
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 6662–6673
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

6662

Criteria for Useful Automatic Romanization in South Asian Languages

Işın Demirşahin†, Cibu Johny†, Alexander Gutkin†, Brian Roark‡

Google Research
†United Kingdom ‡United States

{isin,cibu,agutkin,roark}@google.com

Abstract
This paper presents a number of possible criteria for systems that transliterate South Asian languages from their native
scripts into the Latin script, a process known as romanization. These criteria are related to either fidelity to human linguistic
behavior (pronunciation transparency, naturalness and conventionality) or processing utility for people (ease of input) as well
as under-the-hood in systems (invertibility and stability across languages and scripts). When addressing these differing criteria
several linguistic considerations, such as modeling of prominent phonological processes and their relation to orthography, need
to be taken into account. We discuss these key linguistic details in the context of Brahmic scripts and languages that use them,
such as Hindi and Malayalam. We then present the core features of several romanization algorithms, implemented in a finite
state transducer (FST) formalism, that address differing criteria. Implementations of these algorithms have been released as
part of the Nisaba finite-state script processing library.

Keywords: transliteration, romanization, South Asian languages, Brahmic scripts

1. Introduction
Transliteration is the conversion of language repre-
sented in one script to the same language represented
in another script (Wellisch, 1978). For example, the
Russian word “гласность” is most often transliterated
into the Latin script as “glasnost”. While translation
involves a change in language – e.g., “гласность” be-
comes “transparency” when translated to English –
transliteration, in contrast, exactly preserves the linguis-
tic content, i.e., “glasnost” is still a Russian word (just
written in a different script). Beyond isolated words or
names transliterated in the news, whole sentences can
be transliterated, such as “idet sneg” which is Russian
for “it is snowing”, which would normally be written
“идет снег” in the Cyrillic script.

Romanization is the special case of transliteration
where the target script is the Latin script. It is not
a special case due to any particular characteristics of
the transliteration problem when the Latin alphabet is
involved; rather because it is so common. It is par-
ticularly common in South Asia, where many factors
have caused romanization of these languages to be ubiq-
uitous. Despite this ubiquity, there is generally no
standard orthography for South Asian languages in the
Latin script, leading to wide variability.

When automatically romanizing South Asian lan-
guages, the “right” choice often depends heavily on the
use case. In this paper, we present a number of distinct
criteria for producing romanizations, and describe sev-
eral approaches to providing romanizations that satisfy
these (sometimes conflicting) criteria across a number
of languages and scripts. Briefly, these criteria are: in-
vertibility; pronunciation transparency; ease of input;
naturalness; conventionality; and stability across lan-
guages and scripts— see Section 3 for a full description

of these criteria. No romanization system can fulfill all
of these criteria, but a particular use case, such as pre-
senting a phrase to be read aloud, may favor certain cri-
teria over others (e.g., pronunciation transparency), and
different romanization systems can be used to support
these varied scenarios.
After presenting background on romanization in

South Asia and related work in automatic translitera-
tion, wewill go into depth on our identified criteria with
examples from existing romanization standards and text
corpora. We will then present several algorithms imple-
mented in the Nisaba library1 (Johny et al., 2021), with
a particular focus (for ease of exposition) on Hindi and
Malayalam.

2. Background
2.1. Romanization in South Asia
The documented history of romanization in South Asia
begins with the early work of Jesuit Catholic mis-
sionaries in late 16th century in South India (Veliath,
2011; Amaladass, 2017; Mahboob and Rahman, 2017;
Flüchter and Nardini, 2020) and Bengal (Chakrabortty
and Chakrabortty, 1976; Mahboob and Rahman,
2017). Dealing with local languages, such as Konkani,
Marathi, Tamil and Bengali, the missionaries often re-
sorted to transcribing these languages in the Latin script
due to the lack of types for native scripts, such as
Devanagari (Veliath, 2011). Following the establish-
ment of British colonial rule in the late 18th century,
many romanization strategies for Brahmic and Perso-
Arabic scripts were proposed, but none of them, includ-
ing the Hunterian system endorsed by the governments
in India, Bangladesh and Pakistan, gained wide accep-
tance (Iyengar, 2015).

1https://github.com/google-research/nisaba/

https://github.com/google-research/nisaba/

6663

In the early years of machine readable text, poor en-
coding and font support led to the widespread use of
the Latin script for text input in languages natively us-
ing other scripts, even those using alphabets such as
Cyrillic (Jones, 1975; Sen and Sur, 1979; Sinha and
Srinivasan, 1984; Mukhopadhyay et al., 1985). In the
current era of widespread mobile computing, virtual
keyboards for alphabets are relatively straightforward,
but other writing systems are often input using roman-
ization systems such as Pinyin for Chinese (Li and Li,
2019). In South Asia, the Brahmic scripts are challeng-
ing to input directly in mobile text entry (see e.g., Hell-
sten et al., 2017), yet these languages lack a common
standard romanization system; even so a significant por-
tion of on-line text in these languages is written in the
Latin script (Pavan et al., 2010; Krishnan et al., 2021).

2.2. Automatic Transliteration
Machine transliteration is a well-studied area. Early
work on automatic transliteration between writing sys-
tems (mostly East Asian, Perso-Arabic and Latin
scripts) was driven by the needs of statistical machine
translation or information retrieval systems, and hence
was generally focused on proper names and/or loan-
words (Arbabi et al., 1994; Knight and Graehl, 1998;
Chen et al., 1998; Wan and Verspoor, 1998; Jung et al.,
2000; Al-Onaizan andKnight, 2002; Virga andKhudan-
pur, 2003; Li et al., 2004). Antony and Soman (2011)
provide an overview of the early statistical transliter-
ation systems for major Indian languages and offer
a crude taxonomy of statistical approaches dividing
them into pure grapheme-based (Lee and Choi, 1998),
those utilizing phonological knowledge (Knight and
Graehl, 1998), and hybrid, or correspondence-based,
models (Al-Onaizan and Knight, 2002). Additional
more comprehensive surveys on statistical methods for
machine transliteration are provided by Karimi et al.
(2011), and Prabhakar and Pal (2018). The progress
in this area, especially in data-intensive methods re-
viewed below, has been hindered by a relative scarcity
of transliteration corpora for South Asian languages, al-
though this situation has been gradually improving in
recent years (Bhat et al., 2014; Khapra et al., 2014;
Kunchukuttan et al., 2015; Roark et al., 2020).

