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Abstract

Multi-word expressions (MWEs) present
unique challenges in natural language pro-
cessing (NLP), particularly within the context
of translation systems, due to their inherent
scarcity, non-compositional nature, and other
distinct lexical and morphosyntactic charac-
teristics, issues that are exacerbated in low-
resource settings. In this study, we eluci-
date and attempt to address these challenges
by leveraging a substantial corpus of human-
annotated Greek MWEs. To address the com-
plexity of translating such phrases, we propose
a novel method leveraging an available out-
of-context lexicon. We assess the translation
capabilities of current state-of-the-art systems
on this task, employing both automated met-
rics and human evaluators. We find that by
using our method when applicable, the perfor-
mance of current systems can be significantly
improved. However, these models are still
unable to produce translations comparable to
those of a human speaker.1

1 Introduction

Multi-word expressions (MWEs) are defined as
combinations of at least two words which exhibit
lexical, morphological, syntactic, semantic or sta-
tistical idiomaticity (Baldwin and Kim, 2009). Pro-
cessing MWEs has long been considered one of the
most challenging tasks in natural language process-
ing (NLP) (Ramisch et al., 2010), especially when
it concerns translation systems.

Despite neural models outclassing more tradi-
tional NLP techniques in many areas, the distinct
nature of MWEs makes it so that the generaliz-
ing abilities inherent in these approaches cannot
significantly increase performance. There is also
currently a significant lack of datasets and bench-
marks in this domain, especially for low-resource

1We publicly release all code and datasets produced for
this work: github.com/andhmak/dictMWE_MT

Standard ‘Unaided’ Greek-to-English Translation
src: Η γκλάβα του δεν κόβει καθόλου.
trg: His balaclava does not cut at all. X
Proposed ‘Aided’ Greek-to-English Translation
src: ‘κόβει η γκλάβα σε κάποιον’→‘to be smart’.
Η γκλάβα του δεν κόβει καθόλου.

trg: His mind is not sharp at all. ✓

Figure 1: Our proposed dictionary-aided translation
better translates multi-word expressions. The Greek
source sentence means “He is not sharp at all", but the
(incorrect) word-for-word translation is “His head does
not cut at all", with the specific Greek word used for
"head" rarely being used outside of this expression.

languages. Faithful automatic translation of MWEs
is particularly important in improving the perfor-
mance of general translation systems, given that
MWEs make up a significant amount (estimates
range from 11% to 40%) of the vocabulary in any
piece of text (Sag et al., 2002; Candito et al., 2021).

In this work, we use a large corpus of human-
annotated MWEs in Greek and we measure the
translation ability of current state-of-the-art sys-
tems on sentences containing these MWEs, both
automatically and with the help of human evalua-
tors. We focus on two tasks; standard "unaided"
translation, where the model is only provided with
the source sentence, and an "aided" version, where
we provide additional guidance on the translation
of the MWE used in the source sentence, taking
advantage of the available lexicon. An example of
both tasks is shown in Figure 1.
In short, we make the following contributions:

• We propose a new method for machine trans-
lation of in-context MWE using an out-of-
context lexicon.

• We evaluate the ability of current state-of-the-
art translation systems in handling text con-
taining MWEs, using a large and general test
set.
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2 Related Work

Previous research has explored the complexities
of processing MWEs in various tasks, includ-
ing MWE detection (Lai et al., 2023) as well as
translation-specific settings (Kabra et al., 2023),
such as in contrastive examples or metaphors, high-
lighting the need for specialized approaches. While
neural models have excelled in many NLP tasks,
their performance with MWEs remains suboptimal.
In certain sub-areas, such as detection, traditional
non-neural statistical methods remain remarkably
competitive (Constant et al., 2017; Pasquer et al.,
2020). This is theorized to be due to MWEs having
a lexical quality, meaning that they behave sim-
ilarly to out-of-vocabulary words when they do
not appear in their idiomatic usage in the train-
ing data (Savary et al., 2019). This problem is
therefore exacerbated disproportionately more for
lower-resource languages, such as Greek.

There has also been research in the domain of
dictionary-aided neural machine translation in a
general setting, concerning single one-word lem-
mas (Zhang et al., 2021). Older methods have
also attempted to leverage MWE dictionaries by
incorporating them into the non-neural, statistical
translation pipeline (Bungum et al., 2013), while
newer ones have tried adding the dictionary to the
training data of neural models (Arthur et al., 2016;
Zaninello and Birch, 2020). Our work borrows
ideas from the efforts towards terminology transla-
tion (Alam et al., 2021), which usually incorporates
hard (Dinu et al., 2019; Susanto et al., 2020), usu-
ally through constrained decoding (Post and Vilar,
2018; Hu et al., 2019), or soft constraints (Bergma-
nis and Pinnis, 2021) during decoding. Similar
techniques have also been employed for translating
rare words (Ghazvininejad et al., 2023) and termi-
nology in specific domains (Moslem et al., 2023;
Bogoychev and Chen, 2023).

