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Abstract

Artificial agents that learn to communicate in
order to accomplish a given task acquire com-
munication protocols that are typically opaque
to a human. A large body of work has at-
tempted to evaluate the emergent communi-
cation via various evaluation measures, with
compositionality featuring as a prominent de-
sired trait. However, current evaluation pro-
cedures do not directly expose the composi-
tionality of the emergent communication. We
propose a procedure to assess the composition-
ality of emergent communication by finding the
best-match between emerged words and natural
language concepts. The best-match algorithm
provides both a global score and a translation-
map from emergent words to natural language
concepts. To the best of our knowledge, it is
the first time that such direct and interpretable
mapping between emergent words and human
concepts is provided.

1 Introduction
Artificial agents that learn to communicate for ac-
complishing a given task acquire communication
protocols. In the common setting, a sender ob-
serves a set of objects and sends a message to a
receiver, which then needs to identify the correct
target objects out of a set of distractors. The two
agents learn a communication protocol over dis-
crete vocabulary of atoms, termed “words”. The
emergent communication (EC) is typically opaque
to a human. As a result, a large body of work has
attempted to characterize the emergent communica-
tion in light of natural language (NL) traits, such as
compositionality (Hupkes et al., 2020; Chaabouni
et al., 2020), systematic generalization (Vani et al.,
2021), pragmatism (Andreas and Klein, 2016; Za-
slavsky et al., 2021), and more.

Chief among these is compositionality, which en-
ables the construction of complex meanings from
the meaning of parts (Li and Bowling, 2019). How-
ever, quantifying compositionality in EC is noto-
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Figure 1: The multi-target shape game played in turns
(showing two turns). (a) At each turn, the sender is
given a set of images, a subset of them marked as targets
by an Oracle. (b) Sender generates messages [w1, w2]
for the blue-triangle (turn 1) and [w2, w3] for the
red-triangle (turn 2). (c) During evaluation, we
construct a bipartite graph of words generated by the
sender and concepts provided by the Oracle for each
turn. (d) The best-match algorithm matches EC words
to NL concepts and provides the CBM score. In this
example, all EC words are matched with NL concepts,
resulting in a CBM score of 1.0.

riously difficult (Lazaridou et al., 2018). In fact,
recent studies found that common composition-
ality measures in EC, e.g., topographic similar-
ity (Brighton and Kirby, 2006; Li and Bowling,
2019), do not correlate well with success in the
task (Chaabouni et al., 2021; Yao et al., 2022).
Moreover, while seeking to assess an opaque pro-
tocol, common evaluation measures in EC are
opaque themselves—they do not provide a human-
interpretable characterization of the compositional-
ity of the communication.

This work develops a method that character-
izes how compositional an EC is. Our method is
founded on the key insight that, in an EC setting, a
communication is compositional if agents commu-
nicate successfully via complex messages formed
of simple atoms and these atoms are mapped to NL
concepts. Our evaluation is based on the classical
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best-match algorithm (Hopcroft and Karp, 1973).
Given a set of EC atoms and a set of NL concepts,
we construct a bi-partite graph and seek the optimal
one-to-one mapping between words and concepts.
A perfectly compositional EC would yield a perfect
match, where every EC atom is mapped to exactly
one NL concept. See Figure 1 for an illustration.

We experiment with the proposed procedure in
two EC settings and compare it to two popular eval-
uation measures – topographic similarity and ad-
justed mutual information (AMI). We demonstrate
that our approach provides a fine-grained charac-
terization of emergent protocols, exposing their
strengths and weaknesses, while other measures
only provide coarse, opaque scores. According
to our evaluation, state-of-the-art communication
methods do not achieve satisfactory results.

2 Background

2.1 Emergent Communication Setup

We follow a recent setup suggested by Mu and
Goodman (2021), where a sender needs to commu-
nicate with a receiver about a set of target objects
out of a larger set of candidate objects. The sender
sends a message to the receiver, which uses it to
distinguish targets from distractor objects. For ex-
ample, to identify all red triangles out of objects
with different shapes and colors. This setup is more
conducive to emergence of compositional commu-
nication than the classical referential game (Lazari-
dou et al., 2017). Senders in this setup need to
form a generalization rather than merely transmit
the identity of a single target.