With recent advances in neural methods for
NLP (Conneau et al., 2020) and increased availability
of resources for South Asian languages, both in terms
of corpora and pretrained models (Kakwani et al., 2020;
Khanuja et al., 2021), there has been a renewed interest
in romanization techniques. This is primarily driven
by recent successes in multilingual neural language
modeling and neural machine translation (NMT),
where romanization is generally beneficial as a mecha-
nism for unifying multi-script training and adaptation
data (Chakravarthi et al., 2019; Chakravarthi et al.,
2020; Datta et al., 2020; Amrhein and Sennrich, 2020;
Zhang et al., 2020; Khatri et al., 2021; Appicharla et al.,
2021), especially for related languages (Muller et al.,

2021). In addition, romanization was shown to benefit
diverse downstream multilingual NLP tasks, such as
morphological analysis (Hauer et al., 2019; Murikinati
et al., 2020), named entity recognition (Huang et al.,
2019) and part-of-speech tagging (Cardenas et al.,
2019).
In the above-mentioned NLP systems, the romaniza-

tion component is most often rule-based, implemented
using one of the popular transliteration libraries (Herm-
jakob et al., 2018; Kunchukuttan, 2020; Rajan, 2020).
One reason for this is related to the invertibility criterion
that we mentioned earlier. Invertible romanization sys-
tems avoid information loss during romanization, a con-
sideration that has been shown to be beneficial for some
multilingual methods (Amrhein and Sennrich, 2020).
Such requirements are easier to satisfy with rule-based
approaches than with learned systems.
There is also active work on transliteration per se

investigating learned sequence-to-sequence modeling
approaches (Patel et al., 2020; Kunchukuttan et al.,
2021; Ryskina et al., 2021). In the context of back
transliteration (or, deromanization), recent work in-
cludes efficient finite state-based techniques for in-
put methods (Hellsten et al., 2017; Wolf-Sonkin et
al., 2019); back transliteration of informal code-mixed
text (Riyadh and Kondrak, 2019); and noisy chan-
nel methods modeling both phonetic and visual ortho-
graphic similarity (Ryskina et al., 2020). The bulk of
this work is focused on naturally occurring romanized
text, hence simuluated training data for such tasks (one
use for automatic romanization) would focus on the nat-
uralness and conventionality criteria rather than invert-
ibility.
In this paper, we focus on algorithms for romaniza-

tion based on explicit grammars compiled into finite-
state transducers, rather than learned models of roman-
ization. As mentioned above, such approaches can pro-
vide useful benefits to downstreammodeling tasks, e.g.,
those that perform better with lossless (or less lossy)
transliterations. They can also provide a starting point
for modeling in the face of data sparsity, which is a
consideration for many of the South Asian languages
included in the Nisaba library (see next section). Ul-
timately, hybrid solutions that both encode linguistic
knowledge and learn from whatever data is available
will likely provide the best results. The algorithms in
the current paper provide a basis for exploring such ap-
proaches.

2.3. Nisaba Library
The Nisaba library (Johny et al., 2021) is a collec-
tion of utilities for performing low-level script pro-
cessing for South Asian scripts, particularly Brahmic
scripts. These operations include visual normalization,
whereby legacy Unicode encodings are converted to
their visually-indistinguishable canonical forms; valid-
ity checks to ensure that strings are legible; and re-
versible transliteration. The library uses OpenFst (Al-

6664

lauzen et al., 2007) and Pynini (Gorman, 2016) to pro-
vide easy-to-interpret script- and language-specific re-
sources that are efficiently compiled into finite-state
transducers for processing strings. Recent updates to
the library (Gutkin et al., 2022) extend functionality to
many more scripts and languages, as well as adding a
second form of reversible transliteration that we will
discuss in the next section.

3. Criteria for Useful Romanization
In this section, we discuss at greater length the di-
verse (but not necessarily exhaustive) criteria that we
have identified as impacting the utility of romanization
in various scenarios: invertibility; pronunciation trans-
parency; ease of input; naturalness; conventionality;
and stability across languages and scripts.
Invertibility of romanization means that the result

can be transliterated back to the exact original input
string. With some minor exceptions, this a characteris-
tic of the ISO 15919 standard (ISO, 2001), which maps
between Brahmic scripts and the Latin script in both
directions. For example, the Hindi word अȺताल is ro-
manized in ISO 159192 as “aspatāla”. This is invert-
ible because the extended Latin script string directly
encodes the individual Unicode codepoints from the
original Devanagari string3: ‘a’ represents Devanagari
Letter A (U+0905: अ); ‘spa’ represents the letter SA
(U+0938: स), followed by the vowel canceling sign Vi-
rama (U+094d: ◌)् and the letter PA (U+092a: प); ‘tā’ rep-
resents the letter TA (U+0924: त) followed by the vowel
sign AA4 (U+093e: ◌ा); and finally ‘la’ represents the
letter LA (U+0932: ल). Invertibility is beneficial, for ex-
ample, in situations where it is preferable to process the
Latin script string system-internally for whatever rea-
son, while preserving the ability to output the result in
the original script. Examples of such scenariosmight in-
clude calculation of some kind of baseline edit distance
between tokens written in different scripts.
The Nisaba library includes a version of reversible

ISO 15919 transliteration, extended to include Unicode
characters added after the standard was created. Re-
cent extensions to the library (Gutkin et al., 2022) add a
second reversible transliteration for a subset of the lan-
guages, which differs from ISO 15919 in using only ba-
sic ASCII characters on the Latin script side.
As convenient as these invertible representations are,

their pronunciation transparency is generally low. In
the particular example above, the word final vowel
is not pronounced (known as schwa deletion), some-
thing that is not explicitly marked with virama. A

2As implemented in the Nisaba library (Johny et al., 2021):
https://github.com/google-research/nisaba/.

3There is not always a one-to-one correspondence be-
tween symbols, hence some context may be required to dis-
ambiguate between alternatives.

4The ā symbol can also represent an independent long
vowel in other contexts.

more pronunciation-transparent romanization would be
“aspatāl”. In general, however, pronunciation trans-
parency and invertibility will conflict, since multiple
words written distinctly in the native script will share
pronunciations. Alternative pronunciation-transparent
romanizations restricted to the basic Latin script with-
out diacritics — such as “aspataal” in the current case
—may be preferred due to ease of input. This latter cri-
terion of input ease was a key rationale for the second
reversible transliteration method mentioned above, that
uses only basic ASCII.
Naturalness and conventionality are criteria that may

move romanization away from pronunciation trans-
parency. Naturalness refers to the way speakers of the
language tend to spontaneously romanize words. For
example, individuals may or may not choose to repre-
sent long vowels by doubling the vowel in the Latin
script, which would lead to the above example being
romanized as “aspatal” with neither doubling nor dia-
critics to indicate the long vowel. General tendencies
regarding explicit marking of processes like consonant
and vowel doubling or aspiration can move away from
perfect correspondence to pronunciation, and the result-
ing variation is often present in human produced roman-
izations such as those provided in the Dakshina dataset
(Roark et al., 2020). Conventionality may apply for
a subset of words with a standard spelling, e.g., for
English loan words. For the current example, despite
the absence of initial aspiration (as in some English di-
alects), individuals may choose to romanize the word as
“hospital”. Both naturalness and conventionality influ-
ence how people spontaneously romanize and must be
accounted for by any automatic methods that attempt to
be guided by actual human linguistic behavior.
Finally, stability across languages and scripts

refers to romanizations of the same word from differ-
ent scripts. In certain processing scenarios, one might
prefer that the same word written in different scripts
(e.g., proper names, loan words, etc.) would yield the
same romanization, so that it can be seen to be the
same word. For example, multilingual speech recog-
nition training for languages using multiple scripts can
be achieved by romanizing the transcripts from all of
the languages, training the models, then transliterat-
ing back into the original script after the recognizer
transcribes the speech (Datta et al., 2020). Gener-
alization across languages will occur when the same
words are represented similarly across the languages.
For example, the Bengali word হাসপাতাল yields an ISO
15919 romanization of “hāsapātāla”, and would have
pronunciation-transparent and/or natural romanizations
of “haaspaataal” or “haspatal”, none of which exactly
match the Hindi version of the loan word. Only the
conventional English spelling of “hospital” would yield
identity across the languages. Given the prevalence of
common loan words through the languages of South
Asia, this is a tricky condition yet potentially important
for effective multilingual language processing.

https://github.com/google-research/nisaba/

6665

4. Multiple Criteria Brahmic Script
Romanization

In this section we present an approach to romanization
of Brahmic scripts that attends to several of the above
criteria – particularly pronunciation transparency, natu-
ralness, conventionality and stability across languages
and scripts. Before jumping into the implementation
specifics, we cover some key linguistic considerations
required to adequately address common phenomena in
the scripts. Our approach maps from the ISO 15919 re-
versible romanization to one of several alternative out-
puts via a common internal representation that allows
for pronunciation-, naturalness- and convention-driven
operations.