In contrast, our method leverages the prompting
capabilities of Large Language Models to imbue
them with information from a MWE dictionary
(somewhat similar to the soft constraints) while
still taking advantage of their generalizing abilities.

3 Methodology

Our evaluation focuses on two tasks: standard ("un-
aided") and "aided" translation.

Unaided Translation In this task, the model
generates an output solely based on the provided

source sentence in a traditional manner.

Aided Translation This task is based on our pro-
posed method. The model receives each lone MWE
and its human-generated translations along with the
source sentence.

We already know from previous work (Baziotis
et al., 2023) that, at least in the current landscape,
it is not possible to reasonably translate passages
containing MWEs without them appearing in the
training data or a lexicon. By providing this lexicon
in a simple manner as part of the prompt, we aim
to measure the improvement in the output.

3.1 Dataset

We rely on a comprehensive corpus of human-
annotated Greek MWEs, providing a diverse and
representative set for evaluating translation models
on this specific task.

Specifically, we use the IDION dataset of Greek
MWEs (Markantonatou et al., 2019). This dataset
provides a large set of Greek verb MWEs in dictio-
nary form, as well as (possibly multiple) context-
unaware translations of these phrases. It also con-
tains 5750 Greek sentences, without an English
translation, matched to one of 916 MWEs. These
sentences have all been validated by linguists as
being grammatically correct and representative of
each MWE, from a larger set of Greek-language
data gathered from the internet. These 5750 sen-
tences form our MWE-focused test set.

4 Experiments

We use two state-of-the-art models for our exper-
iments. The first is No Language Left Behind
(NLLB; NLLB Team et al., 2022), a state-of-the-
art multilingual model specializing in low-resource
languages. We specifically use the 600M parameter
version due to computational resource constraints.
The second is GPT-4-0613 (OpenAI et al., 2023), a
large language model operating as a chatbot.

We then evaluate the various translations, both
in absolute and comparative quality, in different
ways, both manually and automatically.

Unaided Translation Under the unaided transla-
tion setting, we benchmark both models—NLLB
and GPT-4.

The NLLB model was provided simply with the
source sentence (in Greek), the source language
(Greek), and the target language (English). GPT-4
was provided with the following prompt:
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Can you translate the Greek text
"[source sentence]" into English?

Aided Translation Our aided translation pro-
posed method relies on the prompting capabilities
of LLMs, hence it is only applicable to GPT-4 and
not to NLLB. We now provide GPT-4 with the
following prompt:

Can you translate the Greek text
"[source sentence]" into English? For
context, the Greek multi-word expression
"[MWE]" can mean "[English meaning]",
"[possible other English meaning]", ...,
or "[possible other English meaning]".

4.1 Human Evaluation
For human evaluation, we employ 4 human an-
notators,2 all native Greek and fluent English-as-
a-second-language (ESL) speakers, to annotate a
subset (356 sentences) of the outputs.3 We set up
an annotation interface that provided the following
information:

1. The Greek source sentence.
2. The MWE in the source sentence in isolation.
3. The "unaided" translation generated by GPT-4

or NLLB.
4. The "aided" translation generated by GPT-4.

We did not tell the annotators which translation
was produced by which model. We asked them
to (a) choose the better translation of the two; (b)
to provide a quality rating from 1 (terrible) to 5
(perfect) for each one; and (c) to indicate whether
the MWE was correctly translated in each of the
MT hypotheses.

In cases where GPT-4 generated more than a
single translation, or provided more context apart
from the translated sentence, only the first output
sentence was taken into account.

Note that; in that first study, the choice of ESL
speakers might lead to untrustworthy results, as
the annotators might be unconsciously biased to
accept something closer to their native language as
correct. Hence, we also repeat the annotation study
with non-Greek-speaking English native speakers,
asking them only to rate the quality of the English
outputs, without any regard to its similarity to the
Greek source (which they cannot understand).

4.2 Automatic Evaluation with Quality
Estimation

Beyond human evaluation, we use COMET (Rei
et al., 2022) to benchmark automatic quality esti-

2One of them is also an author of the paper.
3Due to budget constraints.

