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Abstract

Analytical reasoning is an essential and chal-
lenging task that requires a system to analyze
a scenario involving a set of particular circum-
stances and perform reasoning over it to make
conclusions. However, current neural models
with implicit reasoning ability struggle to solve
this task. In this paper, we study the challenge
of analytical reasoning of text and collect a new
dataset consisting of questions from the Law
School Admission Test from 1991 to 2016. We
analyze what knowledge understanding and rea-
soning abilities are required to do well on this
task, and present an approach dubbed ARM.
It extracts knowledge such as participants and
facts from the context. Such knowledge are
applied to an inference engine to deduce legit-
imate solutions for drawing conclusions. In
our experiments, we find that ubiquitous pre-
trained models struggle to deal with this task as
their performance is close to random guess. Re-
sults show that ARM outperforms pre-trained
models significantly. Moreover, we demon-
strate that ARM has better explicit interpretable
reasoning ability. 1

1 Introduction

Transformer-based pre-trained language models in-
cluding BERT (Devlin et al., 2019), GPT-2 (Rad-
ford et al., 2019) and RoBERTa (Liu et al., 2019)
have achieved state-of-the-art performance on a va-
riety of NLP tasks (Zhong et al., 2020b; Li et al.,
2020; Sun et al., 2022; Li et al., 2022). However,
they still struggle to perform deep reasoning be-
yond shallow-level semantic understanding of lit-
eral clues. For example, Talmor et al. (2020) show
that pre-trained models fail completely on half of
eight reasoning tasks that require symbolic opera-
tions. We hope to challenge current systems and
take a step further towards analytical reasoning.

∗ Work done while this author was an intern at Microsoft
Research.

1The data and code are provided in https://github.
com/zhongwanjun/AR-LSAT.

Passage
The Mom & Pop liquor store employs five cashiers-
Adams, Bates, Cox, Drake, and Edwards- each of whom 
works alone on exactly one day, Monday through Friday
Adams will work only on Tuesday or Thursday. 
Bates will not work on Monday or Wednesday. 
Cox works on Friday. 
Drake and Edwards do not work on consecutive days. 
Question
Which one of the following is a possible work schedule?
Options
𝐴 Edwards, Bates, Adams, Drake, Cox

ሺ𝐵ሻ Drake, Adams, Bates, Edwards, Cox
ሺ𝐶ሻ Edwards, Adams, Cox, Bates, Drake 
ሺ𝐷ሻ Edwards, Adams, Drake, Bates, Cox
ሺ𝐸ሻ Drake, Edwards, Bates, Adams, Cox
Answer: 𝐷
Reasoning Process of Humans:
From the passage, we first understand conditions (i.e., 
participants and positions) and comprehend rules and 
facts. Then, we check each option to see whether it satisfy 
all the rules and select the most plausible one. 

[Grouping Game] Passage：
Seven directors -A, B, C, D, E, F, and G- serves on 
the X committee or the Y committee.

Question：
If D and F both serve on the X committee, Fact
then which one of the following could be true?
Options：
A. A and C both serve on the X committee. 

B. A and E both serve on the Y committee.

C. B and G both serve on the X committee.

D. C and E both serve on the Y committee. √
E. G and E both serve on the X committee.

Rules to Logical Expressions
R-1: 𝐴 𝑜𝑛 𝑋 → 𝐵 𝑜𝑛 𝑌
R-2: 𝐶 𝑜𝑛 𝑋 → 𝐷 𝑜𝑛 𝑌 &ሺ𝐸 𝑜𝑛 𝑌ሻ
R-3: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹 ് 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺
R-4: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸 ് 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴
R-5: 𝐺 𝑜𝑛 𝑋 → 𝐵 𝑜𝑛 𝑋

Fact
𝐷 𝑜𝑛 𝑋 &ሺ𝐹 𝑜𝑛 𝑋ሻ

If A serves on X, then B serves on Y. R-1
If C serves on X, then D and E serve on Y. R-2
F serves on a different committee with G. R-3
E serves on a different committee with A. R-4
If G serves on X, so does B. R-5 Rules

Participants
𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺

Positions
𝑋, 𝑌

ሺ𝐶 𝑜𝑛 𝑋ሻ&ሺ𝐷 𝑜𝑛 𝑋ሻ confict with R-2

 ሺ𝐴 𝑜𝑛 𝑌ሻ&ሺ𝐸 𝑜𝑛 𝑌ሻ confict with R-4

 𝐺 𝑜𝑛 𝑋 &ሺ𝐹 𝑜𝑛 𝑋ሻ confict with R-3

 𝐺 𝑜𝑛 𝑋 &ሺ𝐹 𝑜𝑛 𝑋ሻ confict with R-3

Figure 1: An example of the required reasoning process
to do well on the AR task. The input is a passage, a
question and multiple options, and the output is the most
plausible answer.

Analytical reasoning assesses the ability of sys-
tems to understand the knowledge, including partic-
ipants, facts and literal rules mentioned in the con-
text, perform reasoning over the extracted knowl-
edge, and make conclusions. In this paper, we
study the challenge of analytical reasoning (AR).
We collect a new dataset AR-LSAT from the Law
School Admission Test2 (LSAT) from 1991 to 2016
to facilitate research on analytical reasoning. An
example of analytical reasoning in LSAT is given
in Figure 1, whose task is to separate participants
(i.e., A,B, etc.) into two positions (i.e., X committee
and Y committee) under certain constraints. We can
see that solving the problem requires a system to
understand the knowledge in the context including
participants, positions, rules expressed in natural

2https://en.wikipedia.org/wiki/Law_
School_Admission_Test
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language (e.g., “If G serves on X, so does B") and
facts (e.g., “D and F both serve on the X commit-
tee"). Then, it needs to deduct logical expressions
(e.g., “G on X → B on X") from the rules, and
draw inference before making conclusions.

