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Abstract

Clinical text summarization has proven suc-
cessful in generating concise and coherent sum-
maries. However, these summaries may include
unintended text with hallucinations, which can
mislead clinicians and patients. Existing meth-
ods for mitigating hallucinations can be cat-
egorized into task-specific and task-agnostic
approaches. Task-specific methods lack versa-
tility for real-world applicability. Meanwhile,
task-agnostic methods are not model-agnostic,
so they require retraining for different mod-
els, resulting in considerable computational
costs. To address these challenges, we pro-
pose MEDAL, a model-agnostic framework de-
signed to post-process medical hallucinations.
MEDAL can seamlessly integrate with any
medical summarization model, requiring no
additional computational overhead. MEDAL
comprises a medical infilling model and a hallu-
cination correction model. The infilling model
generates non-factual summaries with com-
mon errors to train the correction model. The
correction model is incorporated with a self-
examination mechanism to activate its cogni-
tive capability. We conduct comprehensive ex-
periments using 11 widely accepted metrics on
7 baseline models across 3 medical text summa-
rization tasks. MEDAL demonstrates superior
performance in correcting hallucinations when
applied to summaries generated by pre-trained
language models and large language models.1

1 Introduction

Given the widespread use of electronic health
records (EHR) (e.g., health questions, radiology
reports, and doctor-patient dialogues), medical
text summarization enhances healthcare efficiency
(Van Veen et al., 2023b). However, manual summa-
rization is notably laborious and time-consuming
(Rink et al., 2023), leading to potential errors under

∗Corresponding author.
1Our code is available at https://github.com/lisdarr

/MEDAL.

Figure 1: A radiology report with its reference sum-
mary and an erroneous summary generated by
a summarization model. Intrinsic errors are high-
lighted in red, signifying sections that should remain
“unchanged” and “hemothorax”. Extrinsic errors are
highlighted in green, indicating the issues of imposing
causality and introducing additional details.

overwhelming workloads. Encouragingly, there is
a rising focus on clinical text summarization (He
et al., 2021; Dai et al., 2021; Joshi et al., 2020)
to alleviate clinicians’ burden and enable them to
refocus on patient-centered care.

However, clinical text summarization may en-
gender hallucinations, resulting in intrinsic hallu-
cinations (facts that contradict the source text) or
extrinsic hallucinations (facts that cannot be di-
rectly inferred from the source text) (Maynez et al.,
2020; Zhang et al., 2023), as illustrated in Figure 1.
Hallucinations may mislead clinicians and patients,
posing significant medical risks. Mitigating halluci-
nations is imperative for the seamless integration of
automated summarization into clinical workflows.

Numerous methods have been proposed to ad-
dress hallucinations in general summarization tasks
(Ji et al., 2023; Li et al., 2022). However, these
methods lack tailored designs for medical contexts,
limiting their direct application to the medical do-
main. Recently, specific techniques for tackling
hallucinations in medical summarization have been
introduced. Adams et al. (2022) suggest selectively
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rewrite unsupported reference sentences to improve
the training set. Meanwhile, Zhang et al. (2020)
and Alambo et al. (2022) focus on enhancing sum-
marization models via reinforcement learning and
knowledge-guided multi-objective optimization, re-
spectively. Nevertheless, these methods are unsuit-
able for clinical deployment as they are confined
to a specific type of medical text. To address this
challenge, Zhang et al. (2023) introduce a fine-
tuning strategy with wide applicability. However,
its contrastive learning component demands high-
quality training data and substantial computational
costs. Moreover, the rise of large language mod-
els (LLMs) escalates fine-tuning costs due to the
increasing model parameters.

We propose MEDAL, a model-agnostic post-
processing framework designed to address medical
hallucinations in various summarization tasks.
MEDAL comprises two components: 1) a halluci-
nation correction model for post-processing, and
2) a medical infilling model to generate training
data for the correction model. The hallucination
correction model is built upon Flan-T5 (Chung
et al., 2022), a model fine-tuned with instructions.
Our hallucination correction model fully leverages
the cognitive capabilities of Flan-T5 through self-
examination. The model is guided to examine hal-
lucinations in a model-generated summary and then
correct the summary based on its self-examination.
Specifically, we introduce a self-examination to-
ken that triggers the hallucination correction model
to refine its generation process. Furthermore, we
employ the medical infilling model to create non-
factual summaries with errors aligned with those
found in model-generated summaries. This ap-
proach aims to enhance the correction model’s
capacity to rectify common errors in automated
medical summaries. Specifically, we enhance a
traditional infilling model (Donahue et al., 2020)
by constructing medical Cloze questions. These
medical Cloze questions help incorporate medical
knowledge into the infilling model during training
and are utilized to generate non-factual summaries
during inference.

We conduct extensive experiments to evalu-
ate the performance of MEDAL across three
tasks: health question summarization, radiology
report summarization, and doctor-patient dialogue
summarization. First, MEDAL has consistently
achieved optimal or near-optimal performance us-
ing widely accepted general quality metrics and
faithfulness metrics across three medical text sum-

marization tasks. Second, MEDAL effectively rec-
tifies hallucinations in summaries generated by
LLMs, demonstrating its potential for future ap-
plication. Third, we demonstrate MEDAL’s ro-
bustness with the imbalanced training set. Finally,
further studies are conducted to comprehensively
explain the effectiveness of self-examination.

2 Related Work

Medical text summarization Medical text sum-
marization encompasses three key tasks: 1) health
question summarization condenses an inquiry into
a concise question to elicit accurate responses; 2)
radiology report summarization condenses a de-
tailed “findings” section into an “impression” sec-
tion, capturing the most pertinent and actionable
information; and 3) doctor-patient dialogue sum-
marization aims to encapsulate full conversations
into a succinct paragraph.