Human Evaluation
Model general MWE

baselines
unaided GPT 2.6/5 43%
NLLB 1.6/5 23%

ours
aided GPT 3.7/5 75%

Table 1: Our method better handles MWEs and pro-
duces better translations overall. Average quality for
the translations produced with each method, as given
by Greek-speaking annotators. ‘general’ reflects overall
translation quality, while ‘MWE‘ is MWE-specific.

mation metrics. COMET tries to predict the quality
scores provided by expert annotators. These are
scores similar to the direct assessment ones, but
in practice COMET is trained to predict an overall
MQM score. More specifically, we obtained abso-
lute and relative scores, using the comet-score and
comet-compare functions, respectively, for every
set of outputs produced, namely the ones generated
by NLLB, and those generated by GPT-4, both in
the "aided" and "unaided" variants.

Note that reference translations are not available,
so we make use of a quality estimation model.4

Since human evaluators showed significant pref-
erence for "aided" GPT-4 outputs, we also evalu-
ated the other two translation sets using the former
as a reference. We did this in two ways, evaluating
first using all data, and then focusing on the subset
whose "aided" translations were rated as exemplary
(5 stars) by the annotators.

5 Results

Our human evaluations indicated that the "aided"
method using GPT performed significantly better
than the GPT-based "unaided" one, which in turn
outperforms the NLLB-based "unaided" method.
Quality estimation metrics generally agreed with
the human evaluations when it comes to this order
of quality.

In Table 1, we present the results obtained from
the Greek-speaking annotators. They rank "aided"
GPT as significantly better than "unaided" GPT,
with NLLB worse than both. However, even the
best model is subjectively rated noticeably worse
than a theoretical correct translation. The first col-

4The Unbabel/wmt20-comet-qe-da pretrained model,
which is trained on scores provided by human annotators,
which are then normalized into z-scores (hence they can be
negative).
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Model Human eval

unaided GPT 3.4/5
aided GPT 3.8/5

Table 2: Average fluency score of the English trans-
lations, given by native English-speaking (non-Greek)
annotators. Our method slightly improves fluency.

umn contains the quality of the translations as a
whole, while the second one concerns the correct-
ness of the translation of the MWEs exclusively,
irrespective of the rest of the sentence.

Additionally, when asked to explicitly choose
the best between the "aided" and "unaided" trans-
lations, humans judged "aided" GPT outputs to be
better than the "unaided" (78% of the time) and
than the NLLB (95% of the time).

In Table 2 we show the evaluations of the
English-speaking (but not Greek-speaking) anno-
tators, who only judged the quality of the output
without taking into account the input. We skipped
evaluating NLLB this way, as it was clearly worse
than the others. Here we find that our method not
only improves general translation quality, but it
also slightly increases the fluency of the output.

In Table 3, we depict the results obtained from
the COMET quality estimation model (without a
reference translation). These results are of limited
value, as the correct translations of sentences using
MWEs would diverge significantly from anything
a model with no lexical information could predict.
They also indicate NLLB’s significantly inferior
quality to the other models, but the order between
the two GPT methods is reversed.

We also attempt to better compare the two base-
lines, using high-quality (as judged by humans)
"aided" GPT outputs as a reference. Table 4 shows
the respective reference-based COMET scores. It
too indicates the same conclusion as the humans.
Under the same settings, we also explicitly found
this difference to be statistically significant for both
variations (all data and only high-quality ones),
with the null hypothesis being rejected when taking
p = 0.05. This was also the case when only using
100 samples, during initial testing.

Targetted versus Random Sentences Using any
random translation examples in the prompt has
been observed to improve translation quality in
certain cases, because they can help the LLM fo-
cus on the translation task (Zhang et al., 2023). It

Model COMET QE score

baselines
unaided GPT -0.0097
NLLB -0.1865

ours
aided GPT -0.0266

Table 3: Quality estimation of the translations produced
with each method, without using any reference transla-
tions (higher is better). Despite the shortcomings of this
evaluation, it mostly agrees with the others and NLLB
is confirmed to be significantly outmatched.

Model COMET ("aided" as ref)

baselines, all data
unaided GPT 0.77
NLLB 0.62

only high-quality references
unaided GPT 0.81
random GPT 0.76
NLLB 0.49

Table 4: Automatic evaluation (COMET, higher is bet-
ter) of the translations produced with each method, us-
ing the "aided" outputs as a reference. GPT translations
are better than NLLB, agreeing with human evaluations.

is reasonable, then, that the improvements we ob-
serve in our "aided" setting are due to this particu-
lar phenomenon, and not due to helping the system
translate specifically the target MWE. We therefore
also conduct a "random" GPT experiment, which
is similar to the "aided" one but instead uses an
MWE that is unrelated to the sentence being trans-
lated. We found that it indeed scores worse than
even the "unaided" variant under the above settings
(see Table 4), indicating that the improvement in
translation quality should indeed be attributed to
the information provided by the lexicon.