In this paper, we analyze the knowledge under-
standing and reasoning ability required for solving
this task and present Analytical Reasoning Ma-
chine (ARM), a framework that can comprehend
the context and perform reasoning for making a
conclusion. It extracts participants, rules and facts
described in the context of text. Each literal rule is
mapped into an executable logical constraint func-
tion, which assesses whether a solution satisfies
a particular rule. With such logical-level under-
standing, ARM is capable of deducing a group of
legitimate solutions for the question and select the
most plausible option as the answer.

Experiments show that pre-trained models strug-
gle to learn this task, which indicates that this task
is very challenging for current models as it requires
the complex reasoning ability far beyond implicit
reasoning over the literal clues. Our system out-
performs pre-trained models significantly. Further
analysis demonstrates that our system has better
interpretability. The contributions are threefold.

• We collect a new dataset AR-LSAT to facili-
tate research on analytical reasoning.

• We present a reasoning framework that can
comprehend the context and perform explicit
interpretable reasoning to draw conclusion.

• Experiments indicate that this task is challeng-
ing and our system outperforms pre-trained
models significantly.

2 Related Works

There is an increasing trend on machine reason-
ing research in recent years. The reasoning ability
investigated are partitioned into several major as-
pects, including (1) logical reasoning; (2) common-
sense reasoning; (3) mathematical reasoning and
(4) multi-hop reasoning.

Logical Reasoning The task of Natural Lan-
guage Inference (NLI) (Dagan et al., 2005; Bow-
man et al., 2015; Wang et al., 2019; Williams et al.,
2018; Welleck et al., 2019; Khot et al., 2018; Nie
et al., 2020; Bhagavatula et al., 2020; Liu et al.,
2020a) requires the models to detect the logical en-
tailment relationship of two sentences. There have
been Machine Reading Comprehension (MRC)

works (Gao et al., 2021; Rajpurkar et al., 2016;
Welbl et al., 2018a; Yang et al., 2018a; Huang et al.,
2019a; Wang et al., 2021) that examine the ability
of logical reasoning. LogiQA (Liu et al., 2020b)
and ReClor (Yu et al., 2020) are sourced from ex-
amination in realistic scenario and examine a range
of logical reasoning skills.

Commonsense Reasoning There are many re-
cent benchmarks that assess the commonsense rea-
soning capabilities from different aspects, like so-
cial (Rashkin et al., 2018), physics (Talmor et al.,
2019; Zellers et al., 2019; Zhong et al., 2019), or
temporal (Zhou et al., 2019; Zhong et al., 2020a)
aspects. There exist several MRC datasets that re-
quire commonsense knowledge (Ostermann et al.,
2018; Zhang et al., 2018; Huang et al., 2019b).

Mathematical Reasoning There are many exist-
ing datasets (Kushman et al., 2014; Hosseini et al.,
2014; Koncel-Kedziorski et al., 2015; Clark et al.,
2016; Ling et al., 2017) that focus on mathematical
word problems. Ling et al. (2017) builds a dataset
that encourages generating answer rationales be-
yond simply selecting the correct answer. DROP
(Dua et al., 2019) is a benchmark MRC dataset
requiring mathematical reasoning. Saxton et al.
(2019) focuses on algebraic generalization.

Multi-hop Reasoning Multi-hop reasoning over
textual data (Talmor and Berant, 2018; Welbl et al.,
2018b; Yang et al., 2018b; Inoue et al., 2020;
Zhong et al., 2022) requires a model to reason over
multiple paragraphs before making prediction.

To the best of our knowledge, there has not an
existing benchmark dataset that completely focuses
on the analytical reasoning over textual data. We
introduce a new dataset to fill this gap and to foster
research on this area.

3 Task and Dataset

In this section, we describe the task of analytical
reasoning and introduce the dataset AR-LSAT we
collected from the Law School Admission Test.

3.1 Task: Analytical Reasoning of Text

Taking a passage, a question, and multiple options
as the input, a system is required to select the
most plausible answer as the output. Each passage
describes a reasoning game belonging to various
types, including three dominant types: ordering
games, grouping games, and assignment games,

2307



[Ordering Game] Passage
A professor must determine the order in which five of her students -
Fernando, Ginny, Hakim, Juanita, and Kevin- will perform in a recital. 
Ginny perform earlier than Fernando. R-1
Kevin perform earlier than Hakim and Juanita. R-2
Hakim perform either immediately before or immediately 
after Fernando. R-3

Rules to Logical Expressions
R-1: 𝑃𝑜𝑠. 𝑜𝑓 𝐺𝑖𝑛𝑛𝑦 ൏ 𝑃𝑜𝑠. 𝑜𝑓 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜
R-2: ሺ𝑃𝑜𝑠. 𝑜𝑓 𝐾𝑒𝑣𝑖𝑛 ൏ 𝑃𝑜𝑠. 𝑜𝑓 𝐻𝑎𝑘𝑖𝑚ሻ &

ሺ𝑃𝑜𝑠. 𝑜𝑓 𝐾𝑒𝑣𝑖𝑛 ൏ 𝑃𝑜𝑠. 𝑜𝑓 𝐽𝑢𝑎𝑛𝑖𝑡𝑎ሻ
R-3: 𝑃𝑜𝑠. 𝑜𝑓 𝐻𝑎𝑘𝑖𝑚 ൌ 𝑃𝑜𝑠. 𝑜𝑓 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜  1 |

   𝑃𝑜𝑠. 𝑜𝑓 𝐻𝑎𝑘𝑖𝑚 ൌ 𝑃𝑜𝑠. 𝑜𝑓 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜 െ 1
Fact
Uncertain

Positions
1௦௧, 2ௗ, 3ௗ, 4௧, 5௧

Participants
ሺ𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜, 𝐺𝑖𝑛𝑛𝑦, 𝐻𝑎𝑘𝑖𝑚, 𝐽𝑢𝑎𝑛𝑖𝑡𝑎, 𝐾𝑒𝑣𝑖𝑛ሻ

Options
A. Ginny, Fernando, Hakim, Kevin, Juanita ×R-2
B. Ginny, Juanita, Kevin, Hakim, Fernando ×R-2
C. Ginny, Kevin, Hakim, Juanita, Fernando ×R-3
D. Kevin, Ginny, Juanita, Fernando, Hakim√
E. Kevin, Juanita, Fernando, Hakim, Ginny ×R-1

Question
Which one of the following could be the order the students perform?

