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Abstract

Grounding the meaning of each symbol in math formulae is important for automated understanding of scientific documents.
Generally speaking, the meanings of math symbols are not necessarily constant, and the same symbol is used in multiple
meanings. Therefore, coreference relations between symbols need to be identified for grounding, and the task has aspects of
both description alignment and coreference analysis. In this study, we annotated 15 papers selected from arXiv.org with the
grounding information. In total, 12,352 occurrences of math identifiers in these papers were annotated, and all coreference
relations between them were made explicit in each paper. The constructed dataset shows that regardless of the ambiguity of
symbols in math formulae, coreference relations can be labeled with a high inter-annotator agreement. The constructed dataset
enables us to achieve automation of formula grounding, and in turn, make deeper use of the knowledge in scientific documents
using techniques such as math information extraction. The built grounding dataset is available at https://sigmathling.
kwarc.info/resources/grounding-dataset/.
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1. Introduction
Understanding math formulae is as important as under-
standing natural language texts to analyze documents
in science, technology, engineering, and mathematics.
Analyzing math formulae is unavoidable to fully exploit
the knowledge contained in scientific documents by us-
ing applied technology in computer science such as in-
formation retrieval, computer algebra systems, and the-
orem proving. In order to understand a math formula in
documents, it is necessary to clarify the meaning of each
formula token, that is, a character or symbol that appears
in the math formula. This part of formula analysis is
formalized as a task of formula grounding (Asakura et
al., 2020). The grounding task has two characteristics:
one is the description alignment task, which assigns a
context-specific description to each formula token (Fig-
ure 1), and the other is the coreference resolution task,
which discriminates tokens that are used with exactly
the same meaning from those that are not.

In order to automate the process of formula ground-
ing, the authors first worked on constructing a corpus
with ground truth annotations manually for observa-
tion, analysis, learning, and evaluation. As annotation
of coreference information is generally costly (Oberle,
2018), the authors developed a special annotation tool,
MioGatto1, to streamline the data construction pro-
cess (Asakura et al., 2021). The authors then used
MioGatto to annotate a total of 15 scientific papers with
11 student annotators for all occurrences of math iden-
tifiers in the papers.

In this paper, we introduce the procedure of constructing
a dataset of formula grounding and report an overview
of the constructed annotated corpus.

1https://github.com/wtsnjp/MioGatto
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Figure 1: Description alignment

2. Related Work
The arXMLiv dataset (Ginev, 2020) is a large cor-
pus of more than 1.5 million scientific papers on the
preprint server arXiv.org2, converted into XHTML doc-
uments using LATEXML (Miller, 2018) for easy han-
dling by computer programs for various research pur-
poses. In the documents, math formulae are mechan-
ically converted to presentation MathML (Ausbrooks
et al., 2014) by LATEXML, but essentially the same in-
formation as LATEX, about what the formula looks like,
is encoded, without any additional information. The
arXMLiv dataset is widely used as a valuable linguistic
resource for documents containing mathematical ex-
pressions, and the input format of MioGatto follows
the XTHML specification of the dataset (Ginev et al.,
2011).

Several annotated corpora of scientific papers have been
proposed, in which each token of a formula is given a

2https://arxiv.org
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description. In NTCIR-10, a subtask of Math Under-
standing was proposed to extract definitions of tokens
in natural language text as part of the Math Pilot Shared
Task. A dataset of manually annotated math formulae in
XHTML documents included in the arXMLiv dataset
was provided for development and evaluation for the
task (Aizawa et al., 2013). The MathAlign task was
also formulated as a similar task that assigns an expla-
nation to each math identifier in formulae, and a dataset
of 584 math identifiers from 116 papers in the arXiv.org
collection is also constructed (Alexeeva et al., 2020).

