Yu Hu


2025

Existing LLM-based medical question answering systems lack citation generation and evaluation capabilities, raising concerns about their adoption in practice. In this work, we introduce MedCite, the first end-to-end framework that facilitates the design and evaluation of LLM citations for medical tasks. Meanwhile, we introduce a novel multi-pass retrieval-citation method that generates high-quality citations.Our extensive evaluation highlights the challenges and opportunities of citation generation for medical tasks, while identifying important design choices that have a significant impact on the final citation quality. Our proposed method achieves superior citation precision and recall improvements compared to strong baseline methods, and we show that our evaluation results correlate well with annotation results from professional experts.
Long-form story generation task aims to produce coherent and sufficiently lengthy text, essential for applications such as novel writingand interactive storytelling. However, existing methods, including LLMs, rely on rigid outlines or lack macro-level planning, making it difficult to achieve both contextual consistency and coherent plot development in long-form story generation. To address this issues, we propose Dynamic Hierarchical Outlining with Memory-Enhancement long-form story generation method, named DOME, to generate the long-form story with coherent content and plot. Specifically, the Dynamic Hierarchical Outline(DHO) mechanism incorporates the novel writing theory into outline planning and fuses the plan and writing stages together, improving the coherence of the plot by ensuring the plot completeness and adapting to the uncertainty during story generation. A Memory-Enhancement Module (MEM) based on temporal knowledge graphs is introduced to store and access the generated content, reducing contextual conflicts and improving story coherence. Finally, we propose a Temporal Conflict Analyzer leveraging temporal knowledge graphs to automatically evaluate the contextual consistency of long-form story. Experiments demonstrate that DOME significantly improves the fluency, coherence, and overall quality of generated long stories compared to state-of-the-art methods.

2024

In the digital era, table structure recognition technology is a critical tool for processing and analyzing large volumes of tabular data. Previous methods primarily focus on visual aspects of table structure recovery but often fail to effectively comprehend the textual semantics within tables, particularly for descriptive textual cells. In this paper, we introduce UniTabNet, a novel framework for table structure parsing based on the image-to-text model. UniTabNet employs a “divide-and-conquer” strategy, utilizing an image-to-text model to decouple table cells and integrating both physical and logical decoders to reconstruct the complete table structure. We further enhance our framework with the Vision Guider, which directs the model’s focus towards pertinent areas, thereby boosting prediction accuracy. Additionally, we introduce the Language Guider to refine the model’s capability to understand textual semantics in table images. Evaluated on prominent table structure datasets such as PubTabNet, PubTables1M, WTW, and iFLYTAB, UniTabNet achieves a new state-of-the-art performance, demonstrating the efficacy of our approach. The code will also be made publicly available.

2016

2015

2006

2005