Health question summarization is introduced by
Ben Abacha and Demner-Fushman (2019). Re-
cent models have achieved performance improve-
ments using reinforcement learning (Yadav et al.,
2021a), contrastive learning (Zhang et al., 2022),
transfer learning (Yadav et al., 2021b), multi-task
learning (Mrini et al., 2021), and question-aware
transformer models (Yadav et al., 2022). For ra-
diology report summarization, most prior works
leverage pre-extracted knowledge like ontologies
and word graphs (MacAvaney et al., 2019; So-
tudeh Gharebagh et al., 2020; Hu et al., 2021). Hu
et al. (2022b) and Karn et al. (2022) advocate for
contrastive learning and reinforcement learning, re-
spectively. Recently, attention has shifted towards
employing LLMs (Van Veen et al., 2023a; Karn
et al., 2023). Doctor-patient dialogue summariza-
tion is early studied with pointer generator net-
works (Joshi et al., 2020). Krishna et al. (2021) ex-
plore summarization methods, while Navarro et al.
(2022) focus on the few-shot setting. Zhang et al.
(2021) focus on handling long conversations by
fine-tuning BART. MedDialog (Zeng et al., 2020)
and ACI-BENCH (Yim et al., 2023) introduce
datasets to advance the research.

Differing from the task-specific methods men-
tioned above, we propose a model-agnostic frame-
work suitable for all these tasks, showcasing con-
sistent strong performance across these tasks.

Mitigating hallucinations in medical text sum-
marization Researches on hallucinations in med-
ical text summarization primarily focus on training
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data and training method optimization. Adams et al.
(2022) selectively rewrite unsupported reference
sentences to better reflect source data. Zhang et al.
(2020) utilize reinforcement learning, while Xie
et al. (2023) propose FactReranker which selects
the best summary based on an estimated factual
consistency score. Krishna et al. (2021) propose an
algorithm that extracts and clusters pertinent utter-
ances to generate one summary sentence per cluster.
Zhang et al. (2023) introduce a fine-tuning strategy
using contrastive learning. However, its resource-
intensive nature and requirement for high-quality
training data pose challenges for application.

To the best of our knowledge, we are the first
to propose a post-processing framework to rectify
summaries generated by medical summarization
models. Moreover, our framework is versatile and
lightweight compared to previous methods.

3 Method

In this section, we first provide an overview of
our proposed framework MEDAL (§3.1). Sequen-
tially, we detail the construction of medical Cloze
questions (§3.2). Finally, we delve into the archi-
tectures of the medical infilling model (§3.3) and
the hallucination correction model (§3.4).

3.1 Overview

For the medical text summarization task, the sum-
marization model generates a summary s′ based
on a given medical source text m. However, the
model-generated summary s′, namely a dafted sum-
mary, may contain hallucinations. Our objective
is to rectify hallucinations and align the corrected
summary s more closely with the reference sum-
mary r.

MEDAL is a model-agnostic hallucination post-
processing framework without retraining summa-
rization models, resulting in low costs and wide
application. As illustrated in Figure 2, the MEDAL
framework involves three essential steps.

First, we mask terms that are error-prone during
generation to construct medical Cloze questions.
These masked terms are selected based on the tax-
onomy of faithfulness errors in medical summaries
(Zhang et al., 2023).

Second, the medical infilling model, denoted as
MI , utilizes the medical Cloze questions to gen-
erate non-factual summaries. During the training
phase, the model’s primary objective is to acquire
medical knowledge. Consequently, it is trained

to complete the medical Cloze task. During the
inference phase, motivated by Goyal and Durrett
(2020), we select lower-ranked token candidates
as output to create non-factual summaries. These
non-factual summaries manifest subtle deviations
from the reference summaries.

Third, the hallucination correction model, de-
noted asMC , is built upon Flan-T5 (Chung et al.,
2022). To activate the cognitive capability of Flan-
T5, we guide it towards a self-examination pro-
cess. This innovative addition allows the model
to initially examine hallucinations in the summary.
Subsequently, the model refines its generation pro-
cess. MC is trained using both the non-factual
summaries generated byMI and reference sum-
maries, thereby enhancing its capacity to rectify
hallucinations in summaries.

3.2 Construction of medical Cloze questions

We employ diverse tools to identify error-prone
terms in a medical text. Common errors appear in
entity, entity relation, quantifier, and negation. We
outline them in Appendix A. We utilize MedCAT2

to extract medical entities. Additionally, we lever-
age Stanford OpenIE3 to detect the relation triples.
Quantifiers are identified through regular expres-
sion matching techniques, while negations are rec-
ognized based on a predefined set of negation terms
{“no”, “nope”, “doesn’t”, “don’t”, “not”}.

Given a medical text p, we use the mentioned
tools to identify all error-prone terms in the text,
forming the set T . Subsequently, each identified
error-prone term is replaced with a [MASK] token to
form a Cloze question. This process is formalized
as the function GENCLOZE(p, T ), which yields the
set of medical Cloze questions, denoted as Q:

Q =GENCLOZE(p, T )

={(clz, t) |
clz = replace(p, t, [MASK]), t ∈ T}

(1)

where the funtion replace(p, t, [MASK]) replaces
the term t in the medical text p with “[MASK]” and
returns the modified text.

2MedCAT is an open-source medical concept annotation
toolkit proposed by Kraljevic et al. (2021).

3Stanford OpenIE is an open information extraction tool
proposed by Angeli et al. (2015). Open information extraction
(OpenIE) aims to extract relation tuples from text without
predefined relations. The relation name is just the text linking
two arguments.
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Figure 2: The overall framework of MEDAL. In Step 1, we construct medical Cloze questions derived from
medical source texts and reference summaries. ctx denotes the context. ŝ is the medical Cloze question and t
represents its masked term. Notably, we only take one sentence in a medical source text as an example and other
underlined terms also need to be masked. In Step 2, the infilling modelMI is trained using the dataset generated
from medical source texts. During the inference phase,MI predicts several token candidates, and among them,
we select the lower-ranked token candidates to generate the non-factual summaries. In Step 3, the hallucination
correction modelMC is trained using both the non-factual summaries and the reference summaries. The trained
MC is utilized to rectify hallucinations in model-generated summaries.

3.3 Medical infilling model

The medical infilling modelMI is based on Bio-
BART (Yuan et al., 2022). The input is the concate-
nation of the sentence with the [MASK] token ŝ and
its context c, while the target output is the original
error-prone term t replaced by the [MASK] token.