4.1. Key Linguistic Details
For romanization, we apply a variety of operations to
an input ISO 15919 string that are driven either by pro-
nunciation or language- or task-specific transliteration
conventions. The most prominent phonological opera-
tions that are reflected in romanization are handling of
the inherent vowels, place assimilation of nasal mark-
ers, and voicing.

Inherent vowels: In Brahmic scripts, consonant sym-
bols bear an inherent vowel (schwa), which can be over-
ridden by a dependent vowel sign attached to the con-
sonant, or deleted by a virama (Bright, 1999). Some
scripts do not always explicitly mark the inherent vowel
deletion, whereas others might have separate symbols
for a subset of vowels without inherent vowels. For ex-
ample, Hindi, Malayalam, and Telugu handle the conso-
nant cluster in the word “Farsi” in three different ways.
The Telugu word “ఫారీస్” (pʰārsī) uses the explicit dele-
tion marker virama “◌్ ” to indicate that there is no in-
herent vowel after the letter “ra” “ర”. The Malayalam
word “ഫാർസി” (pʰāṟⸯsi) uses the “chillu rr” symbol
“ർ” which does not bear an inherent vowel. The Hindi
word “फ़ारसी” “fārasī” does not have any explicit mark-
ers for schwa deletion for the Devanagari letter “ra” “र”.
The Hindi case requires the reader to either know the
word, or have a heuristic for deciding whether an inher-
ent vowel is pronounced or not (Pandey, 1990). See
Section 4.2 for specific details on how we handle this
problem.

Nasal assimilation: Nasal markers such as anusvara
and candrabindu are assimilated to the place of artic-
ulation of the following consonant in many languages
using Brahmic scripts, such as Assamese (Dutta, 2019,
p. 187) and Hindi (Pandey, 2007). Assimilation can
happen at a wide range of places of articulation such
as labial, dental, alveolar, velar and retroflex, depend-
ing on the language, and romanized as labial “m” or
non-labial “n”. For example, in Hindi “चंदा” (caṁdā) is
typically romanized as “chanda” while “चंबा” (caṁbā)
is usually romanized as “chamba”. When there is no
following consonant, the nasal marker anusvara can in-
dicate a nasalized vowel and transliterated as “n”, for

example in the Hindi word “आयातों” (āyātoṁ) “ayaton”.
Or it can be pronounced and transliterated as a conso-
nant, such as “m” as in Malayalam “അക്കം” (akkaṁ)
“akkam”, Telugu “అంగం” (aṁgaṁ) “angam” and Kan-
nada “ಕಲಂ” (kalaṁ) “kalam”.

Voicing: In languages like Malayalam and Tamil,
voiceless stops can be voiced in certain contexts (Asher
and Kumari, 2012; Annamalai and Steever, 2019). For
example, in Malayalam “കടൽ” (kaṭal) “kadal”, the
retroflex “ṭ” is voiced in the intervocalic position and
it is transliterated as “d”. In Tamil “தூங்க” (tūṅka)
“thoonga” the “k” after the nasal is voiced and translit-
erated as “g” when followed by a vowel.

Additional adjustments: There are additional
pronunciation-driven adjustments. These are not
phonological operations that occur in certain con-
texts, but they increase the overall pronunciation
transparency of the romanized string. For example,
appending a vowel to the vocalic letters as in Hindi
“कृष्ण” (kr̥ṣṇa) “krishna” and Kannada “ಹೃದಯ” (hr̥daya)
“hrudaya”. Some clusters consistently have a different
pronunciation, for instance “jñ” clusters are commonly
pronounced as palatalized velars and are transcribed
as “gy” as in Hindi “अज्ञान” (ajñāna) “agyaan”. The
Malayalam “rra virama rra” cluster denotes a gemi-
nated alveolar “t” as in “കുറ്റം” (kuṟṟaṁ) “kuttam”.
The same character sequence in Tamil is transliterated
“tr” as in “குற்றம்” (kuṟṟam) “kutram”.

Not all romanization operations are driven by pro-
nunciation. Some natural transliteration conventions
can introduce instability across scripts. For example,
in some languages like Malayalam, Tamil and Kan-
nada, the dental “t” is often transliterated as “th”, as
in Malayalam “താൾ” (tāḷⸯ) “thal” and Tamil “தூங்க”
(tūṅka) “thoonga”. Thus “h” is used in these languages
in this context to distinguish the dental from alveolar
and retroflex “t”. However, “h” is more typically used
when romanizing other languages/scripts to indicate as-
piration, so that “th” would typically only result from an
aspirated dental. We introduce different output options
in Section 4.2 that provide more similar output strings
for similar input strings across different scripts.

Transliteration conventions for some of the long vow-
els can affect the pronunciation transparency negatively
for readers who are unfamiliar with the conventions.
While simply doubling the vowel to transliterate a long
vowel is both common and closer to pronunciation,
there are other conventions. A very common one is to
simply use a single letter, making it ambiguous with
the short vowel as in Hindi “फ़ारसी” “fārasī” “farsi”. An-
other commonly seen convention is to transliterate a
long “u” as “oo” or a long “i” as “ee”, as in Tamil
“தூங்க” (tūṅka) “thoonga” and Telugu “వీధి” (vīdʰi)
“veedhi”, respectively.

6666

hiṁdī

iso2typ

(h) (i) (ans) (d) (ii)

typ2txn

(h=h) (i=i) (ans=nsl) (d=di) (ii=i_l)

phon-ops

(h=h) (i=i) (ans=ni) (d=di) (ii=i_l)

PSAF PSAC NAT ISO∗, IPA

hindii hindi hindi ISO∗: hin̊dī
IPA: hindi:

Figure 1: Diagram representing the main romanization
components that operate on the input string “hiṁdī”.

4.2. Implementation Details
In this section, we present specific implementation
details of our approach, which maps from Brahmic
script input to a number of possible outputs, via
language/script-specific grammars written in either
Thrax (Roark et al., 2012) or Pynini (Gorman, 2016;
Gorman and Sproat, 2021) — the toolkits for repre-
senting and compiling regular expressions and context-
dependent rewrite rules into finite state transducers
(FSTs).5 We present our approach as a series of stages,
following the diagram in Figure 1.

4.2.1. Input Format
Wemake use of existing ISO 15919 romanization (ISO,
2001) so that the initial native script input to our ap-
proach is that romanized form. We assume that this cor-
responds to a string that has been visually-normalized to
the canonical representation of visually identical strings.
This reduces the number of alternatives that must be
covered in the grammar.6

4.2.2. Intermediate Stages
Ease-of-input mapping: Since various grammars
processing the input must be written — and for ease of
interpretation — we first map this input romanization
to an internal representation that uses only basic ASCII
symbols (iso2typ in Figure 1).
Default phoneme mapping: The output of iso2typ
is mapped to a default sequence of phonemes (typ2txn
in Figure 1), following the unified phonological repre-
sentation approach of Demirşahin et al. (2018). That
paper focused on reducing the amount of training data
required for text-to-speech systems by sharing data

5Our full implementation in Pynini can be found
at https://github.com/google-research/nisaba/tree/
main/nisaba/scripts/brahmic/natural_translit.