[Assignment Game] Passage
Five cashiers-Adams, Bates, Cox, Drake, and Edwards-each of 
whom works alone on exactly one day, Monday through Friday
Adams will work only on Tuesday or Thursday.  R-1
Bates will not work on Monday or Wednesday.   R-2
Cox works on Friday.   F-1
Edwards don’t work next to Drake R-3
.

Rules to Logical Expressions
R-1: 𝐴𝑑𝑎𝑚𝑠 𝑜𝑛 𝑇𝑢𝑒𝑠. | 𝐴𝑑𝑎𝑚𝑠 𝑜𝑛 𝑇ℎ𝑢𝑟.
R-2:  𝐵𝑎𝑡𝑒𝑠 𝑜𝑛 𝑀𝑜𝑛.  𝐵𝑎𝑡𝑒𝑠 𝑜𝑛 𝑊𝑒𝑑. ሻ 
R-3: 𝑃𝑜𝑠. 𝑜𝑓 𝐸𝑑𝑤𝑎𝑟𝑑𝑠 ് 𝑃𝑜𝑠. 𝑜𝑓 𝐷𝑟𝑎𝑘𝑒  1

Positions
𝑀𝑜𝑛. , 𝑇𝑢𝑒𝑠. , 𝑊𝑒𝑑. , 𝑇ℎ𝑢𝑟. , 𝐹𝑟𝑖. 

Participants
ሺ𝐴𝑑𝑎𝑚𝑠, 𝐵𝑎𝑡𝑒𝑠, 𝐶𝑜𝑥, 𝐷𝑟𝑎𝑘𝑒, 𝐸𝑑𝑤𝑎𝑟𝑑𝑠ሻ

Options
A. Edwards, Bates, Adams, Drake, Cox ×R-1
B. Drake, Adams, Bates, Edwards, Cox ×R-2
C. Edwards, Adams, Cox, Bates, Drake ×F-1
D. Edwards, Adams, Drake, Bates, Cox √
E. Drake, Edwards, Bates, Adams, Cox ×R-3

Question
Which one of the following is a possible work schedule?

Fact
𝐶𝑜𝑥 𝑜𝑛 𝐹𝑟𝑖.

Figure 2: Examples of ordering game and assignment game in AR task. Facts and Rules are highlighted in orange
and blue, respectively. Example of grouping game is shown in Figure 1. × indicates conflict.

which are described as follows and examples are
given in Figures 1 and 2:

• Ordering games are to order participants
based on given facts and rules.

• Grouping games are to separate participants
into groups with given facts and rules.

• Assignment games are to assign characteris-
tics to the participants with given rules, like
assigning schedules for people.

3.2 Dataset: AR-LSAT
We collect data from nearly 90 LSAT exams from
1991 to 2016 and select questions from the analyti-
cal reasoning part to construct the dataset, dubbed
AR-LSAT. Each exam in LSAT consists of 101
questions, 24 of which are AR questions. We fi-
nally leave up the questions with 5 answer options.
The statistics are shown in Table 1. We manually
categorize and analyze question types in AR-LSAT
according to different reasoning types, and describe
the detailed descriptions and corresponding exam-
ples in the Appendix D.

Number of questions 2,046
Average length of passages 99.3
Average length of questions 19.1
Average length of answers 6
Number of options 5
Ratio of ordering game 42.5%
Ratio of grouping game 38.75%
Ratio of assignment game 18.75%

Table 1: Data statistics of AR-LSAT dataset.

3.3 Baseline: Pre-trained Model
Pre-trained Transformer (Vaswani et al., 2017)
based language models achieved impressive per-
formance on a wide variety of tasks. There

are several representative pre-trained models, like
BERT (Devlin et al., 2019), XLNet (Yang et al.,
2019), RoBERTa (Liu et al., 2019), and AL-
BERT (Lan et al., 2020). We employ these
powerful pre-trained models as our baselines af-
ter being fine-tuned on our dataset. Specifi-
cally, we take the concatenated sequence X =
{[CLS], passage, [SEP ], question, option} as
the input, where [CLS] is the ending special to-
ken and [SEP ] is used to split two types of input.
The final hidden vector at [CLS] is taken for clas-
sification. However, we find that these models
struggle to deal with this task as their performances
are close to random guess. For example, RoBERTa
achieves 23.1% accuracy on the test set.

3.4 Challenges

In this part, we point out the reasoning ability re-
quired for solving AR questions, and put forward
the challenges that systems should face.

As we can observe from the examples in Fig-
ure 1 and Figure 2, AR questions test a range of
reasoning skills:

1) Comprehending the knowledge including par-
ticipants of events, facts, and rules described
in the context.

2) Extracting machine-understandable logical
functions (expressions) from the rules. For
example, the rule “If A serves on X, then B
serves on Y." needs to be transferred as logi-
cal expression “A on X → B on Y",

3) Making deductions to derive legitimate solu-
tions that satisfy extracted logical functions.

4) Selecting the answer that satisfies all the rules
with the deducted legitimate solutions. In the
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𝟒. 𝐀𝐧𝐬𝐰𝐞𝐫 𝐒𝐞𝐥𝐞𝐜𝐭𝐢𝐨𝐧

Passage
Seven directors -A, B, C, D, E, F, and G- serves on 
the X committee or the Y committee.
If A serves on the X, then B serves on the Y.
If C serves on the X, then D and E serve on the Y.
F serves on a different committee with G.
E serves on a different committee with A.
If G serves on the X, so does B.
question
If D and F both serve on the X committee,
then which one of the following could be true?

Participant A, B, C, D, E, F, G

Position X, Y

Facts D and F both serve on X 

Rules If A serves on the X, then B serves on Y 
If C serves on the X, then D and E 
serve on the Y.
F serves on a different committee with G.
E serves on a different committee with A.
If G serves on the X, so does B.

