Xing Li


2019

Simultaneous translation, which translates sentences before they are finished, is use- ful in many scenarios but is notoriously dif- ficult due to word-order differences. While the conventional seq-to-seq framework is only suitable for full-sentence translation, we pro- pose a novel prefix-to-prefix framework for si- multaneous translation that implicitly learns to anticipate in a single translation model. Within this framework, we present a very sim- ple yet surprisingly effective “wait-k” policy trained to generate the target sentence concur- rently with the source sentence, but always k words behind. Experiments show our strat- egy achieves low latency and reasonable qual- ity (compared to full-sentence translation) on 4 directions: zh↔en and de↔en.

2005