6See Johny et al. (2021) for script transformations, NFC
and beyond, that preserve visual invariance.

across South Asian languages, which required a phono-
logical representation general enough to cover the 11
major Indo-Aryan and Dravidian languages (Bengali,
Gujarati, Hindi, Kannada, Malayalam, Marathi, Nepali,
Sinhala, Tamil, Telugu and Urdu). By using such a rep-
resentation, we gain some traction on the issue of sta-
bility of romanization across languages, while still ad-
dressing pronunciation transparency.

Phonological operations: The default phoneme rep-
resentation is then put through a number of common
phonological operations (phon-ops in Figure 1), such
as those discussed in Section 4.1. For example, schwa
deletion is handled at this stage. We recast this as a gen-
eral inherent vowel problem, which is dealt with via an
insertion operation rather than deletion as is commonly
used, i.e., we treat schwa as an epenthetic vowel (Hall,
2011).

Specifically, for schwa deleting languageswe start by
assuming all inherent vowels are silent, and insert only
those that are required by the phonotactics. A possible
inherent vowel is inserted if it is: (a) the first vowel of
the word; (b) the last vowel before the last consonant(s)
of the word; or (c) required as the nucleus of the syllable
(before the coda cluster or after the onset cluster).

4.2.3. Output Types
After the phonological operations are applied, there
are five different outputs that we can produce: natural
transliteration (NAT); fine and coarse Pan-South-Asian
romanization (PSAF and PSAC, respectively, in Fig-
ure 1); ISO-pronunciation (ISO∗); and IPA. We discuss
each of these in turn.

Natural transliteration: Natural transliteration is in-
tended to be as close as to the natural user behaviour
as possible. However there is no one true way to rep-
resent the user behaviour; not only because it is not
standardised but also because it can be context and
task dependent. Let’s take the Hindi phrase “मैं वाटरलू
गया” (maiṁ vāṭaralū gayā) in the context of a text mes-
sage. If the user is romanizing the phrase to use a Latin
keyboard as an input method with the expectation that
the display text is going to be converted to Devana-
gari, they may choose to romanize it as “main vatarlu
gaya” which matches the intended Devanagari charac-
ters somewhat closely. If the user intends the message
to be displayed in Latin, maybe because the messaging
app does not support Devanagari, the phrase can be ro-
manized as “main waterloo gaya”. This romanization
may be perceived as more natural and it is more stable
across scripts and languages, but due to the English or-
thography it loses some pronunciation transparency.

The natural transliteration output of our grammars
aims to capture the user behaviour for text that is in-
tended to be displayed in Latin, within the limitations
of rule based grammars. Following the user behaviour
we use only ASCII characters, which increases the
ease of input but loses invertibility. Since it reflects

https://github.com/google-research/nisaba/tree/main/nisaba/scripts/brahmic/natural_translit
https://github.com/google-research/nisaba/tree/main/nisaba/scripts/brahmic/natural_translit

6667

English Word Hindi Malayalam
Deva ISO PSAF PSAC Mlym ISO PSAF PSAC

“Hindi” ɫहʌदʍ hiṁdī hindii hindi ഹിന്ദി hindi hindi hindiɟहन्दʍ hindī

“India” इंɟडया iṁḍiyā indiyaa indiya ഇന്ത്യ intya indya indya
ഇൻഡ്യ in’ḍya

Table 1: Native Devanagari and Malayalam strings and three corresponding romanization types: ISO-like, fine-
grained pan-South Asian (PSAF) and coarse pan-South Asian (PSAC).

some of the phonological operations, such as nasal
place assimilation and voicing, natural transliteration
has more pronunciation transparency. However, we fol-
low common romanization conventions such as differ-
ent treatments of long vowels and gemination, which
can negatively affect the pronunciation transparency
and stability across scripts as discussed in Section 4.1.
For example, the NAT transliteration for Malayalam
“േകൾക്കാത്ത” (kēḷⸯkkātta) is “kelkkaatha”. In this
form, the first long vowel is transliterated as a sin-
gle “e”, therefore introducing ambiguity for the vowel
length, whereas the second vowel is transliterated as
“aa”. The first gemination is transliterated as two let-
ters, whereas the second one, marked as dental with an
“h”, is not geminated in the transliteration. The same
ISO substring “ātta” can have a completely different
natural transliteration in another language, for exam-
ple in Hindi “उदाȉ” (udātta) “udatt”. The NAT format
favours naturalness and conventionality over pronunci-
ation transparency and stability across scripts by align-
ing with language and script specific user behaviour
where it is contextually predictable.
Note that the recovery of an accurate English orthog-

raphy is beyond the scope of rule based grammars, since
it requires classification of the word as being English-
origin.
Pan-South Asian transliteration: Pan-South Asian
transliteration is a representation that favours consis-
tency and stability above all else. There are two lev-
els of this transliteration, shown in Table 1. The
fine-grained level (PSAF) is a pronunciation-informed
romanization of the token that ignores any language
or region specific natural transliteration conventions.
The PSAF output for For Malayalam “േകൾക്കാത്ത”
(kēḷⸯkkātta) is “keelkkaatta”, where both long vow-
els and both geminations are explicitly transliterated,
and the language-specific dental marking is not applied.
At this level, different spellings of the same word in
one language are expected to have the same romaniza-
tion, while the similarity of the romanization of the
same word in different languages will increase com-
pared to the ISO romanization. For example, in Hindi,
the word “Hindi” has two spellings: “ɫहʌदʍ” (hiṁdī) and
“ɟहन्दʍ” (hindī), both have the same PSAF romanization
“hindii”. The Malayalam counterpart “ഹിന്ദി” (hindi)
has the PSAF romanization “hindi”. Similarly, the
word “India” has two spellings in Malayalam: “ഇന്ത്യ”

(intya) and “ഇൻഡ്യ” (in’ḍya), both PSAF romanized as
“indya”, while the Hindi counterpart “इंɟडया” (iṁḍiyā) is
indiyaa.

The coarse-grained Pan-South Asian transliteration
(PSAC) is deliberately under-specified in order to cap-
ture the similarity of tokens from different languages
and scripts by choosing the shortest or the simplest
form among the variations attested across languages
and scripts, such as shortening long vowels or dropping
geminations. For example, the word “Hindi” ends with
a long vowel in Hindi “ɫहʌदʍ” (hiṁdī) and a short vowel
in Malayalam “ഹിന്ദി” (hindi). The PSAC romanization
for both words is “hindi”.

ISO-pronunciation: The aim of this output form is to
reflect the phonological operations that are relevant to
the natural romanization on an ISO-like representation
that preserves reversibility by using superscripts, sub-
scripts, and diacritics. For example, the unpronounced
inherent vowel in “फ़ारसी” “fārasī” “farsi’ in the ISO-
pronunciation fārasī is represented as a superscript. The
nasal in “ɫहʌदʍ” (hiṁdī) “hindi” is assimilated to an “n”
with a combining ring above that marks its origin as an
anusvara in the ISO-pronunciation “hin̊dī” . If there are
no phonetic operations like place assimilation, voicing,
or schwa deletion, the output of ISO-pronunciation re-
mains the same string as ISO.