In real-world scientific documents of certain length,
symbols and letters in math formulae are often used in
multiple meanings within a single document (Asakura
et al., 2020). For example, in Chapter 1 of Pattern
Recognition and Machine Learning (PRML) (Bishop,
2006), a textbook in the field of machine learning, the
bolded y is used in at least four different meanings in the
same chapter (Table 1). Therefore, to understand math
formulae in a document, it is necessary to resolve the
coreference relations among these tokens in the same
document. However, there is no known dataset that
explicitly labels coreference relations between tokens of
math formulae. In this study, we selected 15 scientific
papers, mainly those with sufficient amount of math
formulae, and annotated all 12,352 occurrences of math
identifiers in the papers so that the coreference relations
within each paper are explicit.

3. Purpose and Method
Datasets are fundamental to the construction and eval-
uation of methods for automated formula grounding.
Large amounts of training data are generally required
to build a statistical model for such automation. Al-
though we plan to use a rule-based method to increase
the amount of data initially, we still need some amount
of manually annotated ground-truth data, as we have to
observe the usage of formula tokens in real documents
to study the rules. We manually annotated the following
two types of information for actual scientific papers as
a first step to automate formula grounding (Figure 2).

Math concepts that formula tokens refer to. In terms
of actual annotation data, additional attributes such
as mathematical type, arity, and constraints can be
added to the simple descriptions.

Sources of grounding, text spans that can be used as
bases for human to ground formula tokens. Math-
ematically, a source of grounding is a definition or
declaration. For example, the first 𝑓 in Figure 2 is
grounded to a real-valued function, and the source
of grounding is the preceding “a real-valued func-
tion.”

Instead of directly annotating each occurrence of a math
token with a description, we annotated each token with
a concept ID defined in the math concept dictionary, a

4https://en.wikipedia.org/wiki/Integral

In general, the integral of a real-valued function � (�)
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Figure 2: Two types of information we annotated: math
concepts and sources of grounding. The example sen-
tence is taken from Wikipedia4.

list of math concepts created by an annotator. This en-
ables us to construct a dataset with explicit coreference
relations between formula token occurrences: those as-
sociated with the same concept ID have a coreference
relation, while those associated with different IDs have
no coreference relation. To achieve such annotation, we
used MioGatto, a special annotation tool developed by
the authors (Figure 3). MioGatto is designed to easily
(1) create a math concept dictionary, (2) assign a math
concept ID to each occurrence of a formula token, and
(3) annotate the span position of the grounding source
using only intuitive GUI operations (Asakura et al.,
2021).

In order to construct the dataset, we selected and an-
notated papers that contain more than a certain amount
of math formulae from papers available on arXiv.org
with LATEX document sources. Since reading and an-
notating such specialized scientific papers with math
formulae requires specialized knowledge in appropriate
fields, we recruited collaborators from among students
(mainly graduate and undergraduate students) with spe-
cialized knowledge in a variety of fields. Majority of
the annotators we collected were specialized for natural
language processing, with others majoring in mathe-
matical logic, algebra, physics, and astronomy. We
asked the participating annotators to select papers from
the arXiv.org collection that matched their background
knowledge and interests, and preprocessed the selected
papers for the annotation using MioGatto. This pre-
processing includes converting the original LATEX doc-
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Text fragment from PRML Chap. 1 Meaning of y

. . . can be expressed as a function y(x) . . . a function which takes an image as input

. . . an output vector y, encoded in . . . an output vector of function y(x)

. . . two vectors of random variables x and y . . . a vector of random variables
Suppose we have a joint distribution 𝑝(x, y) . . . a part of pairs of values, corresponding to x

Table 1: Meanings of y in Chapter 1 of PRML (Bishop, 2006).

Figure 3: Screenshot of MioGatto when annotating an arXiv paper in the field of machine learning (Simeone,
2018). The left side of the screen contains the text of the article to be annotated, and the right side contains the
information provided by MioGatto and the buttons necessary for the annotation operation.

uments by the authors into XHTML with LATEXML,
and correcting erroneous markup in math formulae by
the original authors of the target papers. Each annotator
was provided with a guideline5 on how to use MioGatto,
as well as XHTML data and annotation data templates
for the actual annotation. The annotators performed the
annotation work following the guideline. After that, the
data obtained from the annotation was checked by the
authors and analyzed.

