Yaqiang Wu


2024

Generalized Category Discovery (GCD) is a crucial task that aims to recognize both known and novel categories from a set of unlabeled data by utilizing a few labeled data with only known categories. Due to the lack of supervision and category information, current methods usually perform poorly on novel categories and struggle to reveal semantic meanings of the discovered clusters, which limits their applications in the real world. To mitigate the above issues, we propose Loop, an end-to-end active-learning framework that introduces Large Language Models (LLMs) into the training loop, which can boost model performance and generate category names without relying on any human efforts. Specifically, we first propose Local Inconsistent Sampling (LIS) to select samples that have a higher probability of falling to wrong clusters, based on neighborhood prediction consistency and entropy of cluster assignment probabilities. Then we propose a Scalable Query strategy to allow LLMs to choose true neighbors of the selected samples from multiple candidate samples. Based on the feedback from LLMs, we perform Refined Neighborhood Contrastive Learning (RNCL) to pull samples and their neighbors closer to learn clustering-friendly representations. Finally, we select representative samples from clusters corresponding to novel categories to allow LLMs to generate category names for them. Extensive experiments on three benchmark datasets show that Loop outperforms SOTA models by a large margin and generates accurate category names for the discovered clusters. Code and data are available at https://github.com/Lackel/LOOP.

2022

Relation clustering is a general approach for open relation extraction (OpenRE). Current methods have two major problems. One is that their good performance relies on large amounts of labeled and pre-defined relational instances for pre-training, which are costly to acquire in reality. The other is that they only focus on learning a high-dimensional metric space to measure the similarity of novel relations and ignore the specific relational representations of clusters. In this work, we propose a new prompt-based framework named MatchPrompt, which can realize OpenRE with efficient knowledge transfer from only a few pre-defined relational instances as well as mine the specific meanings for cluster interpretability. To our best knowledge, we are the first to introduce a prompt-based framework for unlabeled clustering. Experimental results on different datasets show that MatchPrompt achieves the new SOTA results for OpenRE.