Training The training set is generated from med-
ical source texts, where error-prone terms are iden-
tified and replaced with the [MASK] token. Algo-
rithm 1 shows the method for generating the train-
ing set. During training, the model learns to predict
the masked terms based on their context. By opti-
mizing this objective, the model acquires a deeper
understanding of medical terminology and context.

Inference The inference phase aims to produce
non-factual summaries that manifest subtle devia-
tions from the reference summaries. Therefore, we
generate the input dataset utilizing the reference
summaries. The detailed procedure is outlined in
Algorithm 2.

During inference, the trained medical infilling
modelMI employs beam-search decoding to gen-
erate various token candidates. An example is de-
picted in the Decoding Example section of Step 2
in Figure 2. Lower-ranked candidates often exhibit
semantics or parts of speech similar to the original

term but lack factual accuracy (Zhang et al., 2023).
Therefore, we select lower-ranked candidates as
non-factual replacements for the masked term. The
method for selecting the lower-ranking range is de-
tailed in Appendix B. The non-factual summary,
denoted as r′, is produced by replacing the [MASK]
token in ŝ with the token candidate.

3.4 Hallucination correction model

The backbone of the hallucination correction model
MC is Flan-T5 (Chung et al., 2022), known for
its abilities in reasoning and generalization. To
engage the cognitive capabilities of Flan-T5, we
design an instruction (shown in Step 3 of Figure
2), directing the model to examine hallucinations
before generating the corrected summary. We in-
troduce a self-examination token, where [YES]
indicates the presence of hallucinations and [NO]
indicates their absence.

The input of the hallucination correction model
comprises a prompt sentence, a medical source text
m, and a summary, while the target output is a
combination of either [NO] or [YES] along with
the corrected summary s. The detailed input and
output formats are listed in Appendix D.5.

Training To prevent the model from modifying
factual summaries, we structure the training set
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Algorithm 1 Training Set Generation
Input: The medical source text, m; the set of error-

prone terms identified in the medical source
text, Tm;

Output: The training set, Dtrain;
1: Q← GENCLOZE(m, Tm)
2: Dtrain ← empty set
3: for each (cloze, term) in Q do
4: c← ""
5: sents← sentence_tokenize(cloze)
6: for each sent in sents do
7: if "[MASK]" in sent then
8: ŝ← sent
9: t← term

10: else
11: c = c+ sent
12: end if
13: end for
14: add (ŝ, c, t) to set Dtrain

15: end for
16: return Dtrain

with both positive samples and negative samples.
Positive samples account for 40% of the dataset,
while negative samples consist of the remaining
60%. The summaries in positive samples are from
reference summaries, whereas the summaries in
negative samples are non-factual summaries gener-
ated byMI .

Inference During inference, the summary of
each input is the model-generated summary s′. We
extract the corrected summaries from the output of
the correction model.

4 Experiment Setup

4.1 Datasets

To illustrate MEDAL’s efficacy in medical text sum-
marization, we conduct experiments on three dis-
tinct types of medical texts: health questions, ra-
diology reports, and doctor-patient dialogues. The
statistics of the datasets are listed in Table 1.

Health questions We employ Health Question
Summarization (HQS) from MEDIQA 2021 shared
task 1 (Ben Abacha et al., 2021). The training set
is from the MeQSum Dataset (Ben Abacha and
Demner-Fushman, 2019). The validation and test
sets include diverse consumer health questions re-
ceived by the U.S. National Library of Medicine,
along with expert-generated gold summaries.

Algorithm 2 Inference Dataset Generation
Input: The medical source text, m; the reference

summary, r; the set of error-prone terms iden-
tified in the reference summary, Tr;

Output: The inference set, Dinfer;
1: Q← GENCLOZE(r, Tr)
2: Dinfer ← empty set
3: for each (cloze, term) in Q do
4: ŝ← cloze
5: c← m
6: t← term
7: add (ŝ, c, t) to set Dinfer

8: end for
9: return Dinfer

Radiology reports We utilize Radiology Report
Summarization (RRS) from MEDIQA 2021 shared
task 3 (Ben Abacha et al., 2021). The source
of RRS is the MIMIC-CXR chest X-ray report
dataset4 and the Indiana University chest X-ray
dataset5. The validation set is selected from the In-
diana dataset, and the test set combines the Indiana
dataset with newly released reports drawn from the
Stanford Health Care system.

Doctor-patient dialogues Most datasets are pri-
vate due to ethical limitations. Therefore, we utilize
the public ACI-BENCH dataset (Yim et al., 2023)
with full doctor-patient conversations and associ-
ated clinical notes.6 Van Veen et al. (2023b) select
126 samples containing an “assessment and plan”
section from the dataset. We follow their work and
divide the 126 samples according to the proportions
of each set in the original ACI-BENCH dataset.

4.2 Baselines

Pre-trained language models We fine-tune
Pegasus-large (Zhang et al., 2020), a abstractive
summarization model; and BioBART-large (Yuan
et al., 2022), a biomedical generative model.

Task-agnostic medical summarization model
We evaluate MEDAL against the state-of-the-art
(SOTA) model FAMESUMM (Zhang et al., 2023),
which performs contrastive learning to encourage
the faithful generation of medical terms.

4https://physionet.org/content/mimic-cxr/2.0.0/
5https://openi.nlm.nih.gov/faq#collection
6A clinical note contains four sections: 1) subjective infor-

mation reported by the patient; 2) objective observations; 3)
assessments made by the doctor; and 4) a plan for future care
(Krishna et al., 2021).
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Task Description Dataset Train Dev Test Avg. Number of Tokens

Input Target

Health Question Summarization verbose→ short question HQS 1000 50 100 71 11
Radiology Report Summarization findings→ impression RRS 91544 4000 600 52 14

Doctor-Patient Dialogue Summarization dialogue→ clinical note ACI-BENCH 66 20 40 1512 211

Table 1: The statistics of datasets. We show the number of examples in the train/dev/test splits and the average
number of tokens in each dataset.

