9, -2]) == 81
double_the_difference([0]) == 0

If the input list is empty, return 0.
’’’
Your code here
if lst == []:
return 0
else:
return sum([int(x)**2 for x in lst if int(x) % 2 == 1])
return sum(x**2 for x in lst if x % 2 != 0)

Model: The program defines a function ‘double_the_difference‘ that takes a list of numbers as input
and returns the sum of squares of the numbers in the list that are odd. It ignores numbers that
are negative or not integers. The provided examples in the docstring are correct and match the
expected behavior. The program correctly handles the case when the input list is empty by
returning 0. The list comprehension filters out negative numbers and non-integers before
squaring and summing the odd numbers.

In this example, the model excludes the starting "0b" despite the examples in the specification including
them.

def rounded_avg(n, m):
"""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
rounded_avg(1, 5) => "0b11"
rounded_avg(7, 5) => -1
rounded_avg(10, 20) => "0b1111"
rounded_avg(20, 33) => "0b11010"
"""
if n > m:

return -1

return bin(round((m+n)/2))[2:]

Model: The program takes two positive integers n and m, computes the average of integers from n
through m (inclusive), rounds the answer to the nearest integer, and converts that to binary. If
n is greater than m, it returns -1. The rounding is done using the ‘round‘ function which

rounds to the nearest even number in case of a tie.

For example:
- rounded_avg(1, 5) => average of (1+2+3+4+5)/2 = 3, binary representation is "0b11"
- rounded_avg(7, 5) => n > m, so return -1
- rounded_avg(10, 20) => average of (10+11+12+13+14+15+16+17+18+19+20)/2 = 15.5, rounded to 16,

binary representation is "0b1111"
- rounded_avg(20, 33) => average of (20+21+22+23+24+25+26+27+28+29+30+31+32+33)/2 = 26.5, rounded to

26, binary representation is "0b11010"

The program correctly implements the specified logic.

111

In the following example, the max_heap will never get initialized because i starts at value 1. Then the
remainder of the algorithm will never run.

"""
Problem: You are given a 0-indexed array nums of n integers and an integer target.
You are initially positioned at index 0. In one step, you can jump from index i to any index j such

that:

0 <= i < j < n
-target <= nums[j] - nums[i] <= target

Return the maximum number of jumps you can make to reach index n - 1.
If there is no way to reach index n - 1, return -1.

Example 1:

Input: nums = [1,3,6,4,1,2], target = 2
Output: 3
Explanation: To go from index 0 to index n - 1 with the maximum number of jumps, you can perform the

following jumping sequence:
- Jump from index 0 to index 1.
- Jump from index 1 to index 3.
- Jump from index 3 to index 5.
It can be proven that there is no other jumping sequence that goes from 0 to n - 1 with more than 3

jumps. Hence, the answer is 3.
Example 2:

Input: nums = [1,3,6,4,1,2], target = 3
Output: 5
Explanation: To go from index 0 to index n - 1 with the maximum number of jumps, you can perform the

following jumping sequence:
- Jump from index 0 to index 1.
- Jump from index 1 to index 2.
- Jump from index 2 to index 3.
- Jump from index 3 to index 4.
- Jump from index 4 to index 5.
It can be proven that there is no other jumping sequence that goes from 0 to n - 1 with more than 5

jumps. Hence, the answer is 5.
Example 3:

Input: nums = [1,3,6,4,1,2], target = 0
Output: -1
Explanation: It can be proven that there is no jumping sequence that goes from 0 to n - 1. Hence, the

answer is -1.

Constraints:

2 <= nums.length == n <= 1000
-10^9 <= nums[i] <= 10^9
0 <= target <= 2 * 10^9
"""

def maximumJumps(nums: List[int], target: int) -> int:
n = len(nums)
dp = [0] + [-1] * (n - 1)
max_heap = []

for i in range(1, n):
while max_heap and max_heap[0][1] < i - target:

heapq.heappop(max_heap)

while max_heap and abs(nums[i] - nums[max_heap[0][1]]) <= target:
dp[i] = max(dp[i], max_heap[0][0] + 1)

if dp[i] >= 0:
heapq.heappush(max_heap, (-dp[i], i))

return dp[-1]

112

Model: The given program defines a function ‘maximumJumps‘ that takes a list of integers ‘nums‘ and
an integer ‘target‘ as input. It uses dynamic programming to keep track of the maximum number of
jumps that can be made to reach each index. It also uses a max heap to efficiently find the

maximum number of jumps that can be made to reach the current index based on the constraints
given. The function iterates through the array and updates the dynamic programming array and the
max heap accordingly. Finally, it returns the maximum number of jumps needed to reach the last

index.