Formally, assume a world X, where each object
is characterised by n feature–value pairs (FVPs),
⟨f1 : v1, . . . , fn : vn⟩, with feature i having ki pos-
sible values, vi ∈ {fi[1], . . . , fi[ki]}. For instance,
the Shape world (Kuhnle and Copestake, 2017) has
objects like ⟨shape:triangle,color:red⟩. Labeling
rules are boolean expressions over these FVPs.1

Each rule l : X 7→ {0, 1} labels each object as 0 or
1. For instance, the rule Red Triangle labels
all red triangles as positive and all other objects as
negative. We identify the rule Red Triangle
with the NL phrase “red triangle”, which comprises
the concepts “red” and “triangle”.

At each turn of the game, we draw a set of can-
didate objects X̃ ⊂ X that is made of target objects,
T, which obey the rule, and distractors, D, which
do not: l(x) = 1 if x ∈ T and l(x) = 0 if x ∈ D.

1In this work we only use conjunctive expressions.

The sender encodes the set of target objects T
into a dense representation us ∈ Rd, and gener-
ates a message m, a sequence of words from some
vocabulary. The receiver encodes each candidate
object x ∈ X into a representation ur

x ∈ Rd. It de-
codes the message m into a representation z ∈ Rd

and computes a matching score between each en-
coded candidate and the message representation,
g(z,ur

x). A candidate is predicted as a target if
its score is > 0.5. The entire system—sender and
receiver networks—is trained jointly with a binary
cross entropy on correctly identifying each target.

2.2 Compositionality in EC

Various measures have been proposed to evaluate
if an EC protocol is compositional. We mention a
few prominent ones below. However, while trying
to capture the idea that a complex meaning uses the
meaning of its parts, previous measures fail to pro-
vide a concrete mapping of parts—EC words and
NL concepts. We say an emergent communication
is compositional if the following conditions hold:

1. EC words are mapped to NL concepts.
2. A complex EC message is composed of simple

EC words.
3. Agents communicate successfully via com-

plex messages.
4. An EC message composed of words has the

same meaning as an NL phrase composed of
the respective concepts.

Being able to compose EC words while preserving
their NL meaning allows agents to generalize to
new data while using interpretable communication.

2.3 Compositionality Evaluations in EC

We briefly describe two notable measures of com-
positionality in EC. Appendix A gives more details.

Topographic Similarity (TopSim) (Brighton and
Kirby, 2006) measures how well messages align
with object representations. Given a set of objects
and their EC messages, calculate a matrix of dis-
tances between every two messages and a separate
matrix of distances between every two object rep-
resentations. TopSim is the Spearman correlation
of the two distance matrices.

TopSim is a global metric that does not require
a reference language and can be applied to any EC
setup. However, recent studies found that TopSim
does not correlate well with success in the task
being played (Chaabouni et al., 2021; Yao et al.,
2022). More importantly, it does not provide a
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mapping between EC words and NL concepts, and
thus cannot directly assess compositionality.
Adjusted Mutual Information (AMI) (Vinh et al.,
2009) measures the MIT between a set of EC
messages and a corresponding set of NL phrases,
adjusted for chance. Mu and Goodman (2021)
showed AMI is a better compositionality measure
than TopSim, as it directly assesses the MI between
a message and its NL phrases. Still, AMI operates
at the level of messages and phrases, rather than
atomic words and concepts, respectively.