Task-specific medical summarization models
We select the SOTA methods for each medical sum-
marization task. For health question summariza-
tion, we select QFCL7 (Zhang et al., 2022) which
employs contrastive learning. For radiology report
summarization, we choose WGSum+CL (Hu et al.,
2022b) combining graphs and contrastive learning.
For doctor-patient dialogue summarization, task-
specific methods are fine-tuned on large private
datasets. Given the paucity of public training data,
these methods are not suitable as baselines.

Large language models We select two open-
source large language models: 1) Llama-2 (7B)
(Touvron et al., 2023) and 2) Med-Alpaca (Han
et al., 2023) specifically fine-tuned for medical
question-answering and dialogue applications.

4.3 Metrics

We adopt comprehensive evaluation metrics.8 In
addition to the general quality metrics and the faith-
fulness metrics, we incorporate the latest evalua-
tion metrics for automated medical note generation
proposed by Ben Abacha et al. (2023).

General quality metrics Two reference-based
metrics, ROUGE-1/2/L and BERTSCORE, are
used to evaluate the general quality of summaries.
ROUGE-1/2/L (Lin, 2004) is used to measure the
count of overlapping units, while BERTSCORE

(Zhang* et al., 2020) calculates a similarity score
between the generated and reference summary.

General faithfulness metrics QUESTEVAL

(Scialom et al., 2021) evaluates whether the
generated and reference summaries contain the
same information based on question answering.
SUMMAC (Laban et al., 2022) measures factual
consistency by natural language inference (NLI).

7QFCL is a competitive method for health question sum-
marization. ProphetNet+QTR+QFR (Yadav et al., 2021a)
is not selected because the method requires manually labeled
question focuses and question types.

8Calculation details are described in Appendix C.

Task-specific faithfulness metrics FaR (Shing
et al., 2021) and Concept F1 (C F1) (Joshi et al.,
2020) are computed based on medical entities. Re-
cently, Ben Abacha et al. (2023) introduce three
metrics, MedBERTScore, MedBARTScore, and
ClinicalBLEURT.

4.4 Implementation details

We use biobart-large (Yuan et al., 2022) and
flan-t5-base (Chung et al., 2022) as the back-
bones of the infilling modelMI and the correction
modelMC , respectively. Notably, the length of the
doctor-patient dialogues exceeds Flan-T5’s maxi-
mum context length. We select relevant support-
ing sentences as the source input of the correction
model. More details are presented in Appendix D.

5 Results and Analysis

In this section, we aim to answer the following
research questions:
• RQ1: Does MEDAL perform well across differ-

ent medical text summarization tasks on general
quality metrics and faithfulness metrics (§5.1)?

• RQ2: Does the self-examination process activate
MEDAL’s cognitive capability (§5.2), and if af-
firmative, what contributes to its efficacy (§5.4)?

• RQ3: Does MEDAL exhibit robustness when
trained with imbalanced samples (§5.3)?

5.1 Overall results

The overall results for the three tasks are shown in
Table 2, 3, and 4, respectively.

Improvements over medical summarization
models First, MEDAL achieves SOTA or near-
SOTA performance in three medical text summa-
rization tasks. Compared with the competitive base-
line FAMESUMM, MEDAL requires fewer compu-
tational costs. FAMESUMM is a fine-tuning method
which needs retraining when applied to different
summarization models. Besides, FAMESUMM in-
volves learning from contrastive summaries, lead-
ing to high requirements on GPU memory. In con-
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Model General Quality Metrics General Faithfulness Metrics Task-Specific Faithfulness Metrics

ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE QUESTEVAL SUMMAC FaR C F1 ClinicalBLEURT MedBART MedBERT

QFCL (Zhang et al., 2022) 0.2982 0.1121 0.2718 0.7406 0.3043 0.4072 0.4342 0.2798 0.5345 -6.8349 0.7309

PEGASUS (Zhang et al., 2020) 0.2937 0.1042 0.2743 0.7419 0.3137 0.4134 0.4291 0.2548 0.5158 -6.9167 0.7205
+ FAMESUMM (Zhang et al., 2023) 0.3045 0.1114 0.2841 0.7415 0.3086 0.4263 0.4181 0.2745 0.4923 -6.8772 0.7228
+ MEDAL (ours) 0.3155 0.1039 0.2917 0.7463 0.3238 0.4525 0.5014 0.3127 0.5154 -6.7167 0.7453

BioBART (Yuan et al., 2022) 0.3044 0.1056 0.2807 0.7494 0.3106 0.4399 0.4863 0.2813 0.5466 -7.0110 0.7359
+ FAMESUMM (Zhang et al., 2023) 0.3285 0.1244 0.3014 0.7530 0.3169 0.4722 0.5104 0.3004 0.5690 -6.9450 0.7379
+ MEDAL (ours) 0.3236 0.1341 0.3023 0.7535 0.3153 0.4958 0.5285 0.2996 0.5932 -6.8635 0.7471

Llama-2 (Touvron et al., 2023) 0.2765 0.0919 0.2516 0.7069 0.3004 0.4153 0.4446 0.2597 0.6393 -11.9865 0.6714
+ MEDAL (ours) 0.2959 0.1063 0.2987 0.7384 0.3212 0.4772 0.5173 0.2869 0.6395 -6.8926 0.7323

Med-Alpaca (Han et al., 2023) 0.3276 0.1235 0.2894 0.7490 0.3158 0.4785 0.4837 0.2721 0.5350 -6.6626 0.7356
+ MEDAL (ours) 0.3044 0.1056 0.2807 0.7494 0.3243 0.4948 0.5189 0.2665 0.5745 -6.5828 0.7367

Table 2: Results of health question summarization. The best results are highlighted in green, while the second-
best are in blue. Baselines are reproduced using the official implementation for metric computation. We do not
incorporate FAMESUMM into LLMs due to the substantial computational costs and time required.

