Weisi Liu


2025

Large Language Models (LLMs) excel at generating synthetic data, but ensuring its quality and diversity remains challenging. We propose Genetic Prompt, a novel framework that combines genetic algorithms with LLMs to augment synthetic data generation. Our approach treats semantic text attributes as gene sequences and leverages the LLM to simulate crossover and mutation operations. This genetic process enhances data quality and diversity by creating novel attribute combinations, yielding synthetic distributions closer to real-world data. To optimize parent selection, we also integrate an active learning scheme that expands the offspring search space. Our experiments on multiple NLP tasks reveal several key findings: Genetic Prompt not only significantly outperforms state-of-the-art baselines but also shows robust performance across various generator model sizes and scales. Moreover, we demonstrate that fusing our synthetic data with the original training set significantly boosts downstream model performance, particularly for class-imbalanced scenarios. Our findings validate that Genetic Prompt is an effective method for producing high-quality synthetic data for a wide range of NLP applications.
Time is implicitly embedded in classification process: classifiers are usually built on existing data while to be applied on future data whose distributions (e.g., label and token) may change. However, existing state-of-the-art classification models merely consider the temporal variations and primarily focus on English corpora, which leaves temporal studies less explored, let alone under multilingual settings. In this study, we fill the gap by treating time as domains (e.g., 2024 vs. 2025), examining temporal effects, and developing a domain adaptation framework to generalize classifiers over time on four languages, English, Danish, French, and German. Our framework proposes Mixture of Temporal Experts (MoTE) to leverage both semantic and data distributional shifts to learn and adapt temporal trends into classification models. Our analysis shows classification performance varies over time across different languages, and we experimentally demonstrate that MoTE can enhance classifier generalizability over temporal data shifts. Our study provides analytic insights and addresses the need for time-aware models that perform robustly in multilingual scenarios.