𝑓 ൌ 𝐼𝑓𝑇ℎ𝑒𝑛 𝑇𝑜 𝐴, 𝑋 , 𝑇𝑜 𝐵, 𝑌
𝑓ଵ ൌ 𝐼𝑓𝑇ℎ𝑒𝑛 𝑇𝑜 𝐶, 𝑋 , 𝑇𝑜 𝐷, 𝑌 ; 𝑇𝑜ሺ𝐸, 𝑌ሻ
𝑓ଶ ൌ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡ሺ𝐹, 𝐺ሻ
𝑓ଷ ൌ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡ሺ𝐸, 𝐴ሻ
𝑓ସ ൌ 𝐼𝑓𝑇ℎ𝑒𝑛ሺ 𝑇𝑜 𝐺, 𝑋 , ሼ𝑇𝑜ሺ𝐵, 𝑋ሻሽሻ

𝑎

𝑎ଵ 𝑎ଶ 𝑎ଷ

𝑓 𝑓 𝑓

𝑓ଵ 𝑓ଵ 𝑓ଵ

…

𝑓 𝑓

𝑎ି 𝑎… 𝐥𝐞𝐠𝐢𝐭𝐢𝐦𝐚𝐭𝐞 𝐚𝐬𝐬𝐢𝐠𝐧𝐦𝐞𝐧𝐭𝐬

𝟑. 𝐋𝐞𝐠𝐢𝐭𝐢𝐦𝐚𝐭𝐞 𝐀𝐬𝐬𝐢𝐠𝐧𝐦𝐞𝐧𝐭𝐬 𝐃𝐞𝐝𝐮𝐜𝐭𝐢𝐨𝐧A B C D E F G

X - - - T - T -

Y - - - F - F -

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐚𝐬𝐬𝐢𝐠𝐧𝐦𝐞𝐧𝐭 𝐚𝟎

𝟏. 𝐀𝐫𝐠𝐮𝐦𝐞𝐧𝐭𝐬 𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧
𝐎𝐩𝐭𝐢𝐨𝐧𝐬

𝟐. 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧

𝐴𝑛𝑠𝑤𝑒𝑟

𝐏𝐚𝐬𝐬𝐚𝐠𝐞 𝐚𝐧𝐝 𝐐𝐮𝐞𝐬𝐭𝐢𝐨𝐧

Figure 3: An overview of our approach. The original example is given in Figure 1. It extracts arguments from the
context (§ 4.1). Then it extracts constraint functions based on rules (§ 4.3). Afterwards, it conducts deduction to
find legitimate assignments (§ 4.4). Lastly, it matches the options and legitimate assignments for prediction (§ 4.5).

examples, a system should eliminate options
that conflict with rules and select the option
that accords with legitimate solutions.

Therefore, this task requires the machine to per-
form explicit complex reasoning, far beyond just
understanding the literal clues presented in the text.

4 Approach

We describe how our system, the Analytical Rea-
soning Machine (ARM), comprehends the knowl-
edge, performs reasoning over the knowledge, and
makes conclusions. Figure 3 gives an overview of
our approach. Our system operates in four steps:
(1) extracting the participants, positions, facts and
rules from the passage and the hypothesis of the
question (§ 4.1); (2) interpreting rules into a set of
logical constraint functions defined in § 4.2, whose
arguments are selected from participants and posi-
tions (§ 4.3); (3) reasoning with the logical func-
tions and finally generating a group of legitimate
assignments (solutions) that satisfy all the rules
(§ 4.4); (4) selecting the most plausible option by
matching the legitimate assignments and options
(§ 4.5). ARM sheds a light on the logical-level
reasoning procedure for analytical reasoning and
each procedure can be further developed for both
performance and expandability.

4.1 Arguments Extraction

In order to understand the context and formalize the
problem, the first step is to extract the participants,
positions, facts and rules expressed in natural
language from the passage and hypothesis of the
question. An assignment represents a solution that
assigns participants to positions. An assignment of
participants is represented as a table, whose rows
and columns represent participants and positions,
respectively. Each grid represents whether a par-

ticipant is assigned to a position, and has the value
of three possible states: (True,False,Unknown).
The rules describe the constraints of assignments
while the facts describe certain assignments. There-
fore, we take the sentences that mention specific
assignments (e.g., A on X) as facts and the other
sentences as rules. Facts represent initial assign-
ments to the grids of the assignment table and the
default state is noted with Unknown. We take the
example in Figure 1 as a running example to show
the extracted participants, positions, facts and rules
from the context.

Specifically, we extract the entities from the lead-
ing sentence of the passage with a neural Named
Entity Recognition (NER) model (Peters et al.,
2017) and group the extracted entities into partici-
pants or positions. We parse groups of entities that
appear together in the leading sentence of the pas-
sage as groups of participants or positions, where
participants always appear before positions. For
the ordering game, positions can not be directly
extracted, so we take them as the order (e.g., first,
second) of participants.

4.2 Constraint Function Definition

We introduce a set of predefined logical functions,
which encode constraints expressed in the literal
rules and check if an assignment satisfies these
constraints. These functions are the foundation of
the reasoning process.

The logical functions include three basic types:
(1) relational function; (2) compositional func-
tion; (3) counting function. A fragment of the
predefined functions is shown in Table 2. A func-
tion consists of arguments and a executor to check
whether an assignment satisfies the constraint func-
tion. The detailed definition of each function is
listed in Appendix B.
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Relational Function The relational functions
represent the constraints of the relationship be-
tween two participants or a participant and a posi-
tion. The arguments of relational function involve
participant or position. For example, the function
Before(Ginny, Fernando) indicates that Ginny
should be in the position before Fernando in the
ordering game. To(A,X) indicates that participant
A should be assigned to position X .

Compositional Function A compositional func-
tion expresses the relationship between two sets of
functions, like the conditional rule (if-then rule)
and the if-and-only-if rule. The arguments of
compositional functions involve two sets of sub-
functions. For example, the rule “If A serves on the
X, then B serves on the Y." should be expressed as
IfThen({To(A,X)}, {To(B, Y )}).
Counting Function The counting functions fo-
cus on the calculation problem of participants un-
der specific constraints. The arguments of counting
functions involve a participant and a number. For
example, LastPos(A, 3) checks whether the partic-
ipant A is assigned to the last 3 positions.