Model General Quality Metrics General Faithfulness Metrics Task-Specific Faithfulness Metrics

ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE QUESTEVAL SUMMAC FaR C F1 ClinicalBLEURT MedBART MedBERT

WGSum+CL (Hu et al., 2022b) 0.4182 0.2596 0.4007 0.7735 0.2697 0.3805 0.2826 0.2119 0.6357 -8.7590 0.7619

PEGASUS (Zhang et al., 2020) 0.4167 0.2624 0.4010 0.7788 0.2698 0.3798 0.2739 0.2128 0.6466 -8.6885 0.7584
+ FAMESUMM (Zhang et al., 2023) 0.4198 0.2896 0.4091 0.7892 0.2661 0.3756 0.2594 0.1804 0.6716 -8.8709 0.7687
+ MEDAL (ours) 0.4229 0.2797 0.3998 0.7869 0.2822 0.4176 0.3279 0.2410 0.6547 -8.1842 0.7635

BioBART (Yuan et al., 2022) 0.4091 0.2524 0.3916 0.7774 0.2782 0.4150 0.3393 0.2447 0.6341 -9.0746 0.7566
+ FAMESUMM (Zhang et al., 2023) 0.4125 0.2608 0.4085 0.7793 0.2794 0.4269 0.3289 0.2382 0.6703 -8.9820 0.7714
+ MEDAL (ours) 0.4126 0.2569 0.4088 0.7748 0.2862 0.4422 0.3710 0.2672 0.6629 -8.7749 0.7690

Llama-2 (Touvron et al., 2023) 0.2247 0.1281 0.2140 0.6423 0.2453 0.1739 0.1894 0.1473 0.7426 -21.5741 0.5620
+ MEDAL (ours) 0.2273 0.1349 0.2165 0.6459 0.2571 0.2170 0.2251 0.1922 0.7420 -19.7318 0.6379

Med-Alpaca (Han et al., 2023) 0.4111 0.2565 0.3945 0.7809 0.2638 0.3586 0.2812 0.1960 0.6407 -9.2578 0.7537
+ MEDAL (ours) 0.4160 0.2650 0.4044 0.7898 0.2767 0.3828 0.3159 0.2128 0.6503 -8.7479 0.7654

Table 3: Results of radiology report summarization. Baselines are reproduced using the official implementation
for metric computation.

Model ROUGE-L FaR C F1 ClinicalBLEURT MedBERT

Llama-2 (Touvron et al., 2023) 0.2316 0.4434 0.2567 0.6707 0.5416
+ MEDAL (ours) 0.2408 0.4775 0.2829 0.6820 0.5498

Med-Alpaca (Han et al., 2023) 0.2314 0.2670 0.1655 0.6610 0.5195
+ MEDAL (ours) 0.2345 0.2882 0.2059 0.6559 0.5168

Table 4: Results of doctor-patient dialogue summa-
rization. Baselines are reproduced using the official
implementation for metric computation.

trast, MEDAL is model-agnostic and can directly
optimize various summarization models.

Second, MEDAL exhibits significant improve-
ments on SUMMAC, FaR, and C F1 metrics across
all baselines, indicating that summaries generated
by MEDAL include more crucial medical entities.
Furthermore, the general quality metrics also show
improved results after the application of MEDAL,
implying an enhancement in coherence and fluency.

Improvements over large language models
First, MEDAL maintains its effectiveness when
dealing with summaries generated by LLMs. No-
tably, the performance of Llama-2 obtains signifi-
cant improvement with the correction by MEDAL.
Take the health question summarization as an ex-
ample. There is an increase of approximately 6%
on the SUMMAC metric and around 7% on the
FaR metric. Furthermore, the performance of Med-

Alpaca also improves further. Experiments on
LLMs illustrate the capability of MEDAL to iden-
tify and rectify hallucinations in LLMs’ outputs.

Second, Med-Alpaca exhibits superior perfor-
mance compared to Llama-2 on health question
summarization and radiology report summariza-
tion. Take radiology report summarization as an
example. Med-Alpaca outperforms Llama-2 by
approximately 18% on the SUMMAC metric and
demonstrates an improvement of around 9% on the
FaR metric. MEDAL further improves the Med-
Alpaca’s performance by about 2% on the SUM-
MAC metric and 3% on the FaR metric.

Third, for doctor-patient dialogue summariza-
tion, Med-Alpaca performs significantly worse
than Llama-2, highlighting the limitations of Med-
Alpaca in handling long texts. To address the con-
text length limitation of our correction model, the
source text is not directly used as input. Instead, we
select relevant supporting sentences as the source
text for the correction model.9 Experimental results
indicate that this approach effectively corrects erro-
neous content in long-text summarization, thereby
enhancing the faithfulness of the summaries.

9The selection method is detailed in Appendix D.4.
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Model General Quality Metrics General Faithfulness Metrics Task-Specific Faithfulness Metrics

ROUGE-L SUMMAC FaR C F1 ClinicalBLEURT MedBERT

BioBART (Yuan et al., 2022) 0.2807 0.4399 0.4863 0.2813 0.5466 0.7359
+ MEDAL 0.3023 0.4958 0.5285 0.2996 0.5932 0.7471
+ MEDAL w/o SE 0.2763 0.4257 0.4763 0.2813 0.5396 0.7342

Med-Alpaca (Han et al., 2023) 0.2894 0.4785 0.4837 0.2721 0.5350 0.7356
+ MEDAL 0.2807 0.4948 0.5189 0.2665 0.5745 0.7367
+ MEDAL w/o SE 0.2802 0.4880 0.4717 0.2532 0.5435 0.7298

Table 5: Results of the ablation study on health question summarization. “SE” denotes self-examination.

Ratio
(Positive: Negative) ROUGE-L SUMMAC FaR MedBERT

2:8 0.2916 0.4913 0.5228 0.7441
4:6 (ours) 0.3023 0.4958 0.5285 0.7471
5:5 0.3019 0.5008 0.5273 0.7359
6:4 0.2964 0.4994 0.5249 0.7493
8:2 0.3021 0.4963 0.5206 0.7357

Table 6: Results of the robustness experiments. We
conduct experiments on health question summarization
using the summaries generated by fine-tuned BioBART.
“Ratio” represents the ratio of positive to negative sam-
ples in the training set.