The target of this annotation is the all occurrences of
math identifiers for all math formulae used in the se-
lected papers. A math identifier is a kind of formula
token, which is a single letter (e.g., 𝑥 and 𝜃) or a short

5https://github.com/wtsnjp/MioGatto/wiki/
Annotator’s-Guide

name (e.g., sin) representing a variable, function, or
constant. Technically, math tokens that appear as <mi>
tags in presentation MathML are annotated. There are
other formula tokens such as operators (e.g.,+) and
numbers in math formula, but we focus on math identi-
fiers to avoid too many annotation targets. We did not
limit the number of grounding sources because there
may be multiple sources associated with a concept or
no sources associated with a concept in a document.

4. Analysis for the Dataset
We completed the manual annotation of all math iden-
tifiers in 15 scientific papers in the fields of natural
language processing, mathematical logic, algebra, and
astronomy (Table 2 and Table 3). In total, there were
12,352 occurrences of math identifiers in the entire
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No. Author Title arXiv ID arXiv category

1 Osvaldo Simeone A Very Brief Introduction to Machine Learning
With Applications to Communication Systems 1808.02342 cs.IT

2 Tsung-Hsien Wen et al. Semantically Conditioned LSTM-based Natural
Language Generation for Spoken Dialogue Systems 1508.01745 cs.CL

3 Qian Chen et al. Enhanced LSTM for Natural Language Inference 1609.06038 cs.CL
4 Joseph Singleton A Logic of Expertise 2107.10832 cs.LO
5 Edward Frenkel Recent Advances in the Langlands Program math0303074 math.AG

6 Laura Aina et al. Putting words in context: LSTM language models
and lexical ambiguity 1906.05149 cs.CL

7 Jian Guan et al. A Knowledge-Enhanced Pretraining Model for
Commonsense Story Generation 2001.05139 cs.CL

8 Richard Antonello et al. Selecting Informative Contexts Improves Language
Model Finetuning 2005.00175 cs.CL

9 Jinhua Zhu et al. Incorporating BERT into Neural Machine Transla-
tion 2002.06823 cs.CL

10 Xuan-Phi Nguyen et al. Tree-structured Attention with Hierarchical Accu-
mulation 2002.08046 cs.CL

11 Jiangang Bai et al. Syntax-BERT: Improving Pre-trained Transformers
with Syntax Trees 2103.04350 cs.CL

12 Zenan Xu et al. Syntax-Enhanced Pre-trained Model 2012.14116 cs.CL

13 Yangyifan Xu et al. Bilingual Mutual Information Based Adaptive
Training for Neural Machine Translation 2105.12523 cs.CL

14 Daisuke Taniguchi et al.
Effective temperatures of red supergiants estimated
from line-depth ratios of iron lines in the YJ bands,
0.97–1.32 micron

2012.07856 astro-ph.SR

15 Daisuke Taniguchi et al. Pressure-induced two-step spin crossover in
double-layered elastic model 1708.02771 cond-mat.mtrl-sci

Table 2: The reference information of papers in our annotated dataset.

dataset, all of which were assigned math concepts. Al-
together, 938 text spans were also collected, which are
sources of grounding. By dividing the number of math
identifier-types in each paper by the number of math
concepts in the corresponding dictionary, we can calcu-
late the average number of meanings used for each math
identifier-type, which is 2.09 for the whole dataset.

Given that the number of occurrences of each math
identifier-type is different, the weighted average of the
number of occurrences is the “Avg. #candidates” in
Table 3. This corresponds to the average number of
choices that the annotator sees when assigning a math
concept to each occurrence during the actual annotation.
Therefore, the higher the value of “Avg. #candidates”,
the higher the degree of math identifier ambiguity, and
the higher the difficulty of the annotation. Since math
identifiers are often single letters of the alphabet rather
than descriptive names, there is a limit to the variety
of math identifier-types that can be used, even taking
into account differences in variants such as roman and
calligraphy typefaces. For this reason, the longer the
document is, i.e., the more words there are, the higher
the average number of candidates and the stronger the
ambiguity is (Figure 4). This shows the importance of
annotating not only short documents or parts of long
documents, but also entire long documents with large
ambiguities, as we did here.
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Figure 4: Relationship between number of words in
the papers and the “Avg. #candidates”. The correlation
between the two is strong positive, with a correlation
coefficient of 𝑟 = 0.87.