3 Concept Best Matching
Our key insight is that compositionality requires a
mapping between words (atomic parts of EC mes-
sages) and concepts (a set of FVPs) that compose
NL phrases. Given an evaluation set of examples
D, consider their corresponding EC messages M
and NL phrases L. Let W denote the set of unique
words in M, and V the set of unique FVPs in L. Let
{w}i, {v}i be the sets of words and FVPs in sample
i, and mi = |{w}i|, li = |{v}i| their sizes. We con-
struct a weighted bipartite graph G = ((W,V),E)
with words on one side and FVPs on the other side.
Edges E are defined by the evaluation set. The
weight qe of edge eij is the number of times word
i appeared in a message that the sender transmitted
for a labeling rule with FVP j. This construction
reflects the intuition that we do not know the cor-
rect mapping between words and FVPs (concepts).
See Figure 1 for an example.

3.1 Best Match Algorithm

Given the graph G, we seek an optimal pairing be-
tween words and concepts (FVPs), such that no two
edges share the same word nor the same concept.
The score of a match B ⊆ E is the sum of its edge
weights,

∑
e∈B qe. The best match, BM = BM(G),

maximizes this score:

BM = argmax
B

∑

e∈B
qe (1)

Such an ideal mapping is fully interpretable. A high
score indicates that the agents learned to generate
a unique EC word for each NL concept.

Normalizing the BM score by the number of
symbols and words, Q =

∑
i∈D max(|mi|, |li|),

guarantees that BM ∈ [0, 1].2 The best match
for a weighted bipartite graph can be found effi-
ciently by the Hungarian algorithm (Kuhn, 1955;

2In practice, the lowest bound is qẽ/Q, where ẽ is the edge
with the highest weight in G.

Hopcroft and Karp, 1973). Implementation is pro-
vided here.3

4 Experimental Setup
We experiments with agents that learn to play multi-
target referential games, introduced by Mu and
Goodman (2021) and described in Section 2.1. All
experiments reported in Table 1 have the number of
possible words ≥ the number of concepts, allowing
perfect match of words to concepts. In Appendix
D we report more experiments with sub-optimal
configurations.

Datasets. We experiment with two datasets, de-
scribed briefly here; Appendix B has more details.
(1) SHAPE: A visual reasoning dataset (Kuhnle
and Copestake, 2017) of objects over a black back-
ground. Our version of the dataset contains four
attributes: shape, color, and horizontal and vertical
positions. Overall, the SHAPE dataset contains 17
concepts, and a maximal labeling rule of 4 FVPs.
(2) THING: A synthetic dataset of 100,000 objects.
Each object has five attributes, each with 10 possi-
ble values. Overall, the THING datasets contains
50 concepts and a maximal labeling rule of 5 FVPs.

Communication Channel. We train the sys-
tem with two types of communication channels:
the popular Gumbel-Softmax (GS) (Havrylov and
Titov, 2017; Jang et al., 2017) and quantized com-
munication (QT) (Carmeli et al., 2023). In GS,
each word is a d-dimensional one-hot vector. In
QT, each word is a d-dimensional binary vector.
QT was shown to be superior and easier to opti-
mzie compared to GS in EC games. In both cases
we use a recurrent network to generate multi-word
messages. Appendix C has implementation details.

5 Results
Table 1 shows results on several configurations of
the two games. As expected, accuracy degrades
as the task becomes more difficult, with longer la-
beling rules. QT communication yields better task
accuracy than GS, consistent with Carmeli et al.
(2023). TopSim is not well correlated with accu-
racy, as found in prior work (Section 2.3). AMI and
CBM are more correlated with accuracy. With long
messages and labeling rules (l = 4), AMI is less
correlated with accuracy. This may be explained by
AMI operating at the level of whole messages and
labeling rules—AMI struggles with large numbers
of unique messages and NL phrases. In contrast,

3https://github.com/bcarmeli/cbm
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NL EC
Top
Sim

Best Match

Com l d Cons Phrs #w #m Acc AMI CBM Amb Para Unm

Sh
ap

e

GS 1 17 17 17 11 11 0.84 0.44 0.76 0.62 0.37 0.01 0.25
QT 1 5 17 17 26 26 0.87 0.39 0.85 0.52 0.41 0.08 0
GS 4 17 17 34 16 226 0.78 0.34 0.38 0.52 0.48 0 0.01
QT 4 5 17 34 26 187 0.83 0.23 0.37 0.55 0.37 0.08 0