ISO-pronunciation favours invertability over all else,
while increasing pronunciation transparency. It is not a
phonemic representation.

IPA: The IPA pronunciation (International Phonetic
Association, 1999) output is not transliteration, but it
is a conventional phonological transcription for linguis-
tic readability. It is currently a direct representation of
the phoneme sequence that results from applying the
phonological operations that are related to romanization
to the default multilingual phoneme mapping described
above. It is not intended to be an exact transcription of
the pronounced native word as is, since we currently
do not apply any phonological rules other than those
that are specifically relevant to the current task of ro-
manization. For example phoneme sequences that are
pronounced as diphthongs are left as vowel-vowel or
vowel-consonant sequences in the IPA output since this
operation has no impact on the transliteration.

6668

4.3. Minimal Example in Pynini
This section presents a simplified implementation of
the romanization pipeline using Pynini — a Python ex-
tension module for compiling, optimizing and apply-
ing finite-state grammars (Gorman, 2016; Gorman and
Sproat, 2021). The grammars are compiled offline into
collections of FSTs.
The initial stage of the romanization pipeline that

maps the ISO input strings into internal ASCII repre-
sentation (iso2typ) is implemented in Pynini grammar
file iso2typ.py as follows:

iso2typ.py
import pynini as p
from pynini.export.multi_grm import (
ExporterMapping as exporter)

iso_to_ascii = (
(p.cross(”ā”, ”(aa)”) | ... # Vowels.
| p.cross(”ṭ”, ”(tt)”) | ... # Consonants.

Symbols.
| p.cross(”ṁ ”, ”(ans)”) # anusvara.
| p.cross(”'” : ”(chl)”) # chillu.
| ...).star.optimize()

exporter[”ISO_TO_TYP”] = (
iso_to_ascii @ p.cdrewrite(

(p.cross(”(n)(chl)”, ”(n_chl)”) # Reconstruct.
| ...), ””, ””, sigma_star).optimize()

The above snippet uses several core Pynini abstractions.
We first define the iso_to_ascii FST that maps indi-
vidual ISO letters representing vowels, consonants and
auxiliary symbols to their corresponding ASCII coun-
terparts using the FST union operator “|”. For exam-
ple, this FST will map the individual ISO letter “ī” into
the symbol corresponding to ASCII sequence “(ii)”. To
transform this representation into an FST that operates
on all possible sequences of the input ISO symbols, the
Kleene star operator (Kuich and Salomaa, 1986), de-
noted “star”, is applied to iso_to_ascii. This FST
is then composed (composition is represented in Pynini
using “@”) with the context-dependent rewrite rule (de-
fined using the cdrewrite function) that recombines
the relevant letters and auxiliary symbols, as shown in
the above snippet where the Malayalam chillu is com-
bined with the corresponding nasal. In this particular
example, we allow arbitrary left and right contexts for
the rewrite rule defined over an alphabet of all possi-
ble ISO input symbols sigma_star. Finally, the result-
ing transducer is verified and possibly determinized and
minimized using the Pynini optimize function and ex-
ported into a file.
The next stage typ2txn defines themapping between

the internal ASCII symbols and their corresponding de-
fault phonemic representation in the multilingual pan-
South Asian phonology described above:

typ2txn.py
exporter[”TYP_TO_TXN”] = p.cdrewrite(
p.cross(”(a)”, ”(a=a)”) # Vowels.

| ...
| p.cross(”(tt)”, ”(tt=tt)”) # Consonants.

| p.cross(”(t)”, ”(t=ti)”)
| ...
| p.cross(”(n_chl)” : ”(n_chl=ni)”)
| ...,
””, ””, sigma_star_typ).optimize()

The notable differencewith the previous stage is that the
context-dependent rewrite rule that performs the map-
ping operates over an alphabet sigma_star_typ that
corresponds to the output symbols of ISO_TO_TYP FST
from the previous stage.
A simplified snippet of the Pynini grammar that im-

plements the phonological process of intervocalic voic-
ing for languages like Malayalam as part of the larger
phonological operations grammar phon_ops.py (phon-
ops in Figure 1) is shown below:

phon_ops.py
letter = vowel_letter | consonant_letter
nasal = ”ni”
approximant = ”y”
sonorant = vowel_letter | nasal | approximant

exporter[”VOICING”] = p.cdrewrite(
p.cross(”(tt=tt)”, ”(dd=dd)”),
”(” + letter.star + ”=” + sonorant + ”)”,
”(” + letter.star + ”=” + sonorant + ”)”,
sigma_star_txn).optimize()

This context-dependent rewrite rulemarks the unvoiced
retroflex “tt” as voiced (“dd”) in the intervocalic po-
sition according to phonological process mentioned in
Section 4.1.
An example Pynini grammar responsible for gen-

erating coarse and fine-grained PSA romanizations is
shown below:

txn2nat.py
roman_coarse = p.cross(”a_l”, ”a”)
| p.cross(”i_l”, ”i”) | ...

roman_fine = p.cross(”a_l”, ”aa”)
| p.cross(”i_l”, ”ii”) | ...

exporter[”TXN_TO_PSAC”] = (p.cdrewrite(
roman_coarse, ”=”, ”)”, sigma_star_phon

) @ remove_formatting).optimize()
exporter[”TXN_TO_PSAF”] = (p.cdrewrite(
roman_fine, ”=”, ”)”, sigma_star_phon

) @ remove_formatting).optimize()

Both rewrite rules transform the phonemic element
of each input symbol back to graphemic representa-
tion. The definition of the auxiliary context-dependent
rewrite rule remove_formatting that removes helper
decorations introduced by the intermediate stages is
omitted for brevity.
The Pynini grammar snippet that shows all the com-

ponent FSTs described above combined together in a
single fine-grained PSA transducer (ISO_TO_PSAF) is
shown below:

end2end_ml.py
import iso2typ as typ
import phon_ops as phn

6669

Original word: फ़ारसी अȺताल െവളòത്ത
Language: Hindi Hindi Malayalam

English gloss: Farsi hospital white
ISO 15919: fārasī aspatāla veḷutta

uconv: farasi aspatala velutta
uroman: phaarasii aspataal vellutta

NAT: farsi aspatal velutha
PSAF: faarsii aspataal velutta
PSAC: farsi aspatal veluta

ISO-pron: fārasī aspatāla veḷutta
IPA: /fa:rsi:/ /əspəta:l/ /ʋeɭuta/

Table 2: Comparison of our various output types with
existing romanization utilities uroman and uconv for a
few example words.

import txn2nat as nat
import typ2txn as txn

exporter[”ISO_TO_PSAF”] = (typ.ISO_TO_TYP
@ txn.TYP_TO_TXN
@ phn.VOICING
@ nat.TXN_TO_PSAF).optimize()

The transducer is constructed by composing the rele-
vant FSTs imported from four FST archives (FARs) typ,
phn, nat and txn that represent the main stages of the
romanization pipeline described earlier in this section
(also see Figure 1). In the above example, the intervo-
calic voicing FST VOICING is applied prior to generat-
ing the romanization output and hence is suitable for
languages like Malayalam.
Once the final transducers are compiled, the conver-

sion between any ISO input and its corresponding fine-
grained PSA representation can be achieved by compos-
ing an input string with the ISO_TO_PSAF transducer as
shown by the following Pynini snippet for Malayalam:

input = ”in'ḍya”
result = input @ ISO_TO_PSAF # ”indya”

At run-time, the resulting FSTs can be accessed from
C++ using OpenFst (Allauzen et al., 2007) or from
Python using Pynini libraries (Gorman, 2016; Gorman
and Sproat, 2021).