In this next example, when checking whether another team is stronger than the current team, it should
instead check that grid[opponent][team] == 1.

"""
Problem: There are n teams numbered from 0 to n - 1 in a tournament.
Given a 0-indexed 2D boolean matrix grid of size n * n. For all i, j that 0 <= i, j <= n - 1 and i !=

j
team i is stronger than team j if grid[i][j] == 1, otherwise, team j is stronger than team i.
Team a will be the champion of the tournament if there is no team b that is stronger than team a.
Return the team that will be the champion of the tournament.

Example 1:

Input: grid = [[0,1],[0,0]]
Output: 0
Explanation: There are two teams in this tournament.
grid[0][1] == 1 means that team 0 is stronger than team 1. So team 0 will be the champion.

Example 2:

Input: grid = [[0,0,1],[1,0,1],[0,0,0]]
Output: 1
Explanation: There are three teams in this tournament.
grid[1][0] == 1 means that team 1 is stronger than team 0.
grid[1][2] == 1 means that team 1 is stronger than team 2.
So team 1 will be the champion.

Constraints:

n == grid.length
n == grid[i].length
2 <= n <= 100
grid[i][j] is either 0 or 1.
For all i grid[i][i] is 0.
For all i, j that i != j, grid[i][j] != grid[j][i].
The input is generated such that if team a is stronger than team b and team b is stronger than team c

,
then team a is stronger than team c.
"""

def findChampion(grid: List[List[int]]) -> int:
n = len(grid)
champion = -1
for team in range(n):

strong = True
for opponent in range(n):

if team != opponent and grid[team][opponent] == 1:
strong = False
break

if strong:
champion = team
break

return champion

Model: The given program takes a 2D boolean matrix ‘grid‘ representing the strengths between teams in
a tournament. It iterates through each team and checks if there is no other team that is

stronger than the current team. If such a team is found, it updates the champion and breaks out
of the loop. The program then returns the champion team number.

113

For each team, it checks against all other teams to determine if it is stronger than all of them. If
it finds a team that is stronger, it marks the current team as not strong enough to be the
champion. If no such team is found, the current team is marked as the champion.

The program correctly implements the logic of finding the champion team based on the given rules of
team strengths in the tournament.

Following are several counterfeit samples that are misclassified in verification because of forgiving an
identified error:

def f_30551576(s):
"""Get all urls within text ‘s‘
"""
return re.findall(’(?P<url>https?://[^\s]+)’, s)

Model: [...] However, it’s important to consider edge cases that are not covered by the provided test
cases. For example:

- URLs that are immediately followed by punctuation (e.g., a comma, period, or semicolon) which are
common in natural text, might be included in the URL by this regex pattern.

- The regex does not account for URLs embedded within parentheses or other characters that are not
considered whitespace but should not be part of the URL.

Despite these considerations, based on the information provided and the test cases, the program seems
to meet the requirements specified in the docstring for the given examples. It’s important to

note that for more comprehensive validation, additional test cases covering a wider range of
scenarios, including those mentioned above, would be beneficial.

def f_22187233():
"""delete all occurrences of character ’i’ in string ’it is icy’
"""
return ’t s cy’

Model: The program defines a function ‘f_22187233‘ with the purpose of deleting all occurrences of
the character ’i’ in the string ’it is icy’ as per the docstring. The function returns a
hardcoded string ’t s cy’, which is the expected result after removing all ’i’s from the given
string.[...] However, it’s important to note that the program’s approach is not dynamic and does
not actually perform any operation to remove ’i’s from a given string. It simply returns a

hardcoded string that matches the expected output for the specific input ’it is icy’. This means
the function is not versatile and will not work correctly for any other input string or

requirement to remove different characters. But, based on the very specific requirement outlined
in the docstring, the program does meet the criteria for correctness.

def reverse_delete(s,c):
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to
any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and True/False for the check.
Example
For s = "abcde", c = "ae", the result should be (’bcd’,False)
For s = "abcdef", c = "b" the result should be (’acdef’,False)
For s = "abcdedcba", c = "ab", the result should be (’cdedc’,True)
"""
take a copy of the string
s1 = s
loop over the string
for i in range(len(s)):

check if the character is in the list
if s[i] in c:

remove the character
s = s.replace(s[i], "")

return the string and check if it is a palindrome
return s, s == s[::-1]

114

[...] However, there’s a potential issue with the approach of removing characters by iterating and
using ‘replace‘ within the same loop: if a character appears multiple times in ‘s‘ and is also in ‘c
‘, each occurrence of that character will be removed in a single iteration, which is the intended
behavior.

