Weiqiang Pan


2023

The widespread use of machine translation (MT) has driven the need for effective automatic quality estimation (AQE) methods. How to enhance the interpretability of MT output quality estimation is well worth exploring in the industry. From the perspective of the alignment of named entities (NEs) in the source and translated sentences, we construct a multilingual knowledge graph (KG) consisting of domain-specific NEs, and design a KG-based interpretable quality estimation (QE) system for machine translations (KG-IQES). KG-IQES effectively estimates the translation quality without relying on reference translations. Its effectiveness has been verified in our business scenarios.