The input of a function executor is an assignment
and the output is a Bool value indicates whether the
assignment satisfies the constraint.

4.3 Function Extraction
Based on the extracted arguments, we parse the
rules expressed in natural language into a set of
constraint logical functions that can check whether
an assignment satisfy the rules.

One straightforward way is to design a symbolic
parsing method. We define an API set to include
roughly 20 types of functions like Before, After, To,
IfThen and realize their executors. For each func-
tion, we follow NSM (Liang et al., 2017) that uses
trigger words to match a potential function. For
example, the function Before can be triggered by
words “before" and “earlier". All the functions and
trigger words are listed in Appendix B. To extract
potential arguments from a given rule, we match
the participants, positions, and number from the
text. If a function is recognized by a trigger word,
we select its arguments from all the potential argu-
ments according to their relative positions to the
trigger word. The relational and counting functions
can be constituted into compositional functions
based on grammar patterns. For example, for the
grammar pattern “If P, then Q", Each function is
grouped into the function set F1 if it occurs in P,

or the function set F2 if it occurs in Q. F1 and F2

are taken as the arguments of the function IfThen.
Furthermore, to handle the uncertain cases and

improve the coverage of extracted functions, we
build a neural semantic parsing model based on a
pre-trained language model RoBERTa (Liu et al.,
2019). It takes the sentence and two parsed ar-
guments in the sentence as the input and predicts
their potential function type (“Null" if no function
exists). Specifically, following Xu et al. (2021),
we modify the sentence by adding a special to-
ken “@” before and after the first argument, and a
special token “#" before and after the second argu-
ment. Then, we encode the modified sentence X
with RoBERTa to obtain contextual representations
H = RoBERTa(X). for tokens. Afterwards, we
take the representation of the first “@” and “#” for
classification.

f = argmax(classifier([H@;H#])) (1)

where [;] denotes concatenation, and the classifier
is a linear layer followed by a softmax function.
Since there is no annotated data of corresponding
logical functions, we need to construct the training
data automatically. The training data consist of
(1) positive instances: all the {input: (rule, argu-
ments); label: function} pairs that extracted by the
symbolic parsing method from the training set; (2)
negative instances: the same number of instances
that have arguments with no function related.

Afterwards, we extract a set of constraint func-
tions with the combination of symbolic and neural
parsing methods. These functions are utilized for
reasoning process introduced in the following part.

4.4 Legitimate Assignments Deduction

Given the extracted logical constraint functions and
the initial assignment table, we conduct reasoning
to find the legitimate assignments that satisfy all
the constraints. The process is formulated into a
tree-based reasoning algorithm. As shown in Fig-
ure 4, each node in a tree corresponds to a table
assignment and each edge indicates a constraint
function. A node v with path {e0, e1, ..., ei} from
the root indicates that its assignment satisfies con-
straint functions {f0, f1, ..., fi}. Suppose we have
n constraint functions, we need to find all the leaf
nodes with depth n. These leaf nodes satisfy all the
functions and thus become legitimate assignments.

Therefore, we introduce how to construct the
complete reasoning tree by the following steps:
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Type Function Args Description

Relational
Functions

Before/After participant1
participant2

Whether participant1 is in the
position before/after participant2.

Same/Different Whether participant1 is in the
same/different position with participant2.

To participant1
position1

Whether participant1 is assigned
to position1.

Compositional
Functions IfThen function set F1

function set F2

If functions in F1 satisfied,
then functions in F2 satisfied.

Counting
Functions FirstPos/LastPos participant1,

number m
Whether participant1 is assigned
to the first/last m positions.

Table 2: A fragment of the logical constraint function definition.

(2) 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 
𝒕𝒐 𝒇𝒊𝒏𝒅 𝒄𝒐𝒏𝒇𝒍𝒊𝒄𝒕

A B C D E F G

X - - - T - T -

Y - - - F - F -

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑎

𝑓 ൌ 𝐼𝑓𝑇ℎ𝑒𝑛 𝑇𝑜 𝐴, 𝑋 , 𝑇𝑜 𝐵, 𝑌

(1) 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆 
𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆 

𝒂𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕𝒔

A B C D E F G

X T F - T - T -

Y F T - F - F -

A B C D E F G

X F T - T - T -

Y T F - F - F -

A B C D E F G

X F F - T - T -

Y T T - F - F -

A B C D E F G

X T T - T - T -

Y F F - F - F -

𝑎ଵ

𝑎ଶ

𝑎ଷ

𝑎ସ

𝑎

𝑓𝑓 𝑓

𝑎ଵ 𝑎ଶ 𝑎ଷ

Conflict with 𝑓

𝑎

𝑹𝒆𝒂𝒔𝒐𝒏𝒊𝒏𝒈 𝑻𝒓𝒆𝒆 𝑬𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏

𝑨𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒇𝟎

𝐷𝑒𝑝𝑡ℎ ൌ 1

Figure 4: An example of the reasoning process. Newly
added participants in f0 are highlighted. (1) and (2)
conducted recursively until depth = n. (T/F/−) =
(True/False/Unknown)

1) Firstly, we start with the root, which is the cer-
tain initial assignment decided by facts. For
the function f0, we generate all possible as-
signments related to newly added arguments
in f0. As shown in the example in Figure 4,
for the function IfThen(To(A,X),To(B, Y )),
we generate all possible assignments related
to the new participants A and B.

2) We execute f0 to find all the legitimate
assignments that satisfy f0 as a group of
children of the root. In the same exam-
ple, we keep the assignments that meets
IfThen(To(A,X),To(B, Y )).

3) Then we select each child as a new root and
select function f1 for further extension of the
reasoning tree.

These processes are recursively conducted until
depth n, which means that all the functions are

used to construct the reasoning tree. The procedure
is summarized into pseudo-code in Appendix A.

It is worth mentioning that although both our al-
gorithm and forward-chaining algorithm deduce
new facts based on rules. However, forward-
chaining algorithm struggles to do this task be-
cause it assumes that all the assignments are al-
ready known to the systems while the assignments
are always unknown before the deduction steps.

