Will Roberts


2019

We present the first annotated resource for the aspectual classification of German verb tokens in their clausal context. We use aspectual features compatible with the plurality of aspectual classifications in previous work and treat aspectual ambiguity systematically. We evaluate our corpus by using it to train supervised classifiers to automatically assign aspectual categories to verbs in context, permitting favourable comparisons to previous work.

2018

2016

2014

2012

We develop a model for predicting verb sense from subcategorization information and integrate it into SSI-Dijkstra, a wide-coverage knowledge-based WSD algorithm. Adding syntactic knowledge in this way should correct the current poor performance of WSD systems on verbs. This paper also presents, for the first time, an evaluation of SSI-Dijkstra on a standard data set which enables a comparison of this algorithm with other knowledge-based WSD systems. Our results show that our system is competitive with current graph-based WSD algorithms, and that the subcategorization model can be used to achieve better verb sense disambiguation performance.