Yoan Gutiérrez

Also published as: Yoan Gutiérrez Vázquez

Other people with similar names: Yoan Gutierrez

Unverified author pages with similar names: Yoan Gutierrez


2025

The T2Know project explores the application of natural language processing technologies to build a semantic platform for scientific documents using knowledge graphs. These graphs will interconnect meaningful sections from different documents, enabling both trend analysis and the generation of informed recommendations. The project’s objectives include the development of entity recognition systems, the definition of user and document profiles, and the linking of documents through transformer-based technologies. Consequently, the extracted relevant content will go beyond standard metadata such as titles and author affiliations, extending also to other key sections of scientific articles, including references, which are treated as integral components of the knowledge representation.

2023

The large amount of information in digital format that exists today makes it unfeasible to use manual means to acquire the knowledge contained in these documents. Therefore, it is necessary to develop tools that allow us to incorporate this knowledge into a structure that is easy to use by both machines and humans. This paper presents a system that can incorporate the relevant information from a document in any format, structured or unstructured, into a semantic network that represents the existing knowledge in the document. The system independently processes from structured documents based on its annotation scheme to unstructured documents, written in natural language, for which it uses a set of sensors that identifies the relevant information and subsequently incorporates it to enrich the semantic network that is created by linking all the information based on the knowledge discovered.

2021

This paper presents an active learning approach that aims to reduce the human effort required during the annotation of natural language corpora composed of entities and semantic relations. Our approach assists human annotators by intelligently selecting the most informative sentences to annotate and then pre-annotating them with a few highly accurate entities and semantic relations. We define an uncertainty-based query strategy with a weighted density factor, using similarity metrics based on sentence embeddings. As a case study, we evaluate our approach via simulation in a biomedical corpus and estimate the potential reduction in total annotation time. Experimental results suggest that the query strategy reduces by between 35% and 40% the number of sentences that must be manually annotated to develop systems able to reach a target F1 score, while the pre-annotation strategy produces an additional 24% reduction in the total annotation time. Overall, our preliminary experiments suggest that as much as 60% of the annotation time could be saved while producing corpora that have the same usefulness for training machine learning algorithms. An open-source computational tool that implements the aforementioned strategies is presented and published online for the research community.

2020

This paper presents AutoGOAL, a system for automatic machine learning (AutoML) that uses heterogeneous techniques. In contrast with existing AutoML approaches, our contribution can automatically build machine learning pipelines that combine techniques and algorithms from different frameworks, including shallow classifiers, natural language processing tools, and neural networks. We define the heterogeneous AutoML optimization problem as the search for the best sequence of algorithms that transforms specific input data into the desired output. This provides a novel theoretical and practical approach to AutoML. Our proposal is experimentally evaluated in diverse machine learning problems and compared with alternative approaches, showing that it is competitive with other AutoML alternatives in standard benchmarks. Furthermore, it can be applied to novel scenarios, such as several NLP tasks, where existing alternatives cannot be directly deployed. The system is freely available and includes in-built compatibility with a large number of popular machine learning frameworks, which makes our approach useful for solving practical problems with relative ease and effort.
This paper introduces a web demo that showcases the main characteristics of the AutoGOAL framework. AutoGOAL is a framework in Python for automatically finding the best way to solve a given task. It has been designed mainly for automatic machine learning(AutoML) but it can be used in any scenario where several possible strategies are available to solve a given computational task. In contrast with alternative frameworks, AutoGOAL can be applied seamlessly to Natural Language Processing as well as structured classification problems. This paper presents an overview of the framework’s design and experimental evaluation in several machine learning problems, including two recent NLP challenges. The accompanying software demo is available online (https://autogoal.github.io/demo) and full source code is provided under the MIT open-source license (https://autogoal.github.io).
This paper presents the preliminary results of an ongoing project that analyzes the growing body of scientific research published around the COVID-19 pandemic. In this research, a general-purpose semantic model is used to double annotate a batch of 500 sentences that were manually selected by the researchers from the CORD-19 corpus. Afterwards, a baseline text-mining pipeline is designed and evaluated via a large batch of 100,959 sentences. We present a qualitative analysis of the most interesting facts automatically extracted and highlight possible future lines of development. The preliminary results show that general-purpose semantic models are a useful tool for discovering fine-grained knowledge in large corpora of scientific documents.

2019

The process of extracting knowledge from natural language text poses a complex problem that requires both a combination of machine learning techniques and proper feature selection. Recent advances in Automatic Machine Learning (AutoML) provide effective tools to explore large sets of algorithms, hyper-parameters and features to find out the most suitable combination of them. This paper proposes a novel AutoML strategy based on probabilistic grammatical evolution, which is evaluated on the health domain by facing the knowledge discovery challenge in Spanish text documents. Our approach achieves state-of-the-art results and provides interesting insights into the best combination of parameters and algorithms to use when dealing with this challenge. Source code is provided for the research community.
The massive amount of multi-formatted information available on the Web necessitates the design of software systems that leverage this information to obtain knowledge that is valid and useful. The main challenge is to discover relevant information and continuously update, enrich and integrate knowledge from various sources of structured and unstructured data. This paper presents the Learning Engine Through Ontologies(LETO) framework, an architecture for the continuous and incremental discovery of knowledge from multiple sources of unstructured and structured data. We justify the main design decision behind LETO’s architecture and evaluate the framework’s feasibility using the Internet Movie Data Base(IMDB) and Twitter as a practical application.
This paper presents Semantic Neural Networks (SNNs), a knowledge-aware component based on deep learning. SNNs can be trained to encode explicit semantic knowledge from an arbitrary knowledge base, and can subsequently be combined with other deep learning architectures. At prediction time, SNNs provide a semantic encoding extracted from the input data, which can be exploited by other neural network components to build extended representation models that can face alternative problems. The SNN architecture is defined in terms of the concepts and relations present in a knowledge base. Based on this architecture, a training procedure is developed. Finally, an experimental setup is presented to illustrate the behaviour and performance of a SNN for a specific NLP problem, in this case, opinion mining for the classification of movie reviews.

2017

The recent failures of traditional poll models, like the predictions in United Kingdom with the Brexit, or in United States presidential elections with the victory of Donald Trump, have been noteworthy. With the decline of traditional poll models and the growth of the social networks, automatic tools are gaining popularity to make predictions in this context. In this paper we present our approximation and compare it with a real case: the 2017 French presidential election.
Nowadays, search for documents on the Internet is becoming increasingly difficult. The reason is the amount of content published by users (articles, comments, blogs, reviews). How to facilitate that the users can find their required documents? What would be necessary to provide useful document meta-data for supporting search engines? In this article, we present a study of some Natural Language Processing (NLP) technologies that can be useful for facilitating the proper identification of documents according to the user needs. For this purpose, it is designed a document profile that will be able to represent semantic meta-data extracted from documents by using NLP technologies. The research is basically focused on the study of different NLP technologies in order to support the creation our novel document profile proposal from semantic perspectives.
This paper describes the system submitted to SemEval-2017 Task 4-A Sentiment Analysis in Twitter developed by the UCSC-NLP team. We studied how relationships between sense n-grams and sentiment polarities can contribute to this task, i.e. co-occurrences of WordNet senses in the tweet, and the polarity. Furthermore, we evaluated the effect of discarding a large set of features based on char-grams reported in preceding works. Based on these elements, we developed a SVM system, which exploring SentiWordNet as a polarity lexicon. It achieves an F1=0.624of average. Among 39 submissions to this task, we ranked 10th.

2014

2013

2012

2011

2010