T
hi

ng

GS 1 50 50 50 18 18 0.86 0.45 0.72 0.38 0.62 0 0.55
QT 1 6 50 50 50 50 0.92 0.07 0.74 0.73 0.25 0.02 0
GS 4 50 50 901 36 198 0.63 0.33 0.03 0.24 0.76 0 0.28
QT 4 6 50 901 64 450 0.77 0.14 0.05 0.23 0.69 0.08 0

Table 1: Results for SHAPE and THING games with Gumbel-Softmax (GS) or Quantized (QT) communication
using rules of length l and words of length d, showing number of unique NL concepts (Cons) and phrases (Phrs)
and EC words (#w) and messages (#m). TopSim and AMI give only coarse scores. Our method gives the best
match score (CBM) and rates of Ambiguities (Amb), Paraphrases (Para), and Unmatched concepts (Unm).

w3 w7 w2 w9 w5 w6 w8 w4 w1 w0

a c g v n ⊤ | ⊥ ⊤ ⊥

48 84 38 73 84 98 4 70 41 78

Figure 2: The word ↔ FVP best-match graph for the SHAPE game (GS communication, l = 1). The algorithm
matched just 10 concepts to EC words out of 17 possible concepts.

CBM assesses word-to-concept matching, so it is
less affected by long messages and rules. However,
AMI and CBM are well correlated (Pearson 0.7
and 0.79 on the SHAPE and THING games).

The table also shows the rate of ambiguities and
paraphrases, exposed by our method. Ambigui-
ties happen when the same EC word is mapped to
different concepts. Table 1 shows higher rates of
ambiguities in GS compared to QT, and in longer
rules. Paraphrases are EC words that do not have
a best-matched concept node. Paraphrases occur
more with QT, which enables 32 and 64 unique
EC words for the SHAPE and THING games, while
these games have only 17 and 50 NL concepts, re-
spectively. GS allows setting the number of unique
words equal to number of concepts, thus is less
exposed to this sub-optimal phenomenon.

Finally, Unmatched concepts have no match-
ing EC word. They result from a too narrow or
underutilized channel. As Table 1 shows, GS com-
munication suffers from a high rate of unmatched
concepts (up to 0.5). This phenomenon can be ob-
served by the low # of unique words (18) compared
to # of unique concepts (50) for the THING game
with GS and l = 1. QT has a sufficient number of
words and thus no unmatched concepts.

Example Match. Beyond global scores, the
CBM provides an interpretable translation graph,
which maps EC words to NL concepts, facilitating
insights on reasons for sub-optimal communication.
Figure 2 shows an example graph for the SHAPE

game with GS communication.4 As seen, the al-
gorithm successfully matched 10 EC words to 10
concepts. The sender generated 11 unique words
in this experiment, indicating that one word is a
paraphrase of an already matched concept, even
within this narrow-channel setup.

6 Conclusion
We proposed a new procedure for assessing com-
positionality of emergent communication. In con-
trast to other evaluations, our procedure provides
a human-interpretable translation map of emerged
words to natural concepts. Moreover, our approach
provides detailed insights into the reasons for sub-
optimal translation. We demonstrated it on two
EC games with two different communication types.
Our evaluation reveals even that quantized commu-
nication performs better than Gumbel-softmax, yet
none exhibits compositionality in a level similar to
natural language.

4The exact configuration is given in Table 1, first row.
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Limitations
Our analysis is limited to datasets where gold label
phrases exist. The evaluated dataset should be com-
posable and the gold language should use finite set
of concepts. Preferably, these concepts can be clas-
sified into several categories. We further assume an
Oracle function that can divide the objects to tar-
gets an distractors during training. Importantly, our
approach does not require labels during training.
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Appendices

A Details on Evaluation Measures

We provide here information on how to calculate
the topographic similarity (TopSim) (Brighton and
Kirby, 2006; Lazaridou et al., 2018; Yao et al.,
2022) and adjusted mutual information (AMI) mea-
sures (Vinh et al., 2009; Mu and Goodman, 2021),
in the context of EC. Refer to the original papers
for full details.