4.4. Comparison with existing utilities
In this section, we compare the various outputs of our
romanization approach on a few examples with those
from other well-known romanization utilities, namely
uconv7 and uroman8. Amrhein and Sennrich (2020)
compared these particular two romanization tools for
model transfer in NMT. The uconv Unix command line
tool provides a number of text mapping utilities in-
cluding limited transliteration that is invertible in some

7https://linux.die.net/man/1/uconv
8https://github.com/isi-nlp/uroman

cases. The uroman library (Hermjakob et al., 2018) pro-
vides non-invertible romanization for a large number of
languages. Note that neither of these utilities is specifi-
cally designed for Brahmic script conversion of the sort
investigated here, so this is in no way intended to pro-
mote our utility over them, rather to illustrate the dif-
ferences that may arise in certain circumstances. Also,
merely showing a few exemplars cannot substitute for
an exhaustive validation; however, in this case, the com-
parison does provide some intuitions about the differ-
ences.
Table 2 presents two Hindi words and a Malayalam

word, selected to illustrate how the various romaniza-
tions may differ or overlap. The Hindi word for Farsi
(फ़ारसी) has long initial and final vowels, and, as noted in
Section 4.1, the schwa in the ‘ra’ letter is deleted but not
explicitly marked as such. Thus, the ISO 15919, uconv
and uroman romanizations, which do not account for
this schwa deletion, all have a vowel between ‘r’ and
‘s’ despite it not being pronounced in the word. All of
our outputs elide this vowel in the romanizations. Simi-
larly, the final schwa in the second Hindi word (अȺताल)
is also deleted without an explicit virama, something
that the uroman utility also detects in this case. The nat-
ural transliteration output (NAT) agrees with the coarse
Pan-South-Asian (PSAC) output for both Hindi exam-
ples, but the Malayalam convention of romanizing den-
tal ‘t’ as ‘th’ (see Section 4.1) causes the NAT output
to differ from PSAC in the Malayalam example. The
fine-grained Pan-South-Asian (PSAF) output preserves
gemination and vowel lengthening as does the uroman
utility.

5. Conclusion and Future Work
We presented a number of criteria for useful romaniza-
tion of South Asian languages, depending on the use
scenario, and an approach to automatic romanization
that attends to several of these criteria. The finite-state
formalism used to provide the romanization utilities al-
lows for inclusion of linguistic regularities as well as
transliteration conventions for each language and script,
so that the resulting romanizations can be tailored to the
use scenario. This approach will be released in the Nis-
aba library at time of publication.
While several key criteria are addressed in the de-

scribed approach, dealing with a number of common
phenomena remain for future work. In particular, the
criteria of conventionality is particularly important, and
the significant subset of English-origin words (includ-
ing acronyms) remain unaddressed in the currently de-
scribed work.

6. Acknowledgements
Thanks to Raiomond Doctor, Anna Katanova,
Lawrence Wolf-Sonkin and Christo Kirov for use-
ful discussion around the issues presented in this
paper, and to the anonymous reviewers for helpful
suggestions.

https://linux.die.net/man/1/uconv
https://github.com/isi-nlp/uroman

6670

Bibliographical References
Al-Onaizan, Y. and Knight, K. (2002). Machine
transliteration of names in Arabic texts. In Proceed-
ings of the ACL-02 Workshop on Computational Ap-
proaches to Semitic Languages, Philadelphia, Penn-
sylvania, USA, July. Association for Computational
Linguistics.

Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and
Mohri, M. (2007). OpenFst: A general and effi-
cient weighted finite-state transducer library. In Pro-
ceedings of 12th International Conference on Imple-
mentation and Application of Automata (CIAA), Lec-
ture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), pages 11–23. Springer Ver-
lag, July. Implementation and Application of Au-
tomata.

Amaladass, A. (2017). The writing catechism and
translation strategies of three Jesuits in South India:
Henrique Henriques, Roberto de Nobili and Joseph
Beschi. In Antje Flüchter et al., editors, Translat-
ing Catechisms, Translating Cultures, volume 52 of
Studies in Christian Mission, pages 170–194. Brill,
Leiden, Netherlands.

Amrhein, C. and Sennrich, R. (2020). On Roman-
ization for model transfer between scripts in neu-
ral machine translation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 2461–2469, Online, November. Association
for Computational Linguistics.

Annamalai, E. and Steever, S. B. (2019). Modern
Tamil. In Sanford B. Steever, editor, The Dravid-
ian Languages, Routledge Language Family Series,
pages 118–175. Routledge, 2nd edition.

Antony, P. J. and Soman, K. P. (2011). Machine
transliteration for Indian languages: A literature sur-
vey. International Journal of Scientific & Engineer-
ing Research (IJSER), 2:1–8, December.

Appicharla, R., Gupta, K. K., Ekbal, A., and Bhat-
tacharyya, P. (2021). IITP-MT at WAT2021: Indic-
English multilingual neural machine translation us-
ing Romanized vocabulary. In Proceedings of the
8th Workshop on Asian Translation (WAT2021),
pages 238–243, Online, August. Association for
Computational Linguistics.

Arbabi, M., Fischthal, S. M., Cheng, V. C., and Bart,
E. (1994). Algorithms for Arabic name transliter-
ation. IBM Journal of Research and Development,
38(2):183–194, March.

Asher, R. and Kumari, T. C. (2012). Malayalam. De-
scriptive Grammars. Routledge.

Bhat, I. A., Mujadia, V., Tammewar, A., Bhat, R. A.,
and Shrivastava, M. (2014). IIIT-H system sub-
mission for FIRE2014 shared task on transliterated
search. In Proceedings of the Forum for Information
Retrieval Evaluation (FIRE’14), pages 48–53, Ban-
galore, India, December.

Bright, W. (1999). A matter of typology: Alphasyl-

labaries and abugidas. Written Language & Literacy,
2(1):45–55.

Cardenas, R., Lin, Y., Ji, H., and May, J. (2019). A
grounded unsupervised universal part-of-speech tag-
ger for low-resource languages. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2428–2439, Minneapolis, Min-
nesota, June. Association for Computational Linguis-
tics.

Chakrabortty, A. R. and Chakrabortty, B. (1976).
On transcription and transliteration. Annals of Li-
brary Science and Documentation, 23(3):238–241,
September.

Chakravarthi, B. R., Arcan, M., and McCrae, J. P.
(2019). Comparison of different orthographies
for machine translation of under-resourced Dravid-
ian languages. In 2nd Conference on Language,
Data and Knowledge (LDK 2019), pages 6:1–6:14,
Leipzig, Germany, May.

Chakravarthi, B. R., Rajasekaran, N., Arcan, M.,
McGuinness, K., E. O’Connor, N., and McCrae,
J. P. (2020). Bilingual lexicon induction across
orthographically-distinct under-resourced Dravidian
languages. In Proceedings of the 7th Workshop on
NLP for Similar Languages, Varieties and Dialects,
pages 57–69, Barcelona, Spain (Online), December.
International Committee on Computational Linguis-
tics (ICCL).