5.2 Ablation study

Self-examination is a crucial component of our
method. To substantiate its effectiveness, we con-
duct an ablation study.10 The experimental results
are shown in Table 5. Without self-examination,
the performance of MEDAL exhibits varying de-
grees of decline. Remarkably, the results with-
out self-examination are even worse than those
before correction. This indicates that without self-
examination, the model may incorrectly alter parts
of the summary that are originally correct. There-
fore, self-examination plays a pivotal role, prompt-
ing the model to consider the existence of halluci-
nations before rectifying the summaries.

5.3 Robustness of MEDAL

We conduct experiments to investigate the impact
of the balance between positive and negative sam-
ples on the hallucination correction model. The
results depicted in Table 6 indicate MEDAL’s
superior performance on balanced datasets (e.g.,
40%, 50%, and 60% positive samples). No-
tably, MEDAL exhibits resilience even in scenar-
ios of dataset imbalance. These findings highlight
MEDAL’s robustness to maintain efficacy across
varied proportions of positive and negative samples
in the training dataset.

10Implementation details can be found in Appendix D.5.

Figure 3: Heatmap visualization of model attention.
For illustrative purposes, we focus on the attention of the
first head in the final layer of the model. The heatmap
depicts the attention distribution over words in the med-
ical source text. "SE" represents self-examination.

5.4 Further study
To delve deeper into the effectiveness of self-
examination, we employ heatmap to visualize the
attention matrix of the correction model. Fig-
ure 3 illustrates that the self-examination process
prompts the model to allocate more attention to im-
portant medical entities. Additionally, we provide
some examples of outputs from MEDAL and base-
lines in Appendix D.6 to show the effectiveness of
MEDAL.

6 Conclusion

In this paper, we propose MEDAL, a model-
agnostic post-processing framework designed
to rectify hallucinations in medical summaries.
MEDAL comprises a medical infilling model and
a hallucination correction model. The correction
model is trained using synthetic datasets gener-
ated by the infilling model. A self-examination
mechanism is incorporated into the correction
model to enhance its performance. Experimental
results demonstrate MEDAL’s superiority across
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11 metrics in 3 medical text summarization tasks.
MEDAL is model-agnostic and can post-process
summaries to enhance their reliability. Further-
more, MEDAL exhibits potential in rectifying
summaries generated by LLMs, highlighting its
prospective application in the era of LLMs.
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Limitations

The effectiveness of MEDAL’s correction model re-
lies on the quality and diversity of its training data,
particularly the non-factual summaries tailored for
hallucination correction. However, limitations arise
as the errors in these non-factual summaries pre-
dominantly pertain to the entity levels and relation
levels. While MEDAL has made significant im-
provements in mitigating hallucinations related to
medical concepts, relations, and negations, it may
not fully address more complex issues like con-
textual misunderstandings or semantic ambiguities.
These complex errors pose challenges in detection
due to the need for logical reasoning. Moreover,
generating non-factual summaries containing these
errors becomes more challenging.

Another consideration is the text length limi-
tation of MEDAL’s correction model. We select
relevant supporting sentences as the source text
for the doctor-patient dialogue summarization task.
However, the rules of selecting relevant supporting
sentences are based on ROUGE-L score and lack of
the consideration of semantic information.

We will investigate new approaches capable of
addressing a wider range of errors and long clinical
text to improve the overall performance of medical
text summarization.
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aims to mitigate hallucinations in medical sum-
maries by a post-processing framework. Despite
the exceptional performance of MEDAL in miti-
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edge the possibility of residual errors in its outputs.
Therefore, prior to implementation, it is imperative

for medical practitioners to undertake thorough as-
sessments of faithfulness and accuracy.
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A Error Types

The common error types in medical text summa-
rization are illustrated in Table 7.

B Selection of The Lower-Ranking Range

During the inference phase, the decoding beam size
is set to 15 for predicting token candidates. We se-
lect 200 medical Cloze questions and compute the
ranking at which the generated tokens are incon-
sistent with the original tokens. Subsequently, we
establish a threshold of 5 to ensure non-factual re-
placements occur over 95% of the time. Finally,
token candidates ranked between 5 and 15 (i.e.,
range=[5,15]) are chosen as the non-factual replace-
ments.

C Metrics

C.1 General quality metrics

ROUGE-1/2/L Following Zhang et al. (2023), we
select ROUGE-N (N ∈ {1, 2}) and ROUGE-L as
evaluation metrics. Lin (2004) propose ROUGE to
measure the similarity between summaries. Given
a candidate summary s and a reference summary
r, ROUGE-N refers to the overlap of n-gram be-
tween s and r. ROUGE-L is computed based on
the longest common subsequence (LCS) between
s and r. We adopt the pyROUGE11 to compute the
ROUGE scores and select the f_score as the re-
ported result.

BERTSCORE BERTSCORE computes the sim-
ilarity of two sentences as a sum of co-
sine similarities between their tokens’ em-
beddings (Zhang* et al., 2020). We se-
lect allenai/scibert_scivocab_cased12 as the
BERT model to generate contextual embeddings.

C.2 General faithfulness metrics

QUESTEVAL QUESTEVAL (Scialom et al.,
2021) is proposed to evaluate summarization sys-
tems without requiring reference summaries. It
consists of a question generation model QG and
a question answering model QA. For the ques-
tion answering model QA, QA(a|M, q) refers to
the probability of the answer a to question q on
a text M , and QA(M, q) is the answer greedily

11pyROUGE is a Python wrapper for the ROUGE sum-
marization evaluation package. It can be installed from
https://pypi.org/project/pyrouge/

12https://huggingface.co/allenai/scibert_scivocab_cased

generated from the model. For the question gener-
ation model QG, QG(M) is denoted as the set of
question-answer pairs (q, a) for a text M such that
QA(M, q) = a. QUESTEVAL is computed as:

Prec(M,S) =
1

|QG(S)|
∑

(q,a)∈QG(S)

F1(QA(M, q), a)

(2)

Rec(M,S) =

∑
(q,a)∈QG(M)

W (q,M)(1−QA(ϵ|S, q))
∑

(q,a)∈QG(M)

W (q,M)

(3)

FScore(M,S) =
2 · Prec(M,S) ·Rec(M,S)

Prec(M,S) +Rec(M,S)
(4)

where M and S are two sequences of tokens with
M denoting the source text and S representing
the corresponding evaluated summary, W (q,M)
is the weight of query q for text M , ϵ is the
unanswerable token denoting that a summary con-
tains no answer.