Topographic Similarity. The topographic sim-
ilarity measures how messages align with the
object representations. Concretely, let cosij =
cos(xi,xj) = xi · xj/(||xi||2||xj ||2) be the co-
sine similarity of object representations xi and xj ,
and editij = edit(mi,mj) be the Levenshtein dis-
tance (Levenshtein et al., 1966) between messages
mi and mj . Let ncos = −{cosij}ij be the list of
negative cosine similarities, edit = {editij}ij the
list of Levenshtein distances, and R(·) the ranking
function. Then the topographic similarity is the
Spearman rank correlation of the two matrices:

Topsim = ρ(R(edit), R(ncos)) (2)

where ρ is the standard Pearson correlation.
Topographic similarity is a global metric that

does not require a reference language and can be
easily applied to every EC setup. However, despite
its popularity, recent studies found that topographic
similarity does not correlate well with success in
the task being played (Chaabouni et al., 2021; Yao
et al., 2022). More important, it does not provide a
mapping between EC atoms and NL concepts, and
thus cannot directly assess compositionality.

Adjusted Mutual Information. Given a test set
D, let M denote the set of messages generated
by the sender and L denote the set of NL phrases
(e.g., Red Triangle, Blue Square) exist as
labels in the data. The adjusted mutual information
(AMI) (Vinh et al., 2009) measures the mutual in-
formation between messages and labels, adjusted
for chance:

AMI(M,L) =
I(M,L)− E(I(M,L)

max(H(M), H(L))− E(I(M,L))
(3)

where I(M,L) is the mutual information between
M and L, H(·) is the entropy, and E(I(M,L)) is
computed with respect to a hypergeometric model
of randomness.

Figure 3: The SHAPE dataset, presenting one turn. Top
8 images are Yellow targets. Bottom 8 images are
distractors.

B Datasets
We use two datasets in our experiments. Both will
be made publicly available.

Shape. A visual reasoning dataset (Kuhnle and
Copestake, 2017) of objects over a black back-
ground. Our version of the dataset contains four
attributes: the shape attribute has five shapes, the
color attribute has six colors. To these we added
horizontal and vertical position attributes each with
three values. Overall, the SHAPE dataset contains
17 concepts, and a maximal labeling rule of 4 FVPs
which sum to 270 unique 4-concept labels. The
dataset contains many images that obey the same
label. See Figure 3 for an example.

Thing. A synthetic dataset of 100,000 objects
which we design for controlled experiments. Each
object in the dataset has five attributes, each with
10 possible values. Overall, the THING datasets
contains 50 concepts and a maximal labeling rule of
5 FVPs. We experiments with label lengths varied
from 1, describing a single concept, to 5, which
completely describes an object in the dataset.

C Implementation Details
We run all experiments over a modified version
of the Egg framework (Kharitonov et al., 2019).5

In our version the communication modules used
by the sender and the receiver are totally sepa-
rated from their perceptual modules, which we
term ‘agents’. The Quantized (QT) and Gumbel-
Softmax (GS) protocols are implemented at the

5Our modification is available at https://github.
com/bcarmeli/egg_qtc.
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Batch Num Num Cell Sender Sender Receiver Receiver
Size lr Targets Distr Type Hidden Embed Hidden Embed

10 0.0005 8/20 8/20 LSTM 60 60 40 40

Table 2: Hyper-parameters for the agents in the SHAPE game.

