Yi Ding

Papers on this page may belong to the following people: Yi Ding, Yi Ding


2025

With the emergence of strong vision language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments.Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: vision-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack.VisCo fabricates contextual dialogue using four distinct vision-focused strategies, dynamically generating auxiliary images when necessary to construct a vision-centric jailbreak scenario.To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which achieves a toxicity score of 2.48 and an ASR of 22.2%. Code: https://github.com/Dtc7w3PQ/Visco-Attack.

2024

Incorporating every annotator’s perspective is crucial for unbiased data modeling. Annotator fatigue and changing opinions over time can distort dataset annotations. To combat this, we propose to learn a more accurate representation of diverse opinions by utilizing multitask learning in conjunction with loss-based label correction. We show that using our novel formulation, we can cleanly separate agreeing and disagreeing annotations. Furthermore, this method provides a controllable way to encourage or discourage disagreement. We demonstrate that this modification can improve prediction performance in a single or multi-annotator setting. Lastly, we show that this method remains robust to additional label noise that is applied to subjective data.