All human scores are normalised as explained in
Appendix B.

6 Discussion and Future Work

Our experimental results (§5) show that, at least for
the IDION dataset, our proposed "aided" method
for MWE translation through GPT-4 by providing
a pre-contextualized lexicon significantly outper-
forms the naive "unaided" GPT-4 usage, with both
producing better results when compared to state-
of-the-art MT models (NLLB). This is significant
as the latter is tailored specifically for use cases
similar to our experiment, namely translation of
lower-resource languages.
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However, under all settings, current models seem
to underperform in MWE translation. As estab-
lished previously, a lexicon is most likely required
to achieve human-level translations, but having a
context-agnostic lexicon and simply providing it to
the model, even if it has been generated by humans
and correctly mapped to each instance, appears to
not be enough to reach this level, although it does
significantly improve performance.

We hypothesize that English speakers seem to
prefer the same system as English-Greek bilinguals
because the model avoids awkward word-to-word
translations. So while they cannot tell whether
the translation is adequate, they can penalize cases
where a literal translation is obviously nonsensical.

Moreover, it seems that GPT, on accessing its
own evaluation, might amend its answer. We there-
fore also attempted further improving GPT-4’s out-
put by giving it the chance to evaluate its previous
response and possibly change it (details provided
in Appendix A). It did not seem to significantly
help, as it was found to rate itself highly and barely,
if at all, change its translation.

Future Work We believe that it would be worth-
while to professionally translate our dataset and
extend it to more languages, thus providing the
necessary context in bilingual settings, making it
useful for training NMT models on MWEs.5 More-
over, since current automatic evaluation methods
present several shortcomings, our translated dataset
could generally be used for benchmarking the MT
abilities when it comes to MWEs.

In the era of LLMs, perhaps we should reeval-
uate how we construct dictionaries. LLMs learn
more effectively from more context, so rather than
providing simple definitions with minimal disam-
biguating example usages, lexicographers could
focus on providing more and longer examples.

7 Limitations

Human and automatic evaluations seem to gener-
ally agree with each other, but we acknowledge
that, due to the lexical nature of our task, without
a reference translation, quality estimation models
(such as the Unbabel one we use) cannot be relied
upon to offer trustworthy results.

We also acknowledge that since the evaluators
are all primarily native Greek speakers, they may
have been influenced in their evaluation of word-
for-word translations into English, as they would

5Unfortunately we lack the funds to do so ourselves.

have made sense to them and it could occasion-
ally have been difficult to know how natural they
would sound to native speakers. We attempted to
mitigate this issue with our English-speakers eval-
uation experiment, but ideally one would employ
native English speakers that also understand Greek.

8 Ethics Statement

We believe that our work does not introduce any
significant additional risks other than those inherent
in the models used.

We have obtained permission from all annota-
tors to publish the data they produced in the con-
text of this paper. The annotators were volunteer
co-authors and co-workers, and no monetary com-
pensation was provided for their involvement.

The content of IDION is available under a CC-
BY-NC license, in XML format. Their usage in this
project is therefore consistent with its intended use.
All models we use come with permissive licenses,
at least when it comes to research.
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A GPT-4 self-evaluation and translation
amending

While maintaining the conversation context after
each initial translation, we provided the following
prompt:

’Would you evaluate your translation
positively? Give a 1-5 score, and change
your response to improve it if necessary.

Format your response as: "X/5<new
translation (if applicable)>", don’t

include any other explanation.’

B Normalization of human annotations

Since not all human annotators reviewed the same
sentences for each model (most only annotated
"aided"/"unaided" GPT pairs (task I), while some
also annotated "aided" GPT/"unaided" NLLB pairs
(task II)), we normalized the results so that they are
comparable.

Therefore, if the set of all participants is K and
Nk is the set of all annotation scores by participant
k on task I, the average for task I is defined as:

∑︂

k∈K

∑︂

i∈Nk

i

|K| · |Nk|

If L(⊂ K) is the set of all participants that also
annotated task II, and Ml is the set of all annotation
scores by participant l on task II, the normalized
average for task II is defined as:

∑︂

l∈L

∑︂

i∈Ml

i

|L| · |Ml|
·
∑︁

k∈K
∑︁

i∈Nk

i
|K|·|Nk|∑︁

i∈Nl

i
|L|·|Nl|

These values, rounded to the nearest decimal, are
what is displayed in the relevant tables in Section
5.
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