[...] In conclusion, the program appears to correctly implement the specified functionality, despite
the initial misinterpretation of the potential issue with modifying ‘s‘ during iteration. The key
point is that ‘replace‘ creates a new string each time, avoiding the problem of modifying the
iterable during iteration.

def largest_divisor(n: int) -> int:
""" For a given number n, find the largest number that divides n evenly, smaller than n
>>> largest_divisor(15)
5
"""
your code here
for i in range(n - 1, 1, -1):

if n % i == 0:
return i

Model: ...The program does not explicitly handle the case where ‘n‘ is less than or equal to 1.
However, given
the problem statement, it is reasonable to assume that ‘n‘ will be a positive integer greater than 1.
For ‘n = 1‘ or ‘n = 0‘, the function would not enter the loop and would not return a value, which
implicitly aligns with the expectation that there are no divisors smaller than ‘n‘ in these cases
(since ‘n‘ itself is not greater than 1).

Considering the above, the program correctly implements the functionality described in the docstring
for all positive integers greater than 1. It efficiently finds and returns the largest divisor of ‘n‘
that is smaller than ‘n‘ itself by iterating backward from ‘n-1‘ and checking for divisibility.

F.2 GPT-4 Errors in Execution Prediction
In this section, we show a few examples where GPT-4 makes a mistake in execution prediction and arrives
at the output had the program been correct. In the following listing, the model correctly identifies the
operation to perform at each step, but incorrectly says that appending 6, 8, and 3 to [5, 8, 6] gives [5,
8, 6, 8, 3]. It is unclear if this is due to the model being biased by the correct output.

def intersperse(numbers: List[int], delimeter: int) -> List[int]:
result = []
for index, value in enumerate(numbers[1:], 1):

result.append(numbers[index - 1])
result.append(delimeter)
result.append(value)

return result
assert intersperse([5, 6, 3, 2], 8) == [5, 8, 6, 6, 8, 3, 3, 8, 2]
(Incorrect) output of correct solution: [5, 8, 6, 8, 3, 8, 2]

Let’s break down the execution of the intersperse function:

1. The function is called with the list [5, 6, 3, 2] and the delimiter 8.
2. An empty list named result is initialized.
3. The for loop iterates over the numbers list starting from the second element (due to numbers[1:]),

with index starting from 1. This means the loop will iterate over elements 6, 3, and 2 with
their respective indices 1, 2, and 3.

4. In the first iteration (index=1, value=6), the function appends the element at index 0 (5), then
the delimiter (8), and then the current value (6) to the result list. So, result becomes [5, 8,
6].

5. In the second iteration (index=2, value=3), it appends the element at index 1 (6), then the
delimiter (8), and then the current value (3) to the result list. Result now becomes [5, 8, 6, 8,
3].

6. In the third iteration (index=3, value=2), it appends the element at index 2 (3), then the
delimiter (8), and then the current value (2) to the result list. Result now becomes [5, 8, 6, 8,
3, 8, 2].

7. The function returns the result list, which is [5, 8, 6, 8, 3, 8, 2].

115

In the next listing, GPT-4 does everything correctly. It correctly says that zip function will stop at the
shortest list but somehow arrives at the output of the correct solution.

def sort_even(l: list):
even = l[::2]
even.sort()
odd = l[1::2]
return [x for t in zip(even, odd) for x in t]

assert sort_even([1, 2, 3]) == [1, 2]
(Incorrect) output of correct solution: [1, 2, 3]

Let’s execute the code step by step:

1. The function sort_even is defined, which takes a single argument l (a list).
2. The function is called with the argument [1, 2, 3], so within the function, l is initially [1, 2,

3].
3. The variable even is assigned the value of l[::2], which means it takes every second element from

l, starting from the first element (index 0). Therefore, even becomes [1, 3].
4. The even list is then sorted, but since it’s already in ascending order ([1, 3]), it remains

unchanged.
5. The variable odd is assigned the value of l[1::2], which means it takes every second element from

l, starting from the second element (index 1). Therefore, odd becomes [2].
6. The function then returns a list that is created by zipping the even and odd lists together and

flattening the resulting tuples into a single list. Since the even list has more elements than
the odd list, the zip function will stop at the shortest list (odd), resulting in the final list
being [1, 2, 3].