Therefore, this algorithm has advantages of per-
forming explicit interpretable reasoning over the
extracted functions and handling uncertain assign-
ments. Moreover, the tree-based manner reduces
the computational complexity.

4.5 Answer Selection

Previous steps understand the passage and the ques-
tion. In this part, we introduce how to analyze the
options, and match the options with the deducted
legitimate assignments beyond word-level for mak-
ing a final prediction. Specifically, we can derive
two types of information from an option:

1) Assignment-based option indicates a table
assignment. For example, “A and C both
serve on the X committee" can be interpreted
as a assignment in the table: {(A,X) =
True; (C,X) = True}. For this type, we
match the parsed option assignment with all
the legitimate assignments and calculate an
assignment-based matching score.

2) Function-based option indicates an option
representing a constraint function, like “The
sedan is serviced earlier in the week than the
roadster", which can be parsed into the func-
tion “Before(sedan, roadster)". We execute
the option-based function on the legitimate
assignments to find the satisfiable option and
calculate a function-based matching score.

These two types of scores are combined for making
a conclusion. The question types and score calcu-
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lating methods are summarized in the Appendix C.

5 Experiments

We make experiments on the AR-LSAT dataset
and evaluate our system with label accuracy. The
data split is (train/dev./test) = (1, 585/231/230)
We first compare our system with powerful neural
baselines and conduct analysis. Moreover, case
study illustrates the reasoning process of our sys-
tem by an explicit example. Lastly, we make error
analysis to point out challenges in this task.

5.1 Model Comparison
Baseline Models We take various powerful neu-
ral models, including RNN-based models (i.e.,
LSTM) and powerful Transformer-based pre-
trained language models (i.e, BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019), RoBERTa (Liu
et al., 2019), and the recent ALBERT (Lan et al.,
2020)) as the baselines of our dataset and investi-
gate their performance. The implementation details
of these baselines are given in Appendix D.

Human Performance Since the dataset is based
on a test designed for undergraduate students, we
select nearly 100 instances in the AR-LSAT dataset
and ask 10 undergraduate college students majoring
in literature, commerce and law to answer these
questions. We take their averaged performance as
human performance and report it in Table 3.

Methods
Dev.
Acc (%)

Test
Acc (%)

Human Performance - 59.7%
Random Guess 20.0% 20.0%
LSTM 22.5% 20.9%
BERT 23.4% 21.4%
XLNet 23.8% 22.5%
RoBERTa 24.2% 23.1%
ALBERT 24.4% 23.0%
ARM 34.2% 30.9%

Table 3: Performance on the AR-LSAT dataset. Our
model is abbreviated as ARM.

Results and Analysis In Table 3, we compare
our system (ARM) with baselines and human per-
formance on the development and test set. As
shown in Table 1, our model with context un-
derstanding and explicit reasoning process signif-
icantly outperforms RNN-based models and pre-
trained language models with 34.2% accuracy on
the development set and 30.9% accuracy on the test

set. Results indicate that context understanding and
reasoning are essential for this task.

Moreover, we observe that the RNN-based mod-
els and pre-trained models struggle to do well on
this task, and achieve close performance with ran-
dom guess. It is also noticed that the performance
of both our system and baselines are still far from
human performance, leaving significant opportuni-
ties for further exploration.

5.2 Model Analysis
In this part, we further analyze the performance
and variance of components of our system. To eval-
uate the performance of arguments extraction, we
manually annotate the correct participants and posi-
tions in the development set as labels and calculate
the accuracy and recall of our condition extraction
method and report the results in Table 4. Moreover,

Acc. (%) Recall (%)
Participants 96.17 92.88
Positions 84.42 85.79

Table 4: Performance of extraction of participants and
positions on the development set.

we eliminate the neural semantic parsing method to
evaluate its importance and extract functions by the
symbolic parsing method. The results are shown in

Methods
Dev.
Acc (%)

Test
Acc (%)

ARM 34.2% 30.9%
ARM (w/o neural func.) 32.4% 30.2%

Table 5: Ablation of the the neural semantic parser.

Table 5. Eliminating neural semantic parsing yields
no significant compromise in performance. This
observation indicates that the neural semantic pars-
ing model can improve performance by improving
coverage of the functions and the symbolic parsing
method can also provide reliable performance.

5.3 Case Study
We present a case study in Figure 5 to illustrate
the reasoning process of our system with inter-
pretable results. Our system extracts correct argu-
ments from the context, and interprets the rules into
logical constraint functions. Afterwards, we per-
form deduction to find legitimate solutions. Lastly,
our system matches the options with the legitimate
solutions and calculates a score for each option.
Option A achieves the highest score because it ac-
cords with legitimate assignments. This analysis
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Passage: A professor must determine the order in which five of her students — Fernando, Ginny, Hakim, Juanita, and Kevin — will perform in an upcoming 
piano recital. Each student performs one piece, and no two performances overlap. The following constraints apply: Ginny must perform earlier than Fernando. 
Kevin must perform earlier than Hakim and Juanita. Hakim must perform either immediately before or immediately after Fernando.
Question:  If Juanita performs earlier than Ginny, then which one of the following could be true?
Options: ሺ𝐴ሻ Fernando performs fourth. √ ሺ𝐵ሻ Ginny performs second.  ሺ𝐶ሻ Hakim performs third. ሺ𝐷ሻ Juanita performs third.  ሺ𝐸ሻ Kevin performs second

Participants & Positions Fernando, Ginny, Hakim, Juanita, Kevin first, second, third, fourth, fifth

