Yuhang Wu


2025

Evaluating the alignment capabilities of large Vision-Language Models (VLMs) is essential for determining their effectiveness as helpful assistants. However, existing benchmarks primarily focus on basic abilities using nonverbal methods, such as yes-no and multiple-choice questions. In this paper, we address this gap by introducing AlignMMBench, which provides more nuanced evaluations of alignment capabilities and is the first benchmark specifically designed for Chinese visual contexts. This benchmark is meticulously curated from real-world scenarios and internet sources, encompassing thirteen specific tasks across three categories, and includes both single-turn and multi-turn dialogue scenarios. Incorporating a prompt rewrite strategy, AlignMMBench encompasses 1,054 images and 4,978 question-answer pairs. To facilitate the evaluation pipeline, we develop CritiqueVLM, a rule-calibrated evaluator that exceeds GPT-4’s evaluation ability. Additionally, we measure the “alignment score”, a quantitative metric designed to assess the robustness and stability of models across diverse prompts. Finally, we evaluate the performance of representative VLMs on AlignMMBench, offering insights into the capabilities and limitations of different VLM architectures. The evaluation code and data are available at https://github.com/THUDM/AlignMMBench.
With the increasingly deep integration of large language models (LLMs) across diverse domains, the effectiveness of their safety mechanisms is encountering severe challenges. Currently, jailbreak attacks based on prompt engineering, which induce models to generate potentially harmful content, have become a major security threat. However, existing methods primarily rely on black-box manipulation of prompt templates, resulting in high costs and poor generalizability. To break through the bottleneck, this study reveals the potential impact of the generation of LLMs on safety for the first time that Defense Threshold Decay (DTD) phenomena: as benign content generation increases, the model’s attention to input instructions progressively diminishes. Building on this insight, we propose the Sugar-Coated Poison (SCP) attack paradigm, using a “semantic reversal” strategy, where benign inputs that are opposite in meaning to malicious intent are crafted to induce the model into a safety response mode. When the defense threshold decays, an adversarial reasoning mechanism easily bypasses safety mechanisms. Experiments show SCP outperforms existing baselines. For defense, we propose Part-of-Speech Defense (POSD), leveraging verb-noun dependencies for syntactic analysis to enhance robustness and security of LLMs. Our code is available at https://anonymous.4open.science/r/SCP-9092.
Fingerprinting large language models (LLMs) is essential for verifying model ownership, ensuring authenticity, and preventing misuse. Traditional fingerprinting methods often require significant computational overhead or white-box verification access. In this paper, we introduce UTF, a novel and efficient approach to fingerprinting LLMs by leveraging under-trained tokens. Under-trained tokens are tokens that the model has not fully learned during its training phase. By utilizing these tokens, we perform supervised fine-tuning to embed specific input-output pairs into the model. This process allows the LLM to produce predetermined outputs when presented with certain inputs, effectively embedding a unique fingerprint. Our method has minimal overhead and impact on model’s performance, and does not require white-box access to target model’s ownership identification. Compared to existing fingerprinting methods, UTF is also more effective and robust to fine-tuning and random guess.

2024

While LLMs demonstrate impressive capabilities in musical knowledge, we find that music reasoning is still an unsolved task.We introduce ChatMusician, an open-source large language model (LLM) that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language.ChatMusician can understand and generate music with a pure text tokenizer without external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score.ChatMusician is capable of composing well-structured, full-length music, condition on texts, chords, melodies, motifs, musical forms, etc.On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 by a noticeable margin. We show that ChatMusician preserves or even surpasses the original LLaMA2 7B’s language abilities by evaluating on MMLU benchmark.Our work reveals that LLMs can be an excellent compressor for music, which can be seen as humanity’s creative language, but there remains significant territory to be conquered.We release our 5B token music-language corpora MusicPiles, the collected MusicTheoryBench, code, model and demo.

2020

This paper describes our system in subtask A of SemEval 2020 Shared Task 4. We propose a reinforcement learning model based on MTL(Multi-Task Learning) to enhance the prediction ability of commonsense validation. The experimental results demonstrate that our system outperforms the single-task text classification model. We combine MTL and ALBERT pretrain model to achieve an accuracy of 0.904 and our model is ranked 16th on the final leader board of the competition among the 45 teams.
This article describes the system submitted to SemEval 2020 Task 5: Modelling Causal Reasoning in Language: Detecting Counterfactuals. In this task, we only participate in the subtask A which is detecting counterfactual statements. In order to solve this sub-task, first of all, because of the problem of data balance, we use the undersampling and oversampling methods to process the data set. Second, we used the ALBERT model and the maximum ensemble method based on the ALBERT model. Our methods achieved a F1 score of 0.85 in subtask A.

2019

We participated in the BioNLP 2019 Open Shared Tasks: binary relation extraction of SeeDev task. The model was constructed us- ing convolutional neural networks (CNN) and long short term memory networks (LSTM). The full text information and context information were collected using the advantages of CNN and LSTM. The model consisted of two main modules: distributed semantic representation construction, such as word embedding, distance embedding and entity type embed- ding; and CNN-LSTM model. The F1 value of our participated task on the test data set of all types was 0.342. We achieved the second highest in the task. The results showed that our proposed method performed effectively in the binary relation extraction.