Xiaomeng Pan


2023

In this study, we propose using the GPT-3 as a query generator for the backend of CLIP as an implicit word sense disambiguation (WSD) component for the SemEval 2023 shared task Visual Word Sense Disambiguation (VWSD). We confirmed previous findings — human-like prompts adapted for WSD with quotes benefit both CLIP and GPT-3, whereas plain phrases or poorly templated prompts give the worst results.

2022

Word Sense Disambiguation (WSD) is a core task in Natural Language Processing (NLP). Ancient Chinese has rarely been used in WSD tasks, however, as no public dataset for ancient Chinese WSD tasks exists. Creation of an ancient Chinese dataset is considered a significant challenge because determining the most appropriate sense in a context is difficult and time-consuming owing to the different usages in ancient and modern Chinese. Actually, no public dataset for ancient Chinese WSD tasks exists. To solve the problem of ancient Chinese WSD, we annotate part of Pre-Qin (221 BC) text Zuo Zhuan using a copyright-free dictionary to create a public sense-tagged dataset. Then, we apply a simple Nearest Neighbors (k-NN) method using a pre-trained language model to the dataset. Our code and dataset will be available on GitHub.