Rules &
Functions

(1) Ginny must perform earlier than Fernando. 
(2) Kevin must perform earlier than Hakim and Juanita. 
(3) Hakim must perform either immediately before or 

immediately after Fernando.
(4) Juanita performs earlier than Ginny

ሺ1ሻ 𝐵𝑒𝑓𝑜𝑟𝑒 ሺ𝐺𝑖𝑛𝑛𝑦, 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜ሻ
ሺ2ሻ 𝐴𝑛𝑑 ሺሼ𝐵𝑒𝑓𝑜𝑟𝑒 ሺ𝐾𝑒𝑣𝑖𝑛, 𝐻𝑎𝑘𝑖𝑚ሻሽ, ሼ𝐵𝑒𝑓𝑜𝑟𝑒ሺ𝐾𝑒𝑣𝑖𝑛, 𝐽𝑢𝑎𝑛𝑖𝑡𝑎ሻሽሻ
ሺ3ሻ 𝑂𝑟 ሺሼ𝑁𝑒𝑥𝑡 ሺ𝐻𝑎𝑘𝑖𝑚, 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜ሻሽ, ሼ𝐿𝑎𝑠𝑡 ሺ𝐻𝑎𝑘𝑖𝑚, 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜ሻሽሻ
ሺ4ሻ 𝐵𝑒𝑓𝑜𝑟𝑒 ሺ𝐽𝑢𝑎𝑛𝑖𝑡𝑎, 𝐺𝑖𝑛𝑛𝑦ሻ

Legal Assignments

Option Scores 𝑨  𝟏 𝐵  െ 1 𝐶  െ 1 𝐷  െ 1 𝐸  െ 1

𝟏𝒔𝒕 𝟐𝒏𝒅 𝟑𝒓𝒅 𝟒𝒕𝒉 𝟓𝒕𝒉

Fernando F F F T F

Ginny F F T F F

Hakim F F F F T

Juanita F T F F F

Kevin T F F F F

𝟏𝒔𝒕 𝟐𝒏𝒅 𝟑𝒓𝒅 𝟒𝒕𝒉 𝟓𝒕𝒉

Fernando F F F F T

Ginny F F T F F

Hakim F F F T F

Juanita F T F F F

Kevin T F F F F

Figure 5: A case study on the AR-LSAT dataset. Our system correctly extracts participants, positions, and rules
from the context. Afterwards, it interprets rules into logical functions. After deduction, our system finds legitimate
assignments and makes the correct prediction. Rules are highlighted in blue.

demonstrates that our system has better explict in-
terpretable reasoning ability.

5.4 Error Analysis

We randomly select 50 wrongly predicted instances
from the dev. set and summarize the error types.

The dominant error type is that some rules with
complex semantics are not covered by current con-
straint logical function set. For example, given a
rule “Each crew member does at least one task dur-
ing the installation." , we should map “At least" to
function AtLeastNum. The second type of errors is
caused by failing to extract correct participants or
positions by the NER model and predefined match-
ing pattern. The third error type is caused by the
lack of basic commonsense knowledge, which is
required for understanding the concept in the rules.
For example, when a passage mentioned “Six en-
tertainers should be scheduled at 9:00 A.M., 2:00
P.M., etc" and the rule is “Some participants should
be scheduled in the morning.", the system fails to
match the morning with a specific time zone.

5.5 Discussion

We would like to further highlight important direc-
tions to facilitate research on analytical reasoning.

One of the major challenges lies in deep un-
derstanding of the knowledge in the context, like
parsing the rules into logically equivalent symbolic
functions. Deriving machine-understandable func-
tions from natural language is an essential step
towards deeper understanding and reasoning. Al-
though supervised semantic parsing has achieved

promising progress in recent years, obtaining com-
plete human-annotated logical functions is imprac-
tical for this task. Therefore, further study can
focus on function extraction with limited amount
of annotated functions.

Furthermore, a better inference engine built upon
logical functions is also essential because AR ques-
tions require deeper reasoning abilities far beyond
just understanding the literal clues. Standard sym-
bolic systems like expert systems can provide ex-
plicit reasoning, but they are difficult to deal with
uncertainty in data. Although neural-based meth-
ods are more flexible at dealing with uncertainty,
they still struggle to perform interpretable and ex-
plicit reasoning. It is promising to better integrate
neural and symbolic systems to improve this task
with deeper reasoning ability.

6 Conclusion

In this paper, we study the challenging task of ana-
lytical reasoning and introduce a dataset AR-LSAT
to facilitate research on analytical reasoning. We
analyze the knowledge understanding and reason-
ing ability required for this task and present a sys-
tem, Analytical Reasoning Machine (ARM), which
can comprehend the knowledge, including partic-
ipants, facts and rules mentioned in the context
and extract logically equivalent logical functions
from the rules. Afterwards, it performs deep rea-
soning to find all the legitimate solutions to the
problem posed and finally makes a prediction. Ex-
periments show that our system outperforms strong
Transformer-based baselines, which indicates that
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knowledge understanding and deep reasoning is
essential for this task. Results show that this task is
very challenging for current neural-based models.
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A Pseudo-code of Legitimate
Assignments Deduction

Require: A set of constraint functions F = {f0, f1, ..., fn}
and an initial assignment a0

0: function CONSTRUCTTREE(node,functions,depth,n)
0: if depth == n then:
0: return
0: end if
0: function = functions[depth]
0: old_pars = node.participants
0: old_assign = node.assignment
0: new_pars = find_new_participant(function, old_pars)
0: all_assign = gen_all_assign(old_assign, new_pars)
0: satisfied = find_satisfied(all_assign, function)
0: depth = depth+1
0: children = update_notes(node, satisfied, new_pars)
0: for child in children do
0: CONSTRUCTTREE(child, functions, depth, n)
0: end for
0: end function
0: root = Node(a0)
0: depth = 0
0: n = length of F
0: complete_tree = CONSTRUCTTREE(root, F , depth, n)
0: legitimate = nodes in complete_tree with depth n
0: return legitimate =0

B Function Definition

In this part, we present the detailed description and
trigger words for each logical constraint functions
in Table 8.

C Question Type

In this part, we list common question types in the
AR-LSAT datasets and their ratio in Table 6 and

give examples in Table 7. We further introduce
how we calculate a score for dominant question
type with a group of legitimate assignments.

1) Must be true/false: this question type needs
to select answer that must be true in all the as-
signments. We match all the assignments with
the option. If one option accords/conflicts
with one assignment, the single matching
score will be 1/-1, otherwise the score will
be 0. We then calculate the sum of all the
matching scores as the final score.