4.1. Inter-annotator Agreements
Since the target of the annotation in this study is a highly
specialized scientific paper, it is not easy to secure mul-
tiple annotators for the same paper. However, in order
to confirm the accuracy and reproducibility of the an-
notation, a total of five annotators annotated Paper 1
independently of each other, and the inter-annotator
agreement rate was calculated (Table 4). Annotator A
was responsible for creating the math concept dictio-
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No. #words #types #occurrences #concepts Avg. #candidates #sources

1 10976 40 937 104 6.4 232
2 4267 42 266 73 2.6 30
3 3563 38 433 79 2.5 34
4 3567 46 1648 64 1.9 30
5 13154 141 4629 424 5.2 180
6 2881 25 162 30 2.7 12
7 5543 31 203 47 2.6 36
8 4613 23 217 27 1.1 28
9 6255 34 510 74 2.7 27

10 5415 73 1175 167 3.3 60
11 4451 33 237 61 2.9 34
12 4261 31 186 39 1.7 25
13 2257 23 124 27 1.2 18
14 10032 59 1064 129 4.2 97
15 4863 41 561 73 2.3 95

Total 86098 680 12352 1418 — 938

Table 3: Annotation results. Herein, the leftmost column “No.” is the paper ID for convenience of explanation,
“#words” is the number of words in the text of the paper, “#types” is the number of used math identifier-types, and
“#occurrences” is the number of math identifier occurrences. The next column “#concepts” is the number of math
concepts in the concept dictionary. “Avg. #candidates” is the weighted average of the number of dictionary entries
according to the number of identifier occurrences, and “#sources” is the number of grounding sources.

Annotator A B C D E

Create concept dict. ✓
Assign concepts ✓ ✓ ✓ ✓ ✓
Label sources ✓ ✓ ✓

Agreement rate (%) — 96.5 87.4 92.1 84.2
Cohen’s 𝜅6 — 0.94 0.80 0.87 0.75

Number of sources 232 — — 249 257
Overlap rate (%) — — — 80.3 93.4

Table 4: Annotator roles and inter-annotator agreement
rates. The top three rows show the role of each an-
notator, the middle two rows show the agreement rate
of math concepts, and the bottom two rows show the
information of grounding sources. The agreement rate
and overlap rate were calculated between annotator A
and each annotator in the others.

nary, while the other annotators used the dictionary to
assign concepts and annotate the sources of grounding.
Although the accuracy of the work varied slightly de-
pending on the annotator, the agreement rate of math
concepts and Cohen’s 𝜅 (Cohen, 1960) were calculated
to be high enough. Grounding sources also overlapped
with high frequency (80.3–93.4%), meaning that text
spans that humans consider as grounding sources were
found to match well.

4.2. Math Concept Dictionaries
In this dataset construction, a dictionary of math con-
cepts was created by an annotator for each of the 15

6Weighted average according to the number of occurrence
of each math identifier-type.

scientific papers. As shown in Table 3, a total of 1,418
math concepts for 680 math identifier-types were regis-
tered in 15 dictionaries. As a concrete example, Table 5
shows a portion of the dictionary created for Paper 1.
Each concept has a short description of 6.7 words on
average across all dictionaries and some additional at-
tributes: the first ones are affixes, which contain in-
formation about the notation, such as whether they are
accompanied by superscripts or not, and whether they
have parentheses to represent the function’s arguments.
On average, the number of affixes registered for each
concept was 0.8. The second one is arity, which is the
information about how many arguments a concept se-
mantically takes when it is a function. The dictionary
we have constructed contains function concepts with
arity 0 to 4.

For each math identifier-type, up to 14 math concepts
are registered in the math concept dictionaries (Fig-
ure 5). In Table 6, we list the top 5 math identifier-types
with the highest average number of math concepts.