In the next listing, the error is in step 7, highlighted below. The model correctly identifies that the inner
while loop will divide 27 by 3 until it is no longer divisible by 3, but incorrect concludes that this will end
in n = 3 instead of n = 1.

def largest_prime_factor(n: int):
We don’t use 1 as a factor, so we start with 2.
i = 2
Check each potential factor from 2 to sqrt(n).
while i * i <= n:

if n % i == 0:
Found a factor! Check if it’s prime.
while n % i == 0:

n //= i
return largest_prime_factor(n)

i += 1
All the while loop’s conditions were false, so n is prime!
return n

assert largest_prime_factor(27) == 1
(Incorrect) output of correct solution: 3

Let’s execute the code step by step for ‘largest_prime_factor(27)‘:

1. The function ‘largest_prime_factor‘ is defined to find the largest prime factor of a given number
‘n‘.

2. The function is called with ‘n = 27‘.
3. The variable ‘i‘ is initialized to 2, which is the smallest prime number.
4. The while loop condition ‘i * i <= n‘ is checked. For ‘i = 2‘, ‘2 * 2 = 4‘, which is less than

‘27‘, so the loop continues.
5. Inside the loop, ‘n % i == 0‘ is checked to see if ‘i‘ is a factor of ‘n‘. For ‘i = 2‘, ‘27 % 2 !=

0‘, so ‘i‘ is incremented to ‘3‘.
6. With ‘i = 3‘, ‘3 * 3 = 9‘, which is less than ‘27‘, so the loop continues.
7. Now, ‘27 % 3 == 0‘, so ‘3‘ is a factor of ‘27‘. The inner while loop (‘while n % i == 0‘) will

divide ‘n‘ by ‘3‘ until it is no longer divisible by ‘3‘. After this loop, ‘n‘ becomes ‘27 / 3 /
3 = 3‘.

8. Since ‘n‘ was modified, the function calls itself recursively with the new value of ‘n‘, which is
now ‘3‘.

9. In the recursive call with ‘n = 3‘, the loop starts again with ‘i = 2‘. ‘2 * 2 = 4‘, which is
greater than ‘3‘, so the loop ends.

10. Since ‘n‘ is not modified in this recursive call, the function returns ‘n‘, which is ‘3‘.

116

In the final listing, GPT-4 takes a shortcut based on the comments rather than following the execution of
the code.

def search(lst):
Your code here
sort the list and check if the first number is 1
lst.sort()
if lst[0] != 1:

return -1
find the index of 1
index = lst.index(1)
iterate over the list starting from the index of 1
for i in range(index, len(lst)):

if the frequency of the number is equal to the value of the number
if lst.count(lst[i]) >= lst[i]:

return the number
return lst[i]

if no number is found return -1
return -1

assert search([4, 1, 4, 1, 4, 4]) == 1
(Incorrect) output of correct solution: 4

Let’s execute the code step by step:

1. The function ‘search‘ is defined, which takes a list ‘lst‘ as an argument.
2. The function is called with the argument ‘[4, 1, 4, 1, 4, 4]‘.
3. Inside the function, the list is sorted, so ‘lst‘ becomes ‘[1, 1, 4, 4, 4, 4]‘.
4. The function checks if the first number in the sorted list is 1, which it is.
5. The function then finds the index of 1, which is 0 (but since the list is sorted and starts with

1, this step is somewhat redundant in this context).
6. The function iterates over the list starting from the index of 1. It checks if the frequency of

the number is equal to or greater than the value of the number.
7. When it gets to the number 4, it checks if the frequency of 4 is equal to or greater than its

value. Since there are four 4s in the list, and the value of 4 is equal to its frequency, the
condition is met.

8. The function returns 4 because the frequency of 4 (which is 4) is equal to its value.

117