2) Could be true/false: this question type needs
to select answer that could be true in one of
the legitimate assignments. We match all the
assignments with the option. If one option
accords/conflicts with one assignment, the sin-
gle matching score will be 1/-1, otherwise the
score will be 0. We then calculate the maxi-
mum matching scores as the final score. The
Acceptable solution question type also use this
method to calculate score.

3) Maximum number of participants in a po-
sition: this question type needs to calculate
the maximum possible number of participants
in a specified position (group). We calculate
the maximum number of participants in all the
legetimate assignments and calculate the abso-
lute difference with the number in the option
as the final score.

4) Find the earliest position of a participant:
this question type needs to calculate the earli-
est possible position of a specific participant.
We calculate the index of the earliest position
of the participant in all the legitimate assign-
ments and calculate the absolute difference
with the number in the option as the final
score.

5) Count the number of possible positions that
a participant can be assigned in: for this
question type, we count all the non-repetitive
assignments of the specific participant and cal-
culate the absolute difference with the number
in the option as the final score.

D Baseline Models

D.1 Descriptions
• LSTM (Gers et al., 1999) is a classical RNN-

based model. We apply Bi-LSTM with
GloVE (Pennington et al., 2014) embedding.

2317

https://arxiv.org/abs/2004.12057
https://arxiv.org/abs/2004.12057
https://arxiv.org/abs/2004.12057
https://doi.org/10.18653/v1/2020.acl-main.549
https://doi.org/10.18653/v1/2020.acl-main.549
https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/D19-1332


Question Type Description
Acceptable solution (15.6%) identify a feasible solution that can satisfy all the rules
Complete list (3.5%) identify a complete and accurate list of participants under given condition
Could be true/false (26.8%) select answer that could be true/false under given condition
Must be true/false (26.4%) select answer that must be true/false under given condition
Negation (14.7%) questions that contain negation
Substitution (4.3%) find a new rule that can substitute one of the old rules for the desiring result
Condition for determined solution (3.5%) identify a new rule so that the feasible solution is determined
Calculation (3%) calculate possible participants in a group
Earliest/latest position (1.3%) identify the earliest/latest position that a participant can be assigned to
Maximum/minimum members (1.3%) identify the maximum/minimum number of participants in a specific group

Table 6: The ratio and description of each question type in the test set of the AR-LSAT dataset.

Question Type Example
Acceptable solution Which one of the following could be the schedule of the students’ reports?

Complete list Which one of the following could be a complete and accurate list of
the books placed on the bottom shelf?

Could be true/false with condition If Himalayans are not featured on day 7. which one of the following could be true?
Must be true/false with condition If Theresa tests G on the second day. then which one of the following must be true?
Negation P CANNOT be performed at?

Substitution
Which one of the following. if substituted for the condition that Waite’s audition
must take place earlier than the two recorded auditions.
would have the same effect in determining the order of the auditions?

Condition for unique solution The assignment of parking spaces to each of the new employees is fully and uniquely
determined if which one of the following is true?

Calculation How many of the students are there who could be the one assigned to 1921?

Earliest/latest position If Zircon performs in an earlier slot than Yardsign. which one of the following
is the earliest slot in which Wellspring could perform?

Maximum/minimum members What is the minimum number of solos in which Wayne performs a traditional piece?

Table 7: The examples of question types in the AR-LSAT dataset.

• BERT (Devlin et al., 2019) is a transformer-
based model pre-trained on BooksCorpus and
Wikipedia with two unsupervised learning
task: Masked LM and Nest Sentence Predic-
tion.

• XLNet (Yang et al., 2019) is also a
transformer-based model, pre-trained on
BooksCorpus, Wikipedia, Giga5, ClueWeb
2012-B and Common Crawl with Permuta-
tion Language Modeling.

• RoBERTa (Liu et al., 2019) is a transformer-
based model with the same model structure as
BERT but trained on a larger corpus and on a
different training setting.

• ALBERT (Lan et al., 2020) is a most recent
transformer-based pre-trained model. AL-
BERT uses parameter-reduction techniques
that support large-scale configurations.

D.2 Implementation Details
For all the baselines, we employ cross-entropy loss
as the loss function and select AdamW as the opti-
mizer for model training/ fine-tuning. These base-
lines add a simple classification layer on the top of

them and take the the last hidden state as the input.
For all the Transformer-based models, we employ
base model as the backbone.
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Type Function Arguments Description Trigger Words

Relational
Functions

Before

participant 1
participant 2

whether participant 1 is in the
position before participant 2

before, above,
precede, earlier

After
whether participant 1 is in the
position after participant 2

after, larger, higher
bigger, older

Last
whether participant 1 is in the
last position of participant 2

immediately before,
last

Next
whether participant 1 is next
to participant 2

immediately after,
next

Adjacent
whether participant 1 is
neighboring to participant 2

neighboring,
adjacent

Different
whether participant 1 in the different
position with participant 2

different

Same
whether the first participant in the same
position with the second participant

same, also

BeforeEqual
whether participant 1 before
or equals to the position of participant 2

no later

AfterEqual
whether participant 1 after or equals
to the position of participant 2

no earlier

To
participant
position

Whether the participant is
assigned to the position

to, on, give, in

Compos.
Functions

IfThen

function set 1
function set 2

If rules in rule set 1 satisfied,
then rules in rule set 2 satisfied

If... then, If ... , ...

IFF
Rules in rule set 1 satisfied if and
only if rules in rule set 2 satisfied

if and only if

And
Rules in rule set 1 satisfied and
rules in the rule set 2 satisfied

and

Or
Rules in rule set 1 satisfied or
rules in rule set 2 satisfied

or

Unless
Rules in rule set 1 satisfied unless
rules in rule set 2 satisfied

unless

Neither
Neither rules in rule set 1 satisfied
nor rules in rule set 2 satisfied

Neither ... nor ...

Counting
Functions

FirstPos participant
number

Whether the participant is in the
last (number) positions

one of the
last (number)

LastPos
Whether the participant is in the
first (number) positions

one of the
first (number)

Table 8: Detailed function descriptions and corresponding trigger words
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