Chen, H.-H., Huang, S.-J., Ding, Y.-W., and Tsai, S.-C.
(1998). Proper name translation in cross-language in-
formation retrieval. In 36th Annual Meeting of the
Association for Computational Linguistics and 17th
International Conference on Computational Linguis-
tics, Volume 1, pages 232–236, Montreal, Quebec,
Canada, August. Association for Computational Lin-
guistics.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary,
V., Wenzek, G., Guzmán, F., Grave, E., Ott, M.,
Zettlemoyer, L., and Stoyanov, V. (2020). Un-
supervised cross-lingual representation learning at
scale. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
8440–8451, Online, July. Association for Computa-
tional Linguistics.

Datta, A., Ramabhadran, B., Emond, J., Kannan, A.,
and Roark, B. (2020). Language-agnostic multilin-
gual modeling. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 8239–8243, Barcelona, Spain. IEEE.

Demirşahin, I., Jansche, M., and Gutkin, A. (2018). A
unified phonological representation of South Asian
languages for multilingual text-to-speech. In Pro-
ceedings of the 6th International Workshop on Spo-
ken Language Technologies for Under-Resourced
Languages (SLTU), pages 80–84, Gurugram, India,
August.

6671

Dutta, H. (2019). Assamese orthography: An introduc-
tion and some applications for literacy development.
In R. Malatesha Joshi et al., editors,Handbook of Lit-
eracy in Akshara Orthography, volume 17 of Liter-
acy Studies (LITS), pages 181–194. Springer.

Flüchter, A. and Nardini, G. (2020). Threefold transla-
tion of the body of Christ: concepts of the Eucharist
and the body translated in the early modern mission-
ary context. Humanities and Social Sciences Com-
munications, 7(1):1–16.

Gorman, K. and Sproat, R. (2021). Finite-State Text
Processing, volume 14 of Synthesis Lectures on Hu-
man Language Technologies. Morgan & Claypool
Publishers.

Gorman, K. (2016). Pynini: A python library for
weighted finite-state grammar compilation. In Pro-
ceedings of the SIGFSM Workshop on Statistical
NLP and Weighted Automata, pages 75–80, Berlin,
Germany, August. Association for Computational
Linguistics.

Gutkin, A., Johny, C., Doctor, R., Wolf-Sonkin, L., and
Roark, B. (2022). Extensions to Brahmic script pro-
cessing within the Nisaba library: new scripts, lan-
guages and utilities. In Proceedings of 13th Edition
of Language Resources and Evaluation Conference
(LREC), Marseille, France.

Hall, N. (2011). Vowel epenthesis. In Marc van Oos-
tendorp, et al., editors, The Blackwell Companion
to Phonology, volume III. Phonological Processes,
pages 1576–1596. John Wiley & Sons.

Hauer, B., Habibi, A. A., Luan, Y., Riyadh, R. R.,
and Kondrak, G. (2019). Cognate projection for
low-resource inflection generation. In Proceedings
of the 16th Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 6–
11, Florence, Italy, August. Association for Compu-
tational Linguistics.

Hellsten, L., Roark, B., Goyal, P., Allauzen, C., Bea-
ufays, F., Ouyang, T., Riley, M., and Rybach,
D. (2017). Transliterated mobile keyboard input
via weighted finite-state transducers. In Proceed-
ings of the 13th International Conference on Fi-
nite State Methods and Natural Language Process-
ing (FSMNLP 2017), pages 10–19, Umeå, Sweden,
September. Association for Computational Linguis-
tics.

Hermjakob, U., May, J., and Knight, K. (2018). Out-
of-the-box universal Romanization tool uroman. In
Proceedings of ACL 2018, System Demonstrations,
pages 13–18, Melbourne, Australia, July. Associa-
tion for Computational Linguistics.

Huang, X., May, J., and Peng, N. (2019). What mat-
ters for neural cross-lingual named entity recogni-
tion: An empirical analysis. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6395–6401, Hong Kong,

China, November. Association for Computational
Linguistics.

International Phonetic Association. (1999). Handbook
of the International Phonetic Association: A guide to
the use of the International Phonetic Alphabet. Cam-
bridge University Press, Cambridge, UK.

ISO. (2001). ISO 15919: Transliteration of Devana-
gari and related Indic scripts into Latin characters.
https://www.iso.org/standard/28333.html. In-
ternational Organization for Standardization.

Iyengar, A. (2015). Romanisation of Indian languages:
a diachronic analysis of its failure. In 31st South
Asian Language Analysis Roundtable Conference
(SALA-31), Lancaster University, United Kingdom,
May.

Johny, C., Wolf-Sonkin, L., Gutkin, A., and Roark, B.
(2021). Finite-state script normalization and process-
ing utilities: The nisaba Brahmic library. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
System Demonstrations, pages 14–23, Online, April.
Association for Computational Linguistics.

Jones, A. (1975). The computer andmaterial inMiddle
Eastern languages. British Journal of Middle East-
ern Studies, 2(1):14–16.

Jung, S. Y., Hong, S., and Paek, E. (2000). An English
to Korean transliteration model of extended Markov
window. In COLING 2000 Volume 1: The 18th Inter-
national Conference on Computational Linguistics.

Kakwani, D., Kunchukuttan, A., Golla, S., N.C., G.,
Bhattacharyya, A., Khapra, M. M., and Kumar, P.
(2020). IndicNLPSuite: Monolingual corpora, eval-
uation benchmarks and pre-trained multilingual lan-
guage models for Indian languages. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4948–4961, Online, November.
Association for Computational Linguistics.

Karimi, S., Scholer, F., and Turpin, A. (2011). Ma-
chine transliteration survey. ACM Computing Sur-
veys (CSUR), 43(3):1–46.

Khanuja, S., Bansal, D., Mehtani, S., Khosla, S., Dey,
A., Gopalan, B., Margam, D. K., Aggarwal, P., Nagi-
pogu, R. T., Dave, S., et al. (2021). MuRIL: Mul-
tilingual representations for Indian languages. arXiv
preprint arXiv:2103.10730.

Khapra, M. M., Ramanathan, A., Kunchukuttan, A.,
Visweswariah, K., and Bhattacharyya, P. (2014).
When transliteration met crowdsourcing : An empir-
ical study of transliteration via crowdsourcing using
efficient, non-redundant and fair quality control. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland, May. European Language Re-
sources Association (ELRA).

Khatri, J., Saini, N., and Bhattacharyya, P. (2021).
Language relatedness and lexical closeness
can help improve multilingual NMT: IITBom-
bay@MultiIndicNMT WAT2021. In Proceedings of

https://www.iso.org/standard/28333.html

6672

the 8th Workshop on Asian Translation (WAT2021),
pages 217–223, Online, August. Association for
Computational Linguistics.

Knight, K. and Graehl, J. (1998). Machine translitera-
tion. Computational Linguistics, 24(4):599–612.

Krishnan, J., Anastasopoulos, A., Purohit, H., and
Rangwala, H. (2021). Cross-lingual text classifica-
tion of transliterated Hindi and Malayalam. arXiv
preprint arXiv:2108.13620.

Kuich, W. and Salomaa, A. (1986). Semirings, Au-
tomata, Languages, volume 5 ofMonographs in The-
oretical Computer Science. Springer, Berlin.