4.3. Scope Switches
If the math concept assigned to an occurrence of a math
identifier is distinct from the concept assigned to a pre-
vious occurrence of the same identifier-type, we say that
there is a scope switch between the two occurrences of
the math identifier. In order to perform formula ground-
ing, we need to identify all scope switching locations in
a single document, which is the most challenging part of
the automation. The dataset we constructed contained
a total of 2,378 scope switches throughout 15 papers.
Of these, 2,129 (89.5%) occurred within a single sec-
tion, indicating that there is ambiguity in the meanings
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Identifier Description Affixes Arity

𝐷 the number of dimensions for the vector 𝑥 (NONE) 0
the number of dimension for the fixed features 𝜙(𝑥) prime 0
𝑓 -divergence subscript, open parenthesis, . . . 2

...

𝑡 (italic) an output of a regression or classification problem in general (NONE)
an output of a regression problem, generated by 𝑝(𝑥, 𝑡) (NONE) 0
𝑛-th output in the training set D subscript 0
a predicator which takes an input 𝑥 and return a predicated value over, parentheses 0

...

t (roman) a random variable for a test output for regression problem (NONE) 0
...

Table 5: Excerpt from the math concept dictionary for Paper 1.

Identifier-type Example meaning Avg. #concepts Used in

𝑵 hidden representation 9.0 Paper 10
W parameters 8.0 Paper 2, 3
U parameters 8.0 Paper 3
v fixed-length vector 7.0 Paper 3
Bun moduli space 7.0 Paper 5

Table 6: Math identifier-types that have many concepts in the math concept dictionaries.
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Figure 5: Number of math concepts for each entry (math
identifier-type) in the math concept dictionaries.

of math identifiers even when we focus on the narrow
scope of a single section in a document. It should be
noted that the scope of math identifiers is complex: it
often switches in units finer than sections and some-
times switches back to the original scope once it has
switched to another scope (Figure 6).

4.4. Sources of Grounding
We also analyzed the positional relation between the
textual span of the grounding sources and the occur-
rence of the math identifiers associated with them (Ta-
ble 7). Out of the 938 grounding sources annotated,

718 (76.5%) were found before the corresponding math
identifier occurrence. In terms of the number of words
in between, the average distance between each ground-
ing source and its associated math identifier occurrence
that is closest was 14.7 words. However, distances
between sources and math identifier occurrences vary
widely, with a median distance ranging from 0 to 4
words across all papers. In a nutshell, typical sources
of grounding are within a few words before matching
the occurrences of math identifiers.

Position Distance (words)
No. Pre Post Mean Median

1 217 15 0.3 0
2 28 2 1.8 0
3 19 15 19.9 2
4 18 12 4.1 1
5 105 75 1.2 0
6 9 3 35.0 1
7 31 5 20.5 4
8 19 9 8.9 0
9 23 4 2.1 3

10 57 3 3.6 0
11 29 5 9.4 4
12 20 5 17.2 3
13 16 2 0.3 0
14 64 33 75.9 3
15 63 32 30.4 2

Total 718 220 — —

Table 7: Statistics of grounding sources in the dataset.
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Figure 6: Scopes of math identifiers in the selected papers. The horizontal axis indicates the position within each
paper, and the vertical axis indicates the math concept each scope corresponds to. Where the colored horizontal
lines that represent the scopes are interrupted, it means that there are scope switches. To clearly indicate the position
of scope switches, horizontal lines are drawn as such any position in the document belongs to a scope.
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5. Conclusions and Future Work
In this study, we constructed a dataset of 15 scientific pa-
pers in various domains which were manually annotated
with grounding information. Each occurrence of a math
identifier in the dataset is labeled with a description and
some additional information, and the coreference re-
lations between math identifiers within each paper are
made explicit. We also showed that such a dataset can
be constructed by an annotator that is not necessarily
specialized in constructing linguistic resources.

In the future, we will make up only a math concept
dictionary by hand, and automatically assign the ap-
propriate entry from the dictionary to each occurrence
of a math identifier in the paper. In this way, the pro-
posed dataset can be effectively extended quantitatively,
and further, we accomplish the whole automation of the
formula grounding process.
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