Following Scialom et al. (2021), the final
QUESTEVAL score is the FScore(M,S). We cal-
culate it using the released package.13

SUMMAC SUMMAC enables NLI models to be
successfully used for inconsistency detection. La-
ban et al. (2022) first split the source text into M
blocks and split the summary into N blocks. Then,
an out-of-the-box NLI model is applied to generate
an M × N NLI pair matrix, where each value in
the matrix is the entailment score of the source text
block and the corresponding summary block. Fi-
nally, they present two models, SUMMACConv and
SUMMACZS. The model produces a single con-
sistency score for a given summary by processing
the pair matrix. Following Zhang et al. (2023), we
adopt SUMMACZS in our evaluation by calling its
package.14

C.3 Task-specific faithfulness metrics

FaR Shing et al. (2021) illustrate the relation-
ship between source text, reference summary, and
model-generated summary using a Venn diagram
as shown in Figure 4. The Faithfulness-adjusted
Recall (FaR) measures the amount of faithful and
relevant information that has been included by the
model-generated summary. Therefore, FaR is de-
fined as C

B+C . Following Shing et al. (2021), we
measure the rigions in Figure 4 by medical named

13https://pypi.org/project/questeval/
14https://pypi.org/project/summac/
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Error Type Description Example

Entity Generating wrong entities.
Medical Text: Lungs appear clear and well expanded. Previously demonstrated
bilateral lower lung airspace opacities have resolved.
Summary: Resolution of bilateral lower lung opacities.

Entity Relation Expressing wrong relation between
two entities or actions.

Medical Text: I thought I needed a knee repalcement. But after having a stent
placed in my heart, my knee pain has been alleviated. What happened?
Summary: Can a heart stent lead to knee pain?

Quantifier Generating wrong dates, age, etc.
Medical Text: 8 month old child suffering from constant vomiting. What could
be the medicine used for treatment?
Summary: What can I give my 18 month old for constant vomiting?

Negation Ignoring or adding negation.
Medical Text: Single frontal view of the chest demonstrates retrocardiac and
left lung base opacity with a rounded contour and possible central lucency.
Summary: No acute cardiopulmonary process.

Table 7: Common error types in medical summaries. Errors are highlighted in red, while evidence from the
medical text used to infer the errors is highlighted in blue.

Figure 4: Relationship between source text, reference
summary, and model-generated summary.

entity recognition (NER) system in scispaCy.15

Concept F1 Similar to FaR, Concept F1 is also
computed based on the medical entities and we
obtain the medical entities using the same method
like FaR. According to the Venn diagram in Figure
4, Concept F1 is defined as:

Concept Rec =
C + F

B + C + E + F
(5)

Concept Prec =
C + F

C +D + F +G
(6)

Concept F1 =
2 · Concept Rec · Concept Prec
Concept Rec + Concept Prec

(7)

MedBERTScore and MedBARTScore
Ben Abacha et al. (2023) update the scoring policy
of two popular evaluation metrics, BERTSCORE

(Zhang* et al., 2020) and BARTSCORE (Yuan
15The scispaCy (Neumann et al., 2019) NER identifies any

span in a given text which might be an entity in UMLS (a
large biomedical database) and returns the identified medical
entities.

et al., 2021), by providing a higher weight to the
words in the summaries that have medical meaning.
They identify the medical entities defined in UMLS
by MedCAT toolkit16. We evaluate the summaries
using the official instructions for MedBERTScore17

and MedBARTScore18.

ClinicalBLEURT ClinicalBLEURT relies on
fine-tuning a model-based metric on a large col-
lection of clinical notes including family medicine
and orthopaedic notes. Ben Abacha et al. (2023)
fine-tune BLEURT (Sellam et al., 2020) using a
quality score. We use their provided fine-tuned
model19 to complete evaluation.

D Implementation Details

We implement the experiments with a single
NVIDIA GeForce RTX 4090 GPU. For each task,
we report the average results across 3 runs. Further
implementation details can be found in our code.

D.1 Experiments on pre-trained language
models

We fine-tune two pre-trained language models,
namely Pegasus-large (Zhang et al., 2020) and
BioBART-large (Yuan et al., 2022). The hyper-
parameter settings are shown in Table 8. We select
the best models based on the loss on the validation
set for all tasks. Notably, these pre-trained lan-
guage models are not applied to the doctor-patient
dialogue summarization task because the length of

16https://pypi.org/project/medcat/
17https://github.com/abachaa/EvaluationMetrics-

ACL23/tree/main/MedBERTScore
18https://github.com/abachaa/EvaluationMetrics-

ACL23/tree/main/MedBARTScore
19https://github.com/abachaa/EvaluationMetrics-

ACL23/tree/main/ClinicalBLEURT
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Hyper-parameters Health Question Summarization Radiology Report Summarization

Pegasus-large BioBART-large Pegasus-large BioBART-large

Epochs 10 10 10 10
Learning Rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Train Batch Size 4 4 4 4
Eval Batch Size 4 4 4 4

Gradient Accumulation Steps 2 2 2 2
Weight Decay 0.01 0.01 0.01 0.01

Beam Size 4 4 4 4
Repetition Penalty 1.5 1.5 1.5 1.5

Length Penalty 0.8 0.8 0.8 0.8
Max Input Length 512 512 512 512

Max Output Length 84 84 256 256

Table 8: Hyper-parameter settings of pre-trained language models.

Use Prompt Component

Health Question Summarization Summarize the patient health question into one question of 15 words or less.
Radiology Report Summarization Summarize the radiology report findings into an impression with minimal text.

Doctor-Patient Dialogue Summarization Summarize the patient/doctor dialogue into an assessment and plan.