Kunchukuttan, A., Puduppully, R., and Bhattacharyya,
P. (2015). Brahmi-net: A transliteration and script
conversion system for languages of the Indian sub-
continent. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Demonstrations, pages
81–85, Denver, Colorado, June. Association for
Computational Linguistics.

Kunchukuttan, A., Jain, S., and Kejriwal, R. (2021).
A large-scale evaluation of neural machine translit-
eration for indic languages. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, pages 3469–3475, Online, April. Association
for Computational Linguistics.

Kunchukuttan, A. (2020). The IndicNLP Library.
https://github.com/anoopkunchukuttan/
indic_nlp_library.

Lee, J. S. and Choi, K.-S. (1998). English to Ko-
rean statistical transliteration for information re-
trieval. Computer Processing of Oriental Languages,
12(1):17–37.

Li, G. and Li, Y. (2019). Chinese Pinyin input method
in smartphone era: A literature review study. In
Proceedings of 21st International Conference on
Human-Computer Interaction (HCI), pages 34–43,
Orlando, FL, USA, July. Springer.

Li, H., Zhang, M., and Su, J. (2004). A joint source-
channel model for machine transliteration. In Pro-
ceedings of the 42nd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL-04), pages
159–166, Barcelona, Spain, July.

Mahboob, T. S. and Rahman, M.M. A. (2017). Roman-
ization in Bangladesh: Common malpractices. Jour-
nal of Sociology, Nazmul Karim Study Center, Uni-
versity of Dhaka, 9:7–23, June.

Mukhopadhyay, A., Dastidar, D. G., and Roy, M. K.
(1985). A system for the machine processing of Ben-
gali character strings. IETE Journal of Research,
31(3):84–88.

Muller, B., Anastasopoulos, A., Sagot, B., and Sed-
dah, D. (2021). When being unseen from mBERT
is just the beginning: Handling new languages with
multilingual language models. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-

man Language Technologies, pages 448–462, On-
line, June. Association for Computational Linguis-
tics.

Murikinati, N., Anastasopoulos, A., and Neubig, G.
(2020). Transliteration for cross-lingual morpholog-
ical inflection. In Proceedings of the 17th SIG-
MORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages
189–197, Online, July. Association for Computa-
tional Linguistics.

Pandey, P. K. (1990). Hindi schwa deletion. Lingua,
82(4):277–311.

Pandey, P. (2007). Phonology–orthography interface
in Devanāgarī for Hindi. Written Language & Liter-
acy, 10(2):139–156.

Patel, P., Mehta, M., Bhattacharya, P., and Atreya,
A. (2020). Leveraging alignment and phonology
for low-resource indic to English neural machine
transliteration. In Proceedings of the 17th Interna-
tional Conference on Natural Language Processing
(ICON), pages 373–378, Indian Institute of Technol-
ogy Patna, Patna, India, December. NLP Association
of India (NLPAI).

Pavan, K., Tandon, N., and Varma, V. (2010). Address-
ing challenges in automatic language identification
of romanized text. In Proceedings of 8th Interna-
tional Conference on Natural Language Processing
(ICON-2010), Kharagpur, India, December.

Prabhakar, D. K. and Pal, S. (2018). Machine transliter-
ation and transliterated text retrieval: a survey. Sād-
hanā, 43(6):1–25.

Rajan, V. (2020). Aksharamukha. https://github.
com/virtualvinodh/aksharamukha.

Riyadh, R. R. and Kondrak, G. (2019). Joint approach
to deromanization of code-mixed texts. In Proceed-
ings of the Sixth Workshop on NLP for Similar Lan-
guages, Varieties andDialects, pages 26–34, AnnAr-
bor, Michigan, June. Association for Computational
Linguistics.

Roark, B., Sproat, R., Allauzen, C., Riley, M.,
Sorensen, J., and Tai, T. (2012). The OpenGrm
open-source finite-state grammar software libraries.
In Proceedings of the ACL 2012 System Demonstra-
tions, pages 61–66, Jeju Island, Korea, July. Associ-
ation for Computational Linguistics.

Roark, B., Wolf-Sonkin, L., Kirov, C., Mielke, S. J.,
Johny, C., Demirsahin, I., and Hall, K. (2020). Pro-
cessing South Asian languages written in the Latin
script: the Dakshina dataset. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 2413–2423, Marseille, France, May. Eu-
ropean Language Resources Association.

Ryskina, M., Gormley, M. R., and Berg-Kirkpatrick, T.
(2020). Phonetic and visual priors for decipherment
of informal Romanization. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 8308–8319, Online, July.
Association for Computational Linguistics.

https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/virtualvinodh/aksharamukha
https://github.com/virtualvinodh/aksharamukha

6673

Ryskina, M., Hovy, E., Berg-Kirkpatrick, T., and
Gormley, M. R. (2021). Comparative error anal-
ysis in neural and finite-state models for unsuper-
vised character-level transduction. In Proceedings
of the 18th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 198–211, Online, August. Associa-
tion for Computational Linguistics.

Sen, B. K. and Sur, S. N. (1979). Transliteration of Rus-
sian characters in English. Annals of Library Science
and Documentation, 26(1-4):69–72.

Sinha, R. M. K. and Srinivasan, B. (1984). Ma-
chine transliteration from Roman to Devanagari and
Devanagari to Roman. IETE Journal of Research,
30(6):243–245.

Veliath, C. (2011). Thomas Stephens—A humanmon-
ument of inculturation in India. Bulletin of the Fac-
ulty of Foreign Studies 46, Sophia University, Tokyo,
Japan.

Virga, P. and Khudanpur, S. (2003). Transliteration of
proper names in cross-lingual information retrieval.
In Proceedings of the ACL 2003 Workshop on Multi-
lingual and Mixed-language Named Entity Recogni-
tion, pages 57–64, Sapporo, Japan, July. Association
for Computational Linguistics.

Wan, S. and Verspoor, C. M. (1998). Automatic
English-Chinese name transliteration for develop-
ment of multilingual resources. In COLING 1998
Volume 2: The 17th International Conference on
Computational Linguistics.

Wellisch, H. H. (1978). The Conversion of Scripts:
Its Nature, History, and Utilization. Information sci-
ences series. John Wiley & Sons, New York.

Wolf-Sonkin, L., Schogol, V., Roark, B., and Riley, M.
(2019). Latin script keyboards for South Asian lan-
guages with finite-state normalization. In Proceed-
ings of the 14th International Conference on Finite-
State Methods and Natural Language Processing,
pages 108–117, Dresden, Germany, September. As-
sociation for Computational Linguistics.

Zhang, Y., Wang, Z., Cao, R., Wei, B., Shan, W., Zhou,
S., Reheman, A., Zhou, T., Zeng, X., Wang, L., Mu,
Y., Zhang, J., Liu, X., Zhou, X., Li, Y., Li, B.,
Xiao, T., and Zhu, J. (2020). The NiuTrans machine
translation systems for WMT20. In Proceedings of
the Fifth Conference on Machine Translation, pages
338–345, Online, November. Association for Com-
putational Linguistics.

	Introduction
	Background
	Romanization in South Asia
	Automatic Transliteration
	Nisaba Library

	Criteria for Useful Romanization
	Multiple Criteria Brahmic Script Romanization
	Key Linguistic Details
	Implementation Details
	Input Format
	Intermediate Stages
	Output Types

	Minimal Example in Pynini
	Comparison with existing utilities

	Conclusion and Future Work
	Acknowledgements

