Ziyue Liu


2025

The full-size MLPs and the projection layers in attention introduce tremendous model sizes of large language models (LLMs), consuming extensive computational resources in pre-training. We empirically observe that the activations of pre-trained LLMs exhibit low-rank property. Motivated by such observations, we propose **CoLA** and its memory-efficient implementation, **CoLA-M**, to replace these full-size layers with compute-efficient **auto-encoders** that naturally enforce low-rank activations throughout training. This fundamental architectural change eliminates the activation redundancy and significantly boosts model capacity and training efficiency. Experiments on LLaMA models with 60 million to 7 billion parameters show that CoLA reduces the computing cost by 2\pmb{\times} and improves training throughput by 1.86\pmb{\times} while maintaining full-rank level performance. CoLA-M further squeezes memory cost without sacrificing throughput, offering a pre-training approach with collectively superior parameter, computing, and memory efficiency. The LLMs produced are also 2\pmb{\times} smaller, enabling faster inference with lower memory cost on resource-constrained platforms.
Large Language Models (LLMs) are often quantized to lower precision to reduce the memory cost and latency in inference. However, quantization often degrades model performance, thus fine-tuning is required for various downstream tasks. Traditional fine-tuning methods such as stochastic gradient descent and Adam optimization require backpropagation, which is error-prone in the low-precision settings. To overcome these limitations, we propose the Quantized Zeroth-Order (QuZO) framework, specifically designed for fine-tuning LLMs through low-precision (e.g., 4- or 8-bit) forward passes. Our method avoids the low-precision straight-through estimator, which requires backward computation, and instead utilizes optimized stochastic rounding to mitigate increased bias. QuZO simplifies the training process, while achieving results comparable to first-order methods in FP8 and superior accuracy in INT8 and INT4 training. Experiments demonstrate that QuZO achieves competitive performance on classification, multi-choice, and generation tasks under low-bit training, including zero-shot reasoning tasks. Notably, QuZO incurs minimal overhead and reduces memory consumption by 2.94 ×5.47 × compared to quantized first-order methods during LLaMA-7B fine-tuning.