Prefix You are a knowledgeable medical professional.

Table 9: Model prompts. The prefix is applied to every task.

the doctor-patient dialogues exceeds the context
length of Pegasus-large and BioBART-large.

D.2 Experiments on LLMs

Following Van Veen et al. (2023b), the prompts
for medical summarization tasks are depicted in
Table 9. We fine-tune LLMs with LoRA (Hu et al.,
2022a) using the Adam optimizer. Table 10 dis-
plays the hyper-parameters for fine-tuning in dif-
ferent tasks. The final model used for testing is
obtained at the end of training, based on the speci-
fied number of epochs.

D.3 Experiments on MEDAL

For the medical infilling modelMI and the hallu-
cination correction modelMC , we select the best
models based on the loss on the validation set. The
hyper-parameter settings are shown in Table 11 and
12.

D.4 Selection of relevant supporting sentences

To adapt MEDAL to doctor-patient dialogue sum-
marization, we select the most relevant sentences
from the source text as input context instead of us-
ing the entire source text. For each sentence i in
the model-generated summary, we choose a sen-
tence from the source text that yields the highest
ROUGE-L score computed with i. These selected
sentences are then concatenated as the input source
text.

D.5 Ablation study
We show the input and output formats of the cor-
rection model in Table 13.

Besides, we implement further experiments to
explore whether clear instructions can help the
model perform better. The experiment results are
shown in Table 14. The clear instructions indeed
improve model performance.

D.6 Examples of outputs
Figure 5 illustrates MEDAL’s effectiveness in cor-
recting errors found in model-generated summaries.
In the first two examples, the original outputs gen-
erated by summarization model contains the wrong
entities and quantifiers. MEDAL accurately cap-
tures the key medical entities and generates a com-
plete summary. Similarly, in the last example, Pega-
sus overlooks the negation “no”, whereas MEDAL
generates the correct summary. These examples
highlight MEDAL’s capability to correct hallucina-
tions within summaries. We design medical Cloze
questions based on common errors and employ an
infilling model to generate non-factual summaries
for training the correction model. Additionally,
we incorporate a self-examination mechanism into
the correction model, further enhancing its perfor-
mance.
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Hyper-parameters Health Question Summarization Radiology Report Summarization Doctor-Patient Dialogue Summarization

Llama-2 Med-Alpaca Llama-2 Med-Alpaca Llama-2 Med-Alpaca

Epochs 10 10 3 3 10 10
Learning Rate 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Gradient Accumulation Steps 4 4 4 4 4 4
Train Batch Size 8 8 8 8 4 4
Eval Batch Size 4 4 4 4 2 2

Beam Size 1 1 1 1 1 1

Table 10: Hyper-parameter settings of large language models.

Hyper-parameters Health Question Summarization Radiology Report Summarization Doctor-Patient Dialogue Summarization

Epochs 10 10 10
Learning Rate 1× 10−5 1× 10−5 1× 10−5

Batch Size 8 8 8
Train Beam Size 1 1 1
Eval Beam Size 15 15 15

Max Input Length 512 512 512

Table 11: Hyper-parameter settings of the medical infilling modelMI .

Hyper-parameters Health Question Summarization Radiology Report Summarization Doctor-Patient Dialogue Summarization

Epochs 10 10 10
Learning Rate 1× 10−4 1× 10−4 1× 10−4

Train Batch Size 4 4 4
Eval Batch Size 4 4 4
Weight Decay 0.01 0.01 0.01

Beam Size 4 4 4
Repetition Penalty 1.5 1.5 1.5

Length Penalty 0.8 0.8 0.8
Max Input Length 512 512 512

Max Output Length 128 128 300

Table 12: Hyper-parameter settings of the hallucination correction modelMC .

Phase Input Sequence Target Sequence

Flan-T5
Training Phase

Positive Sample: [SOURCE] <SEP> [REFERENCE] [REFERENCE]
Negative Sample: [SOURCE] <SEP> [NON-FACTUAL] [REFERENCE]

Inference Phase [SOURCE] <SEP> [MODEL-GENERATED] [CORRECTED]

+ self-examination
Training Phase

Positive Sample: [PROMPT]. Text: [SOURCE]. Summary: [REFERENCE]. [NO]
Negative Sample: [PROMPT]. Text: [SOURCE]. Summary: [NON-FACTUAL]. [YES]. [REFERENCE]

Inference Phase [PROMPT]. Text: [SOURCE]. Summary: [MODEL-GENERATED]. [NO] / [YES]. [CORRECTED]

Table 13: Input and output formats of models. [SOURCE] represents the source text m. [REFERENCE] corresponds
to the reference summary r. [NON-FACTUAL] denotes our generated summary produced by the infilling model
MI . [MODEL-GENERATED] is the model-generated summary s′. [CORRECTED] represents the corrected summary
s generated by the correction modelMC . [YES] and [NO] are the self-examination tokens introduced by us.
[PROMPT] signifies the prompt instruction “Check for any hallucination in the summary, and if found, correct them.”

Model ROUGE-L SUMMAC FaR C F1 ClinicalBLEURT MedBERT

BioBART(Yuan et al., 2022) 0.2807 0.4399 0.4863 0.2813 0.5466 0.7359
+MEDAL w/ SentInst 0.3146 0.4967 0.5259 0.3049 0.5943 0.7490
+MEDAL (ours) 0.3023 0.4958 0.5285 0.2996 0.5932 0.7471

Med-Alpaca(Han et al., 2023) 0.2894 0.4785 0.4837 0.2721 0.5350 0.7356
+MEDAL w/ SentInst 0.2961 0.5084 0.5177 0.2737 0.5843 0.7362
+MEDAL (ours) 0.2807 0.4948 0.5189 0.2665 0.5745 0.7367

Table 14: Results of the ablation study on instructions. w/ SentInst denotes that we replace [YES] with “This
summary contains hallucination, and here is the revision:” and [NO] with “This summary contains no hallucination.”.
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Figure 5: Three examples to show the effectiveness of MEDAL. We mark the medical terms in blue and the
errors in red.
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