Exp Comm Label word Msg Best Best
Num Game Type Len Len Len Epoch ACC AMI Match

1 SHAPE gs 1 8 4 97 0.829 0.404 0.405
2 SHAPE gs 1 64 4 96 0.843 0.390 0.339

3 SHAPE gs 4 8 1 8 0.742 0.490 0.152
4 SHAPE gs 4 64 1 10 0.748 0.413 0.130

5 SHAPE qt 1 3 4 86 0.878 0.540 1.401
6 SHAPE qt 1 64 4 85 0.991 0.000 0.001

7 SHAPE qt 4 3 1 9 0.768 0.474 0.152
8 SHAPE qt 4 64 1 12 0.897 0.021 0.009

9 THING gs 1 8 4 83 0.793 0.102 0.091
10 THING gs 1 64 4 94 0.798 0.074 0.151

11 THING gs 4 8 1 97 0.655 0.016 0.052
12 THING gs 4 64 1 99 0.626 0.014 0.058

13 THING qt 1 3 4 96 0.838 0.267 0.119
14 THING qt 1 64 4 100 0.973 0.000 0.014

15 THING qt 4 3 1 26 0.622 0.020 0.057
16 THING qt 4 64 1 96 0.844 0.000 0.013

Table 3: Configurations for more SHAPE and THING game experiments. In these configuration we intentionally
define sub-optimal communication parameters in order to demonstrate the usefulness of the evaluation metrics.
Experiment results are provided in Table 4

Exp Unq Unq Unq Ung Totl Good Amb Phrs Totl Unm Par
Num Msgs Wrds Prs Cons Edgs Edgs Edgs Edgs Cons Cons Scor Prc Rcl

1 258 7 17 17 4k 1621 2379 0 1k 444 0 0.137 0.546
2 442 55 17 17 4k 1356 1724 920 1k 0 0.23 0.144 0.577

3 8 8 34 17 4k 610 390 0 4k 1457 0 0.61 0.152
4 44 44 34 17 4k 520 326 154 4k 0 0.04 0.52 0.13

5 238 8 17 17 4k 1605 2395 0 1k 385 0 0.144 0.577
6 1000 3899 17 17 4k 46 0 3954 1k 0 0.99 0.011 0.044

7 7 7 34 17 4k 607 393 0 4k 1727 0 0.607 0.152
8 974 974 34 17 4k 38 0 962 4k 0 0.24 0.038 0.009

9 543 7 50 50 4k 366 3634 0 1k 807 0 0.048 0.19
10 806 60 50 50 4k 601 3369 30 1k 0 0.01 0.1 0.399

11 8 8 901 50 4k 210 790 0 4k 3332 0 0.21 0.052
12 21 21 901 50 4k 233 767 0 4k 2267 0 0.233 0.058

13 412 8 50 50 4k 478 3522 0 1k 795 0 0.046 0.184
14 1000 3991 50 50 4k 57 0 3943 1k 0 0.99 0.013 0.052

15 11 6 901 50 4k 229 771 0 4k 3483 0 0.229 0.057
16 1000 1000 901 50 4k 50 0 950 4k 0 0.24 0.05 0.013

Table 4: Results for more SHAPE and THING game configurations described in Table 3. In these experiments we
intentionally define sub-optimal communication parameters in order to demonstrate the usefulness of the evaluation
metrics.
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communication layer. For GS we use an implemen-
tation provided by the Egg framework, where we
do not allow temperature to be learned, and set the
straight-through estimator to False. For QT we fol-
lowed parameter recommendations from Carmeli
et al. (2023) and use a binary quantization in all ex-
periments. Both GS and QT uses a recurrent neural
network (RNN) for generating multiple words in a
message. See Table 2 for RNN details.

The agents for the THING game use fully con-
nected feed-forward networks with input dimen-
sion of d = 270. Objects are encoded by concate-
nating five one-hot vectors, one per attribute. There
are 50 unique values and 4 communication words
(SOS, EOS, PAD, UNK), thus the total object rep-
resentation length is d = 270 The agents of the
SHAPE game are implemented with a convolutional
neural network similar to Mu and Goodman (2021).
Network hyper-parameters are provided in Table 2.
In the experiments, we report results when varying
the communication elements (word length and mes-
sage length). Experiments in Table 1 are done with
20 targets and 20 distractors, while experiments
reported in Tables 3 and 4 are done with 8 targets
and 8 distractors. Our main interest in this work is
to evaluate the emerged communication and not to
achieve the best possible performance, thus we did
not conduct a thorough hyper-parameter search for
the agents themselves.

We run all experiments on a single A100 GPU
with 40 GB of RAM. Model size is less than 10M.
We usually trained the model for 200 epochs which
took about 10 hours to complete. Our code will be
made publicly available upon de-anonymization.

D Evaluating Sub-optimal Configurations
Here we provide results from experiments with sev-
eral sub-optimal configurations and demonstrate
how CBM identifies these deficiencies. We report
configuration parameters for each experiment to-
gether with accuracy, AMI, and CBM Score in
Table 3. We report all CBM metrics for these ex-
periments in Table 4. Information from the two
tables is aligned by the experiment number (first
column).

Sub-optimal communication may stem from a
channel that is either too wide or too narrow. Nar-
row channels are restricted by a small number of
words and short messages. Wide channels allow
long words and/or long messages. Past studies
(Tucker et al., 2022) suggest that creating an in-
formation bottleneck by narrowing the channel en-
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Figure 4: Assessing CBM sensitivity to the size of the
evaluation set. We show results for two randomly se-
lected experiments. As seen, the CBM score stabilizes
when assessing datasets comprising more than 500 sam-
ples.

courages generalization. As seen, CBM scores for
most reported sub-optimal configurations are low.
Results from experiments 1, 2, and 5 are the only
ones for which the CBM score is higher than 0.2.
Experiment 6 (SHAPE) achieves almost perfect ac-
curacy (0.991) due to its wide channel. However,
the paraphrase score for this experiment is 0.989
showing that the sender uses many different words
to refer to the same concept. This phenomenon can
also be seen by the large number of unique words
(3899) generated for just 17 unique concepts. A
similar phenomenon is observed for the THING

game (experiment 14).
Experiment 11 (THING) uses a narrow channel.

The vocabulary contains only 8 words and the chan-
nel allows one-word-long messages. This configu-
ration resulted in 3332 concepts that do not match
any word. Interestingly, the number of unmatched
concepts remains high even when extending the
word length to 64, in experiment 12. We attribute
this sub-optimal phenomenon to GS communica-
tion deficiencies. The number of unique words
generated by the sender in this experiment is only
21 out of the possible 64 words allowed by the con-
figuration. For the SHAPE game, on the other hand,
the same wide-channel configuration resulted in 44
unique words generated by the sender for the 17
concepts available in this game and all concepts
have matched words.

Precision and recall. After finding the best
match, precision and recall between words and
concepts can be computed. We define message pre-
cision (Prc) and recall (Rcl) to be the number of
matched edges in a message, divided by the num-
ber of words or concepts, respectively. Precision
and recall add insights in situation where the num-
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ber of words in messages differs significantly from
the number of concepts used for labeling the data.
Experiment 5 (SHAPE) shows the highest recall,
gained partially due to the long message length
(four words) allowed by the channel, compared
to the label length (one concept) dictated by the
data. In contrast, experiment 3 (SHAPE) shows
the highest precision. Indeed, this configuration
restricts message the length to one word while the
data dictates four-concept long phrases.

E CBM Sensitivity to Dataset Size
We evaluated CBM scores on increased data sizes.
Figure 4 shows results for two randomly selected
experiments. The solid lines indicate the CBM
score, computed when accumulating data samples
in 100 quintets. The dashed lines indicate CBM
score calculated independently for 18 successive
data segments of 100 samples each. As seen,
scores stabilize for evaluation sets of size larger
than 500 samples. Interestingly, the 100-sample
scores (dashed) lines are higher than the accumu-
lated scores (solid lines). This is in line with our
insight that low evaluation sizes result in higher
match scores. Standard deviation for the 18 accu-
mulated measures is 0.009 and 0.016, for the two
experiments, respectively. Standard deviation for
the 18 segmented measures is 0.044 and 0.040, for